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Abstract
A new theoretical methodology enabling the determination of the complex refractive index has been developed and 
explored; it only requires to use a classical set-up to control the incident angle, without the need for a polarizer. As a 
proof of concept, this new methodology has been successfully applied to investigate the optical properties of amorphous 
silica in the mid-infrared spectral range and validated by comparison with a standard routine based on polarization 
state of the light. This work thus makes it possible to determine the complex refractive index of an isotropic material by 
a reflectance measurement without needing to control the polarization of light. The refractive index can be measured 
with a relative uncertainty close to 10−3 over a wide range of wavelengths, as needed for a growing number of optical 
applications. Therefore, this new technique is cost effective and permits the accurate assessment of the refractive index 
in the whole infrared range.

Keywords Complex refractive index · Fourier transform infrared spectroscopy · Single-angle reflectance · Multi-angles 
reflectance · Complex optical constants

1 Introduction

Recently, light–matter interaction in the infrared range 
has been used for applications in various areas, such as 
medicine, environment, high-speed communications or 
energy. For instance, it is useful to identify tumours [1, 2] 
or to characterize deteriorated binders and materials in 
ancient wall paintings [3]. It is also employed in the quan-
tification of harmful species in Earth’s atmosphere [4], in 
designing new optical devices and sensors with optimized 
performances [5, 6] and in the fabrication of radiative cool-
ing systems [6]. For such applications, as well as to provide 
accurate data for numerical simulations, it is necessary to 
precisely know the complex refractive indices of the used 
materials. However, precise values are still very scarcely 

known and experimental set-ups to measure them are not 
always available, leading to assumptions and conclusions, 
which may be inappropriate [6].

The complex refractive index � is a key parameter in 
the optical description of matter. Note that, in the whole 
article, complex numbers such as � will be overlined. � is 
defined by Eq. (1).

where � is a wavenumber, n is the refractive index and 
k is the extinction coefficient. n and k characterize the 
real and imaginary parts of the complex refractive index, 
respectively. If k > 0 , the medium is absorbent, if k < 0 , 
the medium is characterized by a gain. Neither n nor k can 

(1)�(�) = n(�) + i.k(�)
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be measured directly; they must be determined indirectly 
from other measurable optical quantities.

All techniques developed to determine complex refrac-
tive indices use transmitted or reflected light. In the latter 
case, the reflectance R is defined by:

where Ir is the intensity of the reflected light and I1 the 
intensity of the incident light.

Among these techniques, infrared ellipsometry is based 
on the use of transverse linearly polarized light. Magnetic 
(TM) and electric (TE) transverse linearly polarized lights 
are obtained with the use of a polarizer. Fresnel reflection 
coefficients, r∥ and r⟂ , are related to TM and TE polariza-
tions, respectively. As the angle of reflection is equal to 
the angle of incidence �1 , they are defined in Eqs.  (3) and 
(4) [7].

where R is the measured reflectance and � the phase shift 
of the reflected light with respect to the incident one. As 
illustrated in Fig. 1, the indices 1 and 2 are defined at the 
planar interface between two media and are related to the 
media of incidence and to the analysed material, respec-
tively. Thus, the incident light is characterized by its polari-
zation state and its angle of incidence �1 . �2 corresponds to 
the angle of refraction in the material to be characterized.

(2)R =
Ir

I1

(3)r⟂ =
�1. cos �1 − �2. cos �2

�1 cos �1 + �2. cos �2
=
√
R. exp−i�⟂

(4)r∥ =
�2. cos �1 − �1 cos �2

�2. cos �1 + �1 cos �2
=
√
R. exp−i�∥

Using these two states of polarization with a rota-
tional analyser, the phase shift � is determined and the 
complex refractive index can be fully estimated. This 
method of resolution, known as ellipsometry, is the most 
used technique because of its robustness and its accu-
racy. But it is expensive, and therefore it is not available 
in all laboratories.

