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Abstract
This paper proposes an adaptive approximation control AAC technique (or so-called regressor-free adaptive control) 
for vibration regulation of constrained flexible smart beams with axial stretching. The key idea of the AAC is to con-
trol/regulate the target dynamic system while estimating the uncertainty using weighting and basis function terms 
with guaranteed stability based on Lyapunov theory. Accordingly, the dynamic equation of transverse vibration of the 
pinned–pinned smart beam is derived considering the effect of axial stretching. Due to the presence of a coupled ten-
sion-bending effect, a nonlinearly coupled cubic stiffness term appears in beam modelling making the dynamic system 
highly nonlinear. The resulted partial differential equation of the vibrating smart beam is discretized into definite N-mode 
shapes (definite degrees-of-freedom) using the Galerkin approach and a standard multi–input–multi–output ordinary 
differential equations system is established. Then two decoupled nonlinear control algorithms are designed based on 
the AAC for vibration attenuation of the nonlinear vibrating beam system. A pinned–pinned piezoelectrically-actuated/
sensed flexible beam is simulated and the results show the validity of the proposed control architecture.

Keywords Smart structures · Adaptive approximation control · Regressor-free adaptive control · Nonlinear vibration

1 Introduction

Smart structures (or so-called adaptive or intelligent struc-
tures) have superior characteristics over traditional struc-
tures via structural health monitoring, damage detection, 
and damping out vibrations or even modification of their 
shapes [1]. They are provided with intelligent materials 
that can change their properties controllably if subjected 
to stimuli such as stress, strain or electric fields etc. There-
fore, they can behave as actuators and sensors and can 
play important roles in the control of vibrating structures. 
Examples of smart materials are piezoelectric materials, 
shape-memory materials, electroactive polymers, etc. 
The current work is concerned with piezoelectric patches 
(sensor/actuators) that have the capability for vibration 

suppression of slender structures. Flexible beam-like struc-
tures are of interested due to their wide applications in 
industry such as aerospace structures or flexible robotic 
manipulators etc. If a flexible structure is subjected to an 
excitation force, it vibrates frequently and a controller/
regulator is required to attenuate or suppress the vibration 
motion. However, bonding piezo-patches to the surface of 
the vibrating system can stabilize the dynamic system and 
damp out the produced oscillations. The vibrating beam-
like structures have infinite degrees of freedom and hence 
a partial differential equation PDE is obtained. However, 
the difficulty of the solution of the resulted PDE depends 
on the imposed assumptions for the target problem. 
Accordingly, three well-known theories are available for 
modelling of beam structures: (1) Euler–Bernoulli beam 
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theory in which the rotational inertia and shear deforma-
tion are neglected, (2) Rayleigh theory that considers the 
rotational inertia only, and (3) Timoshenko theory in which 
both rotational inertia and shear deformations are con-
sidered [2]. The resulted PDE of the vibrating structure is 
transformed into N-ordinary differential equations ODEs, 
with N denoting the number of mode shapes of the tar-
get structure, using the Galerkin approach. The idea is to 
separate the displacement and time spaces and hence 
N-ODEs are obtained. Consequently, this work is focused 
on modelling and control of constrained Euler–Bernoulli 
beam with axial stretching. The axial stretching results 
from deflection of the beam rather than the application 
of pure axial loading. Accordingly, the resulted ODEs are 
no longer linear and nonlinear control approaches are 
required. For modelling of nonlinear vibration of beam-
like structures, the reader is referred to [3–5].

