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Abstract
This study presents a new mathematical model for edge rolling force and dog-bone shape using the combination of 
slip-line and exponent velocity field. The slip-line field of the dog-bone area is drawn out based on the deformation 
characteristics of edge rolling and the maximal depth of dog-bone zone is determined. Then a new exponent velocity 
field and corresponding strain rate field which satisfy kinematically admissible condition are proposed to analyze the 
edge rolling force based on upper bound approach. The upper bound solutions of dog-bone shape and rolling force 
are obtained by minimizing the total power which contains the internal plastic power, frictional and shear powers. The 
effects of reduction rate, initial thickness and roll radius on dog-bone shape size and edge rolling force are discussed. 
The results obtained by the combined solution in this paper are compared with measured data in strip hot rolling field 
and finite element method (FEM) simulation results, and a good agreement is found.

Keywords  Combined solution of edge rolling force · Slip-line field · Dog-bone shape · Exponent velocity field · Upper 
bound approach · FEM

1  Introduction

The width accuracy of hot rolled strip steel products is a 
very important technical indicator in the hot rolling pro-
cess. In order to obtain desired size of slabs, the edge roll-
ing process plays an important role in regulating and con-
trolling slab width in actual production, as shown in Fig. 1. 
In edge rolling progress, owing to the high ratio of width 
to thickness, the plastic deformation of slab is mainly 
restricted in a small area on the edge. As a result, signifi-
cant double drum shape appears on the slab cross-section, 
as illustrated in Fig. 2, which is called dog-bone shape [1]. 
Due to the complex environment of hot rolling production 
field, a mechanical model is usually established to predict 
the edge rolling force, and the dog-bone shape is pre-
dicted based on the relationship between the rolling force 
and the shape. Therefore, improve the prediction accuracy 

of edge rolling force and dog-bone shape is conducive to 
high precision width control to enhance the quality of hot 
rolling products.

About edge rolling force and dog bone shape, a lot of 
experimental investigations and FEM simulations have 
been done by many scholars. Okado et al. [2] used pure 
lead to simulate vertical rolling on a laboratory mill, four 
parameters including peak height of dog-bone area, thick-
ness of contact between slab and vertical roll, location of 
dog-bone peak and deformation area’s width were firstly 
proposed to represent the cross section characteristics of 
dog-bone shape after edge rolling, then an empirical for-
mula which considered above four parameters, the effects 
of slab thickness and reduction was given. Toaze [3] added 
roll radius and slab width in these equations on the basis 
of experimental data obtained by Shibahara et al. [4], 
and concluded that the width of dog-bone area and the 
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position of dog-bone peak were proportional to the unilat-
eral reduction. Ginzburg [5] modified these formulas later, 
the results obtained are consistent with those obtained by 
Huismann [6]. However these formulas are empirical and 
partial due to limitations of experimental conditions, the 
results may be unstable under different rolling conditions.

The finite element method (FEM) is one of the most 
suitable ways to investigate edge rolling which provides 
complex calculations under actual process constraints and 
various deformation conditions. Huisman and Huetink [7] 
investigated the effect of different vertical roll radius on 
the dog-bone shape after edge rolling, and verified the 
FEM results by using plasticine as experimental material, 
the velocity field of particle flow was used to explain the 
formation process of dog bone, and the stress–strain dis-
tribution during vertical rolling was obtained. The simu-
lated peak height of dog-bone was in good agreement 
with the experimental value, and it is considered that the 
width reduction efficiency of large roll diameter is signifi-
cantly higher than that of small roll diameter. David et al. 

[8] studied the influence of friction coefficient on the dog-
bone formation process in edge rolling by using the pen-
alty function calculation method of visco-plastic FEM, and 
the calculated value of dog-bone shape parameters was 
consistent with the measured data, but the result of roll-
ing force was greatly deviated. Xiong et al. [9] proposed 
a 3-dimensional model to discuss the utilization of the 
slightly compressible FEM to analyze edge rolling force 
and dog-bone shape, and obtained the relationships 
among section profile after edge rolling, rolling param-
eters and other influence factors. Unfortunately, although 
the results obtained by the FEM are accurate, it is not appli-
cable for on-line automatic control in practical production 
due to the large amount of computation time.