Under convergence conditions, the Kramers–Kronig 
relations link the real and imaginary parts of analytic 
functions defined in the upper region of Argand plane, 
i.e., in the half complex plane 

(
ℝ × i.ℝ+

)
 . The phase shift 

� can then be deduced from measurements of reflec-
tance R by Eq. (5) [8].

where p.v. denotes the Cauchy principal values and �� 
the Kramers–Kronig transform. A given angle is then 
needed to fully determine the complex refractive index, 
using Eqs. (3) and (4). Hence, with a linear polarizer, any 
spectrometer can be used to determine � . This option is 
attractive but suffers from the need of a particular state of 
polarization. Polarizers do not guarantee a 100% efficiency 
and restrict the estimation of the complex refractive index 
to a limited spectral range. Moreover, a polarizer induces 
losses and therefore impacts the signal-to-noise ratio. Less 
expensive and much more common than ellipsometers, 
the use of a spectrometer alone enables to widen the infra-
red range over which the complex refractive index can be 
assessed. This strategy has recently proved to be highly 
efficient [9] with a near-normal angle of incidence ( �1 ≃ 0 ). 
However, common spectrometers are generally designed 
with non-zero angles of incidence. To further develop the 
assessment of complex refractive indices with spectrom-
eters, we have explored the case of non-normal incidence, 
where a strong dependency on the polarizer efficiency has 
been observed.

To overcome these limitations, this article reports a 
new methodology enabling the evaluation of the com-
plex refractive index by a measurement of light reflec-
tance without the use of a polarizer. Section 2 of this 
article provides details on theoretical backgrounds 
about the use of a non-normal incidence: first with lin-
early polarized light, and then with an arbitrary state 
of polarization. Then, an isotropic material with a low 
surface roughness has been characterized using a polar-
izer on the one hand and a classical spectrophotometer 
to control the value of the incident angle on the other 
hand. The comparison of the results obtained by these 
two methodologies provides a proof of concept of the 
new approach.

(5)�(�) =
1

�
p.v.∫

ℝ

log
√
(R(�))

s − �
ds = 𝕂𝕂

�
log

√
(R(�))

�

Fig. 1  Evolution of the electric field along the propagation direc-
tion and projection of the electric field onto the plane perpendicu-
lar to the propagation direction (e∥, e⟂) . The projection is described 
by an ellipse characterized by parameters a, b and �
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2  Theoretical framework

When light–matter interaction is considered to determine 
the complex refractive index of a material, two media are 
taken into account. The incident light travels through the 
first one (air most of the time), with k1 = 0 , so �1 = n1 . Then, 
the light interacts with the second one, i.e., the material to 
be characterized, �2 = n2 + i.k2 (Fig. 1). The two media are 
separated by a planar interface. The angle between the 
vector normal to this surface and the direction of propa-
gation of the light is the incident angle �1 . Two theoretical 
cases will be detailed in this section: when the incident 
angle is fixed and a polarizer is used (Sect. 2.1), and when 
the incident angle can be changed and the state of polari-
zation is arbitrary (Sect. 2.2).

2.1  Given angle of incidence with transverse 
linearly polarized light

With TE or TM polarization, �(�) is an even function and 
Eq. (5) becomes Eq. (6) [10].

With Eq. (6), the phase shift is discontinues at some singu-
lar points on the real and imaginary axes. Therefore, the 
addition of a corrective term CT to the Kramers–Kronig 
transform is needed for the evaluation of the phase shift, 
as in Eq. (7).

The phase correction term CT can be estimated in regions 
of the spectra where k2 = 0 , in which case Eq. (7) becomes 
Eq. (8) [11].

Thus, CT depends on the incident angle �1 and on the ratio 
of the complex refractive indices M =

�1

�2
≃

n1

n2
 [10–13].

When the reflectance is measured thanks to specu-
lar reflection, the correction term CT is either 0 or −� , as 
shown in Table 1. The choice of the value depends on the 
refractive indices ratio and on the incident angle. To be 
more precise, it is related to the value of �1 in comparison 
with �b and �c the Brewster’s angle and the critical angle 
[11, 13], respectively.