Careful design of vibration control for flexible structures 
is demanded due to the presence of multiple resonances 
in the frequency response of the dynamic system. Besides, 
bonding the piezo-actuators to the vibrating beam may 
excite the strong resonances. Therefore, the design of 
feedback control is not trivially selected and the stability 
of the control architecture should be ensured [6]. The pos-
sible control methods to deal with nonlinear vibrations are 
(see Chap. 3 of [6]) linear velocity control (integral accelera-
tion feedback control), (2) PID-type control, (3) Feedback 
linearization, (4) adaptive control, and (5) robust control 
[6–9]. In velocity control, the input control is selected as 
integral of the system acceleration and hence a damp-
ing term is added to the dynamic equation of the smart 
beam that reduces the amplitudes of the resonances. 
The well-known PID-type control is extensively used in 
stabilization of second-order dynamic systems. Under 
specifically tuned gains, the closed-loop dynamics can be 
reduced to the first-order system with acceptable tracking 
or regulation. However, these gains are limited by stabil-
ity conditions and hence PID control works well within 
the low-frequency region below the cut-off frequency. 
Therefore, using a feedforward term with the feedback 
PID can improve the system stability and makes the sys-
tem work with infinite control bandwidth [10]. However, if 
unmodeled dynamics exist adaptive or sliding mode con-
trol approaches are good choices. Sliding mode control 
selects a sliding surface in terms of position/velocity errors 
and a signum function plays an important role in control 
architecture. Due to discontinuous behaviour of signum 
function, alternative continuous functions are used such 
as tanh function but with bounded error due to approxi-
mation. Higher-order sliding mode control is suggested 
to solve the discontinuous problem but the complexity 
of computations may result, see [11] for more details. On 
the other hand, adaptive control associated with Slotine-Li 

approach is a powerful control law for the control of non-
linear rigid/flexible body systems [12]. It integrates both 
the feedforward and feedback terms under uncertainty. 
The key idea of adaptive control is to linearly parameterize 
of the dynamic equation such that the left-hand side of the 
equation of motion is decomposed in terms of regressor 
matrix that is a function of state variables and uncertain 
constant parameters vector. Regressor-based adaptive 
control deals with uncertain constant parameters and 
a robust sliding term or robust learning algorithms are 
required to compensate for modelling error and distur-
bances [12]. One the other hand, adaptive approximation 
control is a powerful tool to control the nonlinear dynamic 
system with time-varying disturbances. The uncertainty is 
approximated by weighting and basis function matrices 
and then the weighting matrices are updated based on 
Lyapunov theory. For more information on this topic, the 
reader is referred to [13–15].

Accordingly, the current work is focused on the design 
of the function approximation technique FAT-based adap-
tive control for the flexible smart beam with axial stretch-
ing. The uncertain terms/coefficients are approximated 
using weighting and orthogonal basis function vectors/
matrices. The strength of the AAC is that it is a modular 
decentralized control law that can deal with N-mode 
shapes individually. On the other hand, the nonlinearly 
coupled cubic stiffness term is easily compensated using 
the proposed control architecture. A pinned–pinned smart 
beam is simulated and the results show the validity of the 
proposed control architecture.

The rest of the paper is organized as follows. The 
dynamic modelling of the vibrating smart beam and the 
control architecture is introduced in Sect. 2. Whereas the 
results are presented and discussed in Sect. 3. Section 4 
concludes.

2  Methodology

2.1  Dynamic modelling

Consider an element of a constrained beam (e.g., a 
pinned–pinned beam) vibrating in the x–z plane with 
internal forces and moments and their increments acting 
at its ends, see Fig. 1. The beam element is subjected to 
external (applied) force and moment functions Fx , Fz ,Q 
respectively applied at point O (centre of the beam ele-
ment). These forces/moments can include inertial terms 
and applied piezo-moments. Before going deeply into the 
derivation of the equation of beam, the following assump-
tions are proposed:

Assumption 1 The effect of axial stretching is included.



Vol.:(0123456789)

SN Applied Sciences (2020) 2:2146 | https://doi.org/10.1007/s42452-020-03859-9 Research Article

Assumption 2 The rotational inertial terms are neglected.

Assumption 3 The dynamics of piezo-patches are 
neglected.

Assumption 4 The modal amplitudes of the vibrating 
beam are measurable. This includes sufficient transduc-
ers (e.g. piezo-sensors) are available.