(6)�(�) =
2�

�
p.v.∫

ℝ+

log
√
(R(�))

s2 − �2
ds

(7)�(�1, �) = ��

�
log

√
R(�)

�
+ CT(�1,M, �)

(8)� ∣k2≃0 (�1, �) = CT (�1,M, �)

When attenuated total reflection (ATR) is used, in which 
case 𝜃c < 𝜃1 , the correction term CT becomes a function of 
the wavenumber [12] (Table 1). Its evaluation requires to 
estimate the real part of the refractive index towards � = 0 
and when the wavenumber approaches infinity � = ∞ [14]. 
All these corrections are summarized in Table 1.

Focusing on ATR, high values of reflectance, when R → 1 , 
can be related to a weak absorptivity ( k2 → 0 ). In these con-
ditions, the Fresnel equations lead to the following expres-
sion for the phase shift:

As detailed in Table 1, knowing the real part of the refrac-
tive index when k2 → 0 is then enough to estimate g(M, �) , 
hence the correction term CT(�1,M, �) [14]. Thus, no more 
assumptions are required regarding the value of the real 
part when � tends towards 0 or towards ∞.

The estimation of the value of the complex refractive 
index in the infrared range covered by the spectrometer is 
then performed by the following minimization problem [15]:

(9)

� ∣k2≃0 (�) =

⎧⎪⎪⎨⎪⎪⎩

2 arctan

�
n2
1
(�) sin2 �1 − n2

2
(�)

n1(�). cos �1
, TM

−� + 2 arctan

�
n2
1
(�). sin2 �1 − n2

2
(�)

n2
2
(�). cos �1

n1(�), TE

Table 1  Values taken by the phase corrective term CT(�1,M, �) 
for TE and TM polarizations in both specular and total attenuated 
reflections [11–13]

a :g(M, �) = M(∞) +
2

�
arctan

(
� .[M(0)−M(∞)]

�

)
 , (� ,M(0),M(∞)) ∈ ℝ

3,

b : M⟂(�) = 2 arctan

⎛⎜⎜⎜⎝

�
(n1(�)

2. sin
2
�1 − n

2

2
(�))

n1(�). cos �1

⎞⎟⎟⎟⎠
,

c :M∥(�) = 2 arctan

⎛⎜⎜⎜⎝

�
(n1(�)

2. sin
2
�1 − n

2

2
(�))

n
2

2
(�). cos �1

n1(�)

⎞⎟⎟⎟⎠

Polarization Indices ratio Angle of incidence CT(�1,M, �)

⟂ M > 1 / −�

⟂ M < 1 𝜃
1
< 𝜃c 0

⟂ M < 1 𝜃c < 𝜃
1 g(M⟂) − �ab

∥ M > 1 𝜃
1
< 𝜃b 0

∥ M > 1 𝜃b < 𝜃
1

−�

∥ M < 1 𝜃
1
< 𝜃b −�

∥ M < 1 𝜃b < 𝜃
1
< 𝜃c 0

∥ M < 1 𝜃c < 𝜃
1

g(M∥)
c
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where ∣∣ . ∣∣2
2
 is the squared Euclidean norm.

2.2  Multiple incident angles with arbitrary state 
of polarization

A monochromatic wave can be described by a Stokes vec-
tor � [16]:

As illustrated in Fig. 1, in the perpendicular plane to the 
propagation direction (e∥, e⟂) , E∥ is the amplitude of the 
electric field in the direction parallel to the surface of the 
media 2. E⟂ is the amplitude in the direction perpendicular 
to E∥ in the plane (e∥, e⟂) . � is the phase shift between the 
projections onto these two directions. Different intensities 
and a phase shift, between the parallel and the perpendic-
ular components of the electric field, lead to consider the 
most general case: the projection of the electromagnetic 
wave in the plane (e∥, e⟂) is an ellipse (Fig. 1).