Most details of beam modelling are cited from [6, 16]. 
Applying Newton–Euler formulation on the beam ele-
ment leads to the following partial differential equation 
PDE of transverse vibration deflection w under different 
dynamic loadings:

where M refers to the moment and T  is the tension force 
acting along the target beam due to vibration of the con-
strained beam that has immovable supports. The tensile 
force T  can be computed as

where Eb,Ab and lb are the Young’s modulus, cross-sectional 
area and the span of the beam respectively. Whereas, the 
force/moment terms of Eq. (1) can be evaluated as

where � is the slope of deflected beam and s is the length 
of the beam. Equation (2b) has been obtained according 
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to Assumption 1 such that the following expressions hold: 
Δs ≈ Δx, �s∕�x ≈ 1, � ≈ sin� = Δw∕Δx or � = �w∕�x . In 
addition,

where f (x, t) is the force per unit length distributed along 
the span of the beam and �b is the density of the beam. 
Whereas, the applied moment can be calculated as

where Mp is the applied piezo-moment that is necessary to 
suppress the beam vibration, D is a constant that depends 
on physical parameters of the regular beam and the piezo-
actuator, see [17] for more details on the evaluation of this 
constant, and H(.) is a Heaviside step function. Substituting 
Eqs. (2a–d) into Eq. (1) to get the following partial differ-
ential equation:

It should be noted that Eq. (3) is a nonlinear PDE due to 
the second term that is associated with axial stretching. 
Now it is time to transform infinite degrees-of-freedom 
DoF-PDE described in Eq. (3) into N- ODEs using Galerkin 
modal decomposition with N being referred to the number 
of mode shapes. Accordingly, using the principle of separa-
tion of variables, the transverse deflection of the beam can 
be approximated as
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Fig.1  The free-body diagram 
for an element of a vibrating 
beam
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where �i(x) is the ith mode shape and qi(t) is the cor-
responding time-dependent generalized coordinate 
(amplitude).

Substituting Eq. (4) into Eq. (3) to get

Below we will consider the case of modelling and modal 
control of pinned–pinned beams with the following asso-
ciated mathematical relations.

The i-mode shape is:

The natural linearized frequency is:

The orthogonality conditions are:

In addition, according to Eq. (6a), the following integral 
and differentiation are obtained:

Multiplication of Eq. (5) by an arbitrary mode shape, 
�n , and exploiting the above mathematical formulae, 
Eq. (6a–e), we can get the following ODEs for an n-mode 
shape:

(4)w(x, t) =

N∑
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(x1)), gn(x, t) =

lb∫
0

f (x, t)�n(x)dx.

It should be noted that the first two terms on the left-
hand side of Eq. (7a) are decoupled while the last third term 
is nonlinearly coupled. For example, considering n = 1 leads 
to an equation that is similar to Duffing oscillator with a 
cubic stiffness term [6]. On the other side, Eq. (7a) includes 
one piezo-actuator placed on the surface of the target beam. 
In effect, Na actuators can be placed on the beam for vibra-
tion suppression purpose. Thus, Eq. (7a) can be modified to 
get

with

Remark 1 Equation  (7b) does not consider the model 
damping while the model must have some damping. 
Despite there are several ways to deal with damping 
effect, the easiest way is to add a viscous damping term for 
each mode after Galerkin approach has been performed 
[6]. However, this method has limitations in applications 
where the damping is non-viscous. For more details on this 
topic, the reader is referred to [18].
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According to Remark 1 with further manipulation, we get

with

Equation (7c) can be represented in a matrix form as 
follows:

(7c)
mnq̈n + bnq̇n + knqn + 𝜂n − gn(x, t) = un, n = 1, 2, 3, ...,N

mn =
�

�bAblb

2

�
, bn = (2�nwn)mn,−1 ≤ �n ≤ 1, kn =
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4
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2
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4n2

8l3
b
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k
qn, un = −�nva(t)

(8)𝐌�̈� + 𝐁�̇� +𝐊𝐪 + 𝛈 + 𝐠 = 𝐮

where �(.) is a constant that depends on the location of 
piezoelectric sensors and  Ns is the number of piezo-
sensors that is equal to Na in case of collocated patches 
[17]. In matrix/vector representation, Eq. (9) can be 
rewritten as

Therefore, substituting Eq. (10) into Eq. (8) results in

or

with
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Remark 2 

1. Due to the nonlinear elastic restoring force vector � , 
Eq. (8) has nonlinear behaviour and requires advanced 
nonlinear control methods to regulate the vibration 
motion, this is well treated in the next section.