Stokes parameters are related to the parameters 
describing the ellipse by:

with c2 = a2 + b2 and ∣ tan � ∣=
b

a
 . a and b are the inten-

sities of the major and of the minor axes of the ellipse, 
respectively. The orientation of the ellipse is given by the 
angle � between e∥ and the major axis, as displayed in 
Fig. 1.

This description leads to express the incident light �1 
as a superposition of shifted transverse linearly polarized 

(10)
minimize

n2,k2

�
∣∣
√
R(�, �). exp−i(𝕂𝕂(�,�)+CT (�1)) −r∥) ∣∣

2
2
, TM

∣∣
√
R(�, �). exp−i(𝕂𝕂(�,�)+CT (�1)) −r⟂) ∣∣

2
2
, TE

subjected to (n2, k2) ∈
�
ℝ

+ ×ℝ
+
�

(11)� =

⎛
⎜⎜⎜⎝

I

Q

U

V

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

E2
∥
+ E2

⟂

E2
∥
− E2

⟂

2.E∥.E⟂. cos(�)

2.E∥.E⟂. sin(�)

⎞
⎟⎟⎟⎟⎠

(12)� =

⎛⎜⎜⎜⎝

I

Q

U

V

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c2

c2. cos 2� . cos 2�

c2. cos 2� . sin 2�

c2. sin 2�

⎞⎟⎟⎟⎠

lights. Following Fresnel equations, the reflection is dif-
ferent from these two states of polarization TE and TM. 
The associated Stokes vector �r is then noncollinear to �1 
[16]: the ellipse after reflection is different from the ellipse 
before reflection. The reflectance is then defined by:

where the second index 1 denotes the first element of the 
vector.

Azzam [17] used this formalism to describe the reflec-
tion capacity of an absorbing media with a Mueller matrix. 
This matrix is named reflection matrix and is denoted �:

Nee [18, 19] expressed this matrix with Fresnel coefficients 
only:

∗ denotes the complex conjugate. ℜ and ℑ are related to 
the real and imaginary parts, respectively.

Finally, with the characteristics of the incident light, and 
with the possibility to measure the reflectance under no 
less than two different angles of incidence, it is possible to 
determine completely the complex refractive index. The 
associated minimization problem is:

where Rij is the (i, j)th element of the reflection matrix �.

3  Material and methods

To illustrate and to compare the two previously described 
methods, the same sample has been analysed using two 
experimental configurations:

(13)R =
Ir

I1
=

Sr,1

S1,1

(14)�r = �.�1

(15)

� =

⎛
⎜⎜⎜⎜⎝

1

2

�
r⟂.r⟂

∗
+ r∥.r∥

∗� 1

2

�
r⟂.r⟂

∗
− r∥.r∥

∗�
0 0

1

2

�
r⟂.r⟂

∗
− r∥.r∥

∗� 1

2

�
r⟂.r⟂

∗
+ r∥.r∥

∗�
0 0

0 0 ℜ
�
r⟂.r∥

∗�
ℑ
�
r⟂.r∥

∗�
0 0 ℑ

�
r⟂.r∥

∗�
ℜ
�
r⟂.r∥

∗�

⎞⎟⎟⎟⎟⎠

(16)
minimize

n2,k2

∣∣ Ir −

(
R11.S1(1) + R12.S1(2)

S1(1)

)
∣∣2
2

subjected to (n2, k2) ∈
(
ℝ

+ ×ℝ
+
)
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– case 1: a standard configuration for which a polarizer is 
used with the spectrometer. The incident light is polar-
ized and a given incident angle is considered;

– case 2: a device enabling the control of the incident 
angle is used without any polarizer.

Both approaches lead to solve a minimization problem. 
Constraints, initialization parameters and methodology of 
resolution of these problems are detailed in the following 
section.

3.1  Material and experimental set‑up

The material is a classical uncoated soda-lime microscopic 
slide (Thermo ScientificTM Microscope Slides, Cut, 1 mm, 
26 mm × 76 mm). In this study, we have focused on the 
[750, 2500] cm−1 wavenumber range that contains few 
absorption frequencies, as summarized in Table 2. Besides, 
the presence of a short range order induces a variable 
broadening of absorbance bands, while there is no long 
range order due to the amorphous nature of the sample. 
So, since the optical properties of the glass material ana-
lysed in this work are essentially constant above 2500 cm−1 , 
data collected at higher wavenumbers were not required.

Two spectrometers have been used. The first one can be 
operated with a polarizer, while the second led to better 
spectral and angular resolutions.

The first apparatus is a commercial VERTEX80 FTIR spec-
trometer from Bruker coupled to a reflectance accessory 
to perform angle resolved measurements. A WP25H − Z 
holographic wire grid polarizer was placed between the 
light source and the sample. Spectra were collected in 
the [400, 10, 000] cm−1 spectral range with a 2 cm−1 spec-
tral resolution using a deuterated triglycine sulfate detec-
tor (DTGS). 20 scans were recorded for each acquisition. 
The wire grid polarizer operates over the [333, 5000] cm−1 
spectral range with an extinction ratio up to 150 : 1. The 
transmitted light was polarized perpendicular to the wires 
(transmission coefficient between 70 and 90% in the range 
[600, 5000] cm−1 ). Acquisitions were performed for inci-
dent angles of 14◦ , 20◦ , 30◦ and 40◦ . More details about 
the experimental set-up can be found in the literature 
[21]. Data collected with this set-up were then numerically 

reduced to the range [600, 2800] cm−1 to both minimize 
the inaccuracy due to the use of the wire grid and to focus 
on the spectral range of interest for the glass material.

The second set-up used is the VeemaxII angular device 
designed by Harrick Scientific with the IS50R Thermo Fisher 
infrared spectrometer. Spectra have been recorded in the 
[650, 4000] cm−1 spectral range with a 0.4 cm−1 spectral 
resolution using a DTGS detector. 32 scans were recorded 
for each acquisition. Acquisitions were performed for inci-
dent angles of 35◦ , 40◦ , 45◦ and 50◦ . More details about the 
experimental set-up can be found in the literature [22]. 
Data collected with this set-up were then numerically 
reduced to the range [745, 2500] cm−1 . To save calculation 
time, spectra were interpolated in this range reducing 
from 4388 to 2000 the number of points.

3.2  Numerical resolution

Two different strategies for case 1 were investigated. Case 
1.1: with the experimental set-up 1, an estimation of the 
refractive index was performed for each incident angle, 
using the minimization problem described in (10). Case 
1.2: the same spectra have been included together in a 
unique minimization problem resulting in only one esti-
mation of the refractive index.

The objective function associated to this case was the 
sums of squares of the objective functions considered in 
case 1.1. For these two strategies, we used the method-
ology described in Sect. (2.1) (i.e., linearly polarized light 
and use of Kramers–Kronig transform). For case 2, with the 
experimental set-up 2, all spectra obtained for each inci-
dent angle have been used in the minimization problem 
described in (16). For this case, we used the methodology 
described in Sect. (2.2).

The overall process consisted in the resolution of one 
minimization problem per wavenumber. Different tech-
niques can be used based on continuous approaches, 
such as Sequential Quadratic Programming (SQP) [23] or 
the Interior Point method (IP, potential reduction method) 
[24], or discontinuous approaches, such as the Genetic 
Algorithm (GA) [25]. In general, SQP seems to be the fast-
est. It is therefore the default choice. When optimal solu-
tions to the minimization problem are input values on the 
boundaries defined by the constraints, IP is preferred. But 
the presence of local minima is problematic with these two 
algorithms, as they may not converge towards the optimal 
solution. The GA algorithm is then considered. As it leads 
to less precise values, it is used in parallel with a continu-
ous approach. The value of the cost function is used as 
an arbitrage in the choice of the result [26]. In this paper, 
the resolution method used is a combination of the differ-
ent methods discussed above [10]. For each minimization 
problem, constraints and initializations points had to be 

Table 2  Vibrational frequencies of silica in the range 
[750, 2500] cm−1 [20]