2. The pseudo-inverse matrix plays an important role in 
evaluation of actuator voltages if N ≠ Na , see [7] for 
more details.

3. Fortunately, there is a linear relationship between the 
sensor voltages �s  and the modal amplitudes � and 
hence most literature used �s as state variables instead 
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where �+ ∈ RN×Ns is the Moore–Penrose inverse of sensor 
gain matrix ( �).

2.2  The control architecture

The proposed controller aims at suppressing the vibration 
motion of the target beam. The input control is provided 
by the piezo-actuator while the beam deflection is sensed 
indirectly via the sensor voltages (or equivalently modal 
amplitudes). Consequently, this section is focused on 
regressor-free adaptive control. The key idea is to approxi-
mate the uncertain coefficients/terms of the equation of 
motion by using linear combinations of basis functions 
such as fuzzy, neural, or orthogonal basis function approxi-
mators, etc. Then the unknown coefficients of the basis 
functions are updated based on Lyapunov theory. Now 
let us represent the dynamic coefficients/terms of Eq. (8) 
in terms of the weighting coefficient and orthogonal basis 
function vectors as follows.

where �(.) ∈ RN�×N is the weighting coefficient matrix, 
�(.) ∈ RN�×N is the orthogonal basis matrix associated with 
the mass, �(.) ∈ RN�×1 is an orthogonal basis vector, and 
�(.) ∈ RN is the approximation error vector.

Thus, the equation of vibration motion, Eq. (8), can be 
reformulated exploiting Eq. (12) to get
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where � is the accumulated approximation error. For sim-
plicity, Eq. (13) can be further approximated as follows:

with

The intuitive control law that is suitable for Eq. (14) 
can be designed as [14, 15]

with the following update laws for the unknown coef-
ficient matrices
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where the symbol (̂.)  refers to the estimation, �d ∈ RN×N  
is a high gain positive diagonal matrix, and

where �̇r ∈ RN is the required velocity vector and it is equal 
to the desired velocity trajectory �̇d ∈ RN plus the position 
error. Whereas, � ∈ RN is an auxiliary error vector that con-
sists of proportional-derivative PD control terms.

�̇r = �̇d + �(�d − �), � = �̇r − �̇ = �̇ + ��
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Subtracting Eq. (14) from Eq. (15a) leads to the follow-
ing closed-loop dynamics:

where �T�� ≤ � , with � ∈ RN×N  being a positive definite 
matrix.

Lemma 1 The dynamic modelling of the smart beam repre-
sented by Eq. (8) with the control law, update laws described 
in Eq. (15) and the closed-loop dynamics given in Eq. (17) 
is stable in the sense of Lyapunov theory provided that 
�d + � > �−1.

Proof Let us consider the following Lyapunov function 
candidate along Eq. (17)

Differentiating Eq. (18) and substituting Eq. (17) to get

But �̇ = � , then we can get

(17)𝐌�̇� + 𝐁𝐬 +𝐊d𝐬 = �̃�T
M
𝚿M�̈�r + �̃�T

B
𝚿B�̇�r + �̃�T

n
𝛙n + 𝛆, 𝛆 =

∑
(𝛆M + 𝛆B + 𝛆n)

(18)V =
1

2
�T�� +

1

2
tr(�̃T

M
�M�̃M + �̃T

B
�B�̃B + �̃T

n
�n�̃n)

(19)
V̇ =𝐬T (−𝐁𝐬 −𝐊d𝐬 + �̃�T

M
𝚿M�̈�r + �̃�T

B
𝚿B�̇�r + �̃�T

n
𝛙n + 𝛆) +

1

2
𝐬T�̇�𝐬 − tr(�̃�T

M
𝐐M

̇̂
𝐂M + �̃�T

B
𝐐B

̇̂
𝐂B+

�̃�T

n
𝐐n

̇̂
𝐂n)