Bonding group Motion Wavenumber / cm−1

Si–O Bend 813.4957
Si–O Stretch 1055.6777
Si–O–Si Stretch 1179.5356
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defined. n and k searched values have been constrained 
in ℝ+ . As the refractive index is continuous in the spectral 
space, physical sense has been provided to the problem 
using adequate initialization points, limiting the conver-
gence of nonlinear regressions into a local minimum. The 
overall process was then solved wavenumber per wave-
number, using the previous (n, k) estimations as guess for 
the next minimization problem. Each minimization prob-
lem was solved twice; the second resolution was initialized 
with arbitrary values ( (n, k) = (3, 2) ). The solution with the 
minimum value of the objective function was chosen. The 
overall process was solved for the smallest wavenumber 
first, and then in the ascending order, up to the highest 
one.

Finally, to evaluate the influence of the acquisition 
parameters, error bars have been calculated. In case 1.1, 
the overall process has been performed with values of the 
incident angle in the range ��1 ∈ [−1,+1]◦ (step of 0.2◦ ) 
around the initial value. With 11 cases and 1200 wavenum-
bers, 52800 minimization problems had to be solved. In 
case 1.2, values in the range ��1 ∈ [−1,+1]◦ (step of 1◦ ) 
have been considered. This resulted in 81 combinations 
of incident angular values. 97200 minimization problems 
have been solved. In case 2, the overall process has been 
performed with the following ranges for the parameters 
of the ellipse: orientation �1 ∈ [0, 90]◦ (step of 15◦ ) and b/a 
size ratio in the range [0.7, 0.9] (step of 0.1). The value of 
the size ratio was provided by the French research and 
development department of Thermo Fisher. Finally, 27 
combinations have been explored leading to 42,000 mini-
mization problems.

All developments have been coded in MATLAB 2016b, 
using the interior-point algorithm with the function fmin-
con for solving minimization problems.

4  Results

Case 1.1 has led to four estimations of the complex refrac-
tive index, one for each angle of incidence, as shown in 
Fig. 2a–d. In case 1.2, all four spectra used in case 1.1 have 
been used together to obtain a unique estimation (Fig. 2e). 
In Fig. 2, the spectra of the real and the imaginary parts for 
these five estimations of the refractive index are plotted 
together with their error ranges.

The estimations computed using case 1.1 are all similar, 
except for the range [950, 1250] cm−1 . In this range, shifts 
and differences between band intensities are observed. 
For example, focusing on the real part around 1080 cm−1 , 
the peak maximum is about n = 4.22 at 1074 cm−1 for 
�1 = 14◦ and about n = 4.66 at 1087 cm−1 for �1 = 40◦ . 
Shifts in wavenumber can be explained by the Reststrahlen 
bands of the SiO2 structure of the material. This particular 
effect leads to shifts of the associated bands, in reflectance 
spectra, towards higher wavenumbers when the incident 
angle increases. The differences in intensities could arise 
from a bias in calculations, from the use of a polarizer and 
from the Reststrahlen bands. Kramers–Kronig transforms 
are defined on infinite space and their use on a finite 
range generally leads to biased values of the phase shift, 
and so, of the refractive index too. Moreover, polarizers 
do not provide a 100% TM light: indeed, the polarization 
state is different along the spectral range. Consequently, 
the uncertainty on the phase shift is increased. In case 
1.1 confidence intervals are tight: from 10−3 for �1 = 15◦ 
to 10−2 for �1 = 40◦ , as shown in Fig. 2 (iii). This increase 
is caused by the evolution of reflectance when the inci-
dent angle increased [11, 13]. In case 1.2, the confidence 
intervals are about the same order of magnitude as in case 
1.1 and mean values lie between the mean values found 
for case 1.1. The first methodology of resolution is then 
robust against the angular dependencies but is strongly 
influenced by Reststrahlen bands.

The same sample was analysed in cases 1.1 and 2, lead-
ing to similar estimations in both cases. In Fig. 3, they are 

Fig. 2  Spectra of (i) n and (ii) 
k for a �1 = 40◦ , b �1 = 30◦ , c 
�1 = 20◦ d �1 = 14◦ for case 1.1, 
and e for case 1.2. (iii) Zoom 
for the real part in the range 
[1070, 1095] cm−1 (see square 
frame in (i)). For all cases, mean 
values are plotted in dotted 
lines and 95% confidence inter-
vals are represented in solid 
coloured lines
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compared to the complex refractive index of amorphous 
silica from Palik [27]. They are both in agreement with 
Palik’s values, but a shift of the main band is observed in 
the range [1000, 1250] cm−1 . As explained before, shifts 
in this range are expected due to the Reststrahlen band 
of the SiO2 structure as in [9]. Moreover, the estimation 
obtained in case 2 took into account incident angles 
between 35 and 50◦ . The greater shift towards higher 
wavenumbers for case 2 (Fig. 3 (ii)) compared to Palik’s val-
ues is in accordance with these expectations. The main dif-
ferences between Palik’s [27] values and estimations from 
both methodologies may be explained by two reasons. 
First of all, the composition of the glasses characterized 
in this work is not pure amorphous silica as for Palik. Thus, 
additional bands are observed. Secondly, the sensitivity of 
the two detectors used in both set-ups decreases below 

850 cm−1 . Hence, as observed in Fig. 3 (i) and (iii), the values 
of reflectance below this wavenumber are underevaluated 
by the detectors, and thus the absorptivity are underesti-
mated. For example, a closer look at the results obtained 
by case 2 (Fig. 3 (iii)) shows a shoulder at 800 cm−1 , which 
intensity is significantly lower than Palik’s estimation. The 
literature already mentions these differences according to 
the glass slides used [28, 29].

Focusing on the second approach, the bandwidth of 
the error range lies between 0.1 and 0.4, as plotted in 
Fig. 3 (ii). For instance at 1107 cm−1 , mean value of the 
real part is n = 6.81 with � = 90◦ and is n = 8.17 with 
� = 0◦ . The fact that the results obtained by this meth-
odology are spread out over a large range of values is 
due to the uncertainty on the state of polarization of 
the incident light.

Fig. 3  (i) Mean values for real 
part of the refractive index for 
a case 1.1 related to � = 40◦ , b 
case 2 and c Palik’s value [27]. 
(ii) 95% confidence intervals in 
coloured solid lines and mean 
values in dotted lines. (iii) 
Mean values for the imaginary 
part
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Finally, the contradictory requirements of the experi-
mental possibilities and the numerical needs penalize the 
case 1.1 (a given incident angle and a transverse polariza-
tion): the calculus needs a wide spectral range while the 
polarizer is efficient only on a restricted spectral range. 
However, a given angle of incidence is needed, and with-
out Reststrahlen band this method is a very simple and 
practical way to obtain a first estimation of the refractive 
index. On the contrary, leading to more accurate results, 
the second methodology, developed in this work (mul-
tiple incident angles without any specific polarization), 
has proven all its power dealing with arbitrary states of 
polarization.

5  Conclusions

A new theoretical framework has been explored and 
applied leading to estimations of the complex refractive 
index of an isotropic material from a measurement of the 
reflected light with any state of polarization. In practice, 
any spectrometer can be used to achieve this objective, 
and no information on the polarization state of the light 
is required.

For a given incident angle, the use of a polarizer and a 
numerical resolution including Kramers–Kronig transforms 
is still the only way to proceed. It has been shown how to 
correct these transforms when collection of spectra can 
be performed with multiple incident angles. Limitations 
induced by the use of a polarizer have also been pointed 
out.

Furthermore, a new theoretical background devel-
oped in this work enables estimating the complex refrac-
tive index of a material with equivalent accuracy as when 
obtained from ellipsometry measurements. To do so, 
efforts on the evaluation of the state of polarization should 
be made. Finally, using common spectrometers to obtain a 
first approximation of the complex refractive index could 
permit to save money, and moreover, to democratize the 
assessment of such an important parameter.
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