(20)V̇ = −𝐬T𝐁𝐬 − 𝐬T𝐊d𝐬 − tr(�̃�T
M
(𝚿M�̈�r𝐬

T −𝐐M
̇̂
𝐂M) − tr(�̃�T

B
(𝚿B�̇�r𝐬

T −𝐐B
̇̂
𝐂B) − tr(�̃�T

n
(𝛙ns

T −𝐐n
̇̂
𝐂n) + 𝐬T𝛆

Substituting Eq. (15b) into above equation to obtain

Fig. 2  a A simply supported 
beam with two piezo-patches 
and concentrated excitation 
force located at the middle of 
the beam. b The time-history 
profile of the excitation force

Table 1  Numerical values used in simulation experiments

**The damping constants are selected such that the vibrating smart beam is lightly damped

Beam �b = 8030kg∕m3, lb = 0.3m, Eb = 193 × 109Pa,Ab = 0.03 × 0.0005m , where the subscript b refers to the regular 
beam. The damping constants for the first two modes are selected as b1 = 0.0068Ns∕m, b2 = 0.0280Ns∕m**

Piezo-materials lp = 0.075m,Ap = 0.025 × 0.00035m, Ep = 68 × 109Pa, where the subscript p refers to the piezoelectric materials. 
x11 = 0.0525m, x12 = 0.1275m, x21 = 0.1725m, x22 = 0.2475m . For more details on evaluation of D and α(.) , see 
[17]

Feedback gains � = 20I2,Q
−1
M

= 0.01I22,Q
−1
n

= 75I22,Kd = 300I2 where In is an n × n identity matrix

Using the following inequality [19]

Thus, Eq. (21) becomes

where � is the upper bound of � . To ensure stability, it is 
necessary to have �d + � > �−1 , then the tracking error is 
bounded and ‖�‖2  converges to �.

Remark 3 The control law described in Eq.  (15) is fully 
decentralized due to the diagonal matrix of the weighting 
matrix and hence it is a powerful tool to suppress vibration 
of multi-mode shapes for the vibrating beam.

Remark 4 In effect, the total terms on left-hand side of 
Eq. (8) can be approximated in terms of the weighting 

(21)V̇ = −�T�� − �T�d� + �T�

(22)�T� ≤ �T�−1� + �T�� ≤ �T�−1� + �

(23)V̇ ≤ −�T (�d + � −�−1)� + �
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coefficient matrix and orthogonal basis vector and hence 
the control law can be designed as:

with the following updating laws:

where as the close-loop dynamics can be expressed as

where � is a bounded modelling error, �T�� ≤ � , with 
� ∈ RN×N being a positive definite matrix. The proof of 
stability is similar to Lemma 1.

(24a)� = �d� + �̂T
c
�c

(24b)̇̂
𝐂c = 𝐐−1

c
𝛙c𝐬

T

(25)𝐌�̇� +𝐊d𝐬 = �̃�T
c
𝛙c + 𝛅

3  Simulation results and discussions

Consider a flexible pinned–pinned beam with two piezo-
patches located at suitable locations as depicted in Fig. 2. 
The physical parameters and feedback gains used in simu-
lations are introduced in Table 1. An impulse force of value 
1 N during 1 s is applied at a location ( lb∕2 ) to excite the 
vibration the beam. Since the dominant modes locate at 
the low-frequency region of the frequency response, the 
first two mode shapes are considered in our simulation 
experiments. Before going into the application of control 
architecture, let us recall Eq. (7c) but with gn(x, t) = 0:

with

(26)mnq̈n + bnq̇n + knqn + 𝜂n = un, n = 1, 2, 3,… ,N

Fig. 3  Amplitude response 
with and without control

Fig. 4  Response of sensor volt-
age with and without control
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mn =

(
�bAblb

2

)
, bn = (2�nwn)mn,−1 ≤ �n ≤ 1, kn =

EbIb�
4
n

2
,w2

n
= kn∕mn,

�n =

(
EbAb�

4n2

8l3
b

)
N∑

k=1

k2q2
k
qn, un = −�nva(t)

Fig. 5  Input control piezo-
voltages

From Eq. (26), we can see that the dynamic equation 
includes a conventional stiffness term (the third term) 
and a nonlinearly coupled cubic stiffness term (the last 
term), that complicates the frequency response. By divid-
ing Eq. (26) by mn , the coefficient ( m−1

n
kn ) represents the 

linear natural frequency. However, the following points 
should be noted [6]:

1. If the excitation force term is added, peak resonances 
in natural frequencies may occur.

2. Due to the presence of nonlinear cubic stiffness term, 
the natural frequency may not be the same as the lin-
ear natural frequency and hence nonlinear resonances 
may occur.

3. The coefficient m−1
n
bn  represents the damping term 

that can enhance vibration suppression of the target 
dynamic system.

4. There are different methods for modal analysis of 
nonlinear vibration, however, this topic is beyond 
the scope of this paper and the reader is referred to 
[20–22] for more details.

Now let us come back to the problem of vibration control 
of vibrating beam described in Fig. 2. As abovementioned, 
the first two mode shapes are considered for control pur-
poses with dynamics described in Eq. (8). It is assumed that 
dynamic coefficients, nonlinear stiffness and the excitation 
forcing terms are unavailable and hence adaptive approxi-
mation control is selected as a powerful tool for solving the 

problem. The control architecture used for vibration suppres-
sion is based on Eq. (15a, b) with zero initial conditions for 
weighting coefficient vectors and amplitudes. The Cheby-
shev polynomials are used as an approximator with ( � = 11 ). 
In effect, increasing the number of terms may not increase 
the accuracy of tracking/regulation control for the desired 
references. The key idea of conventional adaptive control is 
to track the desired reference trajectory with ensured sta-
bility while the estimators for uncertainty may not exactly 
approach to the real value. The control law described in 
Eq. (15a) consists of a feedforward term and a feedback PD 
term. The feedback and adaptation gains are listed in Table 1. 
From Figs. 3 and 4, it is noted that the proposed controller 
can suppress the vibration of the smart beam very well. In 
effect, the feedback PD gain plays an important role in track-
ing and reject disturbances while the feedforward term can 
reduce the resonance amplitudes within transient regions. 
The input voltage controls for the two piezo-actuators are 
shown in Fig. 5. We assumed that the actuators are strong 
enough that no saturation would occur while in reality, the 
saturation problem should be considered well for safety.

4  Conclusions

This work deals with adaptive approximation control for 
regulation of vibration of a flexible beam with piezo-patches 
considering axial stretching. The axial stretching adds a cou-
pled nonlinear cubic stiffness term and hence the ODE of 
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the target beam is no longer linear. On the other hand, the 
AAC is a powerful tool that deals with nonlinearity without 
need for prior information on the physical parameters of 
the smart beam and the disturbances if exist. It is a decen-
tralized model-free approach that can cope with different 
loading and boundary conditions with the same control law. 
The control law consists of feedforward and feedback terms. 
The uncertainty is represented by weighting coefficient and 
orthogonal basis function vectors/matrices. The weighting 
coefficient matrix is updated with ensured stability based 
on Lyapunov theory. A simulation of a pinned–pinned beam 
is performed with two piezo-patches and the results show 
the verification of the proposed control architecture.

However, future work would be required to investi-
gate the following points:

1. Modelling and nonlinear vibration control of smart 
beam with large deflection. Large deflection results 
in a nonlinearly coupled cubic stiffness term that 
changes the dynamics behaviour of the vibrating 
beam.

2. Two powerful nonlinear techniques can be proposed 
to solve the control problem associated with nonlinear 
large deflection that are approximation based feed-
back linearization and approximation based backstep-
ping control.

3. The interesting point of the AAC is that it is a model-
free technique that can be used for most flexible 
structures such as vibrating cables, plates and shells. 
Investigation of the equation of motion for large-scale 
systems such as plates and shells with large deflection 
vibration results in ODEs that resemble Eq. (7c) with 
complex nonlinear terms.
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