The analytical solution based on energy approach is 
another method to study edge rolling process by estab-
lishing kinematically admissible velocity field and then cal-
culate the deformation power and force. Lundberg et al. 
[10] hypothesized that the edge rolling process was plane 
deformation, respectively established the triangular veloc-
ity field in the deformation zone with and without friction, 
and obtained the hodograph of metal flow during vertical 
rolling, thus the rolling torque was calculated. However, 
the specific steps to calculate the dog-bone shape are not 
given in this paper and it is considered that friction has 
little influence on the calculation of vertical rolling torque. 
Yun et  al. [11] proposed an abstract dog-bone shape 
model composed of exponential function and quaternary 
function, and the kinematically admissible velocity field 
was established based on stream function and constant 
volume principle. The parameters of dog-bone shape and 
edge rolling force were obtained by fitting FEM simulation 
data. Finally, the predicted value of dog-bone shape was 
compared with the results obtained by Okado’s model and 
Shibahara’s physical simulation and the errors were within 
5%. However, the analytical solution of dog-bone shape 
and edge rolling force are not obtained. Liu et al. [12] 
established the sine function dog-bone shape model and 
corresponding velocity and strain rate fields on the basis of 
the incompressibility condition and stream function. The 
solutions of edge rolling force and dog-bone shape were 
presented based on upper bound method, then these 
results are compared with previous models and FEM simu-
lation and the errors were within 6.7%. But the maximum 
depth of the dog-bone region was obtained indirectly by 
incompressibility condition and the total power functional 
minimization.

The slip-line method is a classical algorithm for solving 
plane deformation problems which was firstly proposed 
by Hencky in 1923, and improved by Pandtl, Geiringer and 
Hill et al. [13]. In 1953, Alexander [14] applied the slip-line 
method to analyze the hot rolling process, and obtained 
the slip-line solution of the rolling force. During the study 

Fig. 1   Edge-horizontal rolling process in roughing mill

Fig. 2   Dog-bone profile after edge rolling
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of vertical rolling process, it is found that the vertical roll-
ing deformation after entering the stable rolling stage 
satisfies the plane deformation characteristics and is suit-
able to be solved by slip-line method. Since the plastic-
ity condition used in the slip-line method is accurate, the 
slip-line method can accurately predict the size of plastic 
zone. Thus the maximum depth of dog-bone area can be 
determined according to the geometric characteristics of 
the slip- line field of slab plastic deformation zone during 
edge rolling.

Therefore, in case of the shortage of analytical solu-
tion model in edge rolling process, the maximum depth 
of dog-bone area is obtained directly by slip-line method 
in this paper, then a new exponent velocity and corre-
sponding strain rate field are established. And an analyti-
cal solution of edge rolling force and the shape parameters 

of dog-bone are obtained based on the upper bound the-
ory. The calculated edge rolling force and dog-bone shape 
parameters are compared with other models and on-line 
measured data.

2 � Exponent velocity field

2.1 � Determination of deformation zone

As shown in Fig. 3, slip-line field and hodograph for edge 
rolling per unit length under the full adhesion condition 
are drawn out according to Cauchy problem [15]. Due to 
the complete adhesion between the vertical roll and the 
slab, according to Prandtl problem [16], ▵ ABC is a uniform 
linear field with contact surface of 45° and BC is � line. It is 
noticed that BD is a free surface, based on first boundary 
condition in the slip-line theory, ▵ BCD is also a uniform 
linear field and CD is � line with free surface of 45°. There-
fore, on the basis of the geometric characteristics of edge 
rolling slip-line, the relation shape between initial thick-
ness 2h0 and the deformation area’s maximum width b is 
determined as follows [17]:

2.2 � Velocity field

As shown in Figs. 2 and 4, while the slab is rolled by a 
pair of edge rolls of radius R , the width of slab is reduced 
from 2W0 to 2WE (unilateral reduction ∆W = W0 − WE). A 
rectangular coordinate system is set up in the center of 
the entrance cross section and the axes x,y and z rep- 
resent rolling, width and thickness directions of the 

(1)b = B�D� = BD = AB = 2h0

Fig. 3   Slip-line field and hodograph for edge rolling

Fig. 4   Definition sketch of the 
bite zone in edge rolling
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slab. The projected length of the contact arc is given 
by l  , l =

√
2RΔW  , peripheral velocity is given by vR and 

entrance velocity v0 = vR cos� . The bite angle is � and the 
contact angle is � . Due to the symmetry of deformation 
area, only a quarter is considered and divided the defor- 
mation zone into rigid zoneIand plastic zoneIIand III. 
Essentially the vertical rolling process can be thought of 
as the joint extrusion of the vertical roll and rigid zone [18],  
which causes the metal in the plastic area to flow along 
z-direction. Therefore, plastic zone II and III can be consid- 
ered symmetric about y = b�

/
2 , and vyII = −vyIII.

From the geometry, the contact equation (half-width) 
and parameter equation are expressed as follows:

Wx is the half of the width in the bite zone in Eq. (2).

where b� is the deformation area’s width during vertical 
rolling.

From Eq. (3) the pressing velocity vy is:

ω in Eq. (4) is angular velocity.
To facilitate the calculation, the authors pan the ordi-

nate origin o along y-axis to o′ where y = b�
/
2 and sup-

pose the dog-bone extending velocity vz along y-axis by 
exponential function [19] as follows:

A and c are undetermined parameters in Eq. (5). Because of 
the symmetry, only zone III is analyzed below.

According to the incompressibility condition and plane 
deformation assumption [20] 

(
𝜀̇x = 0

)
:

(2)Wx = WE + R −

√
R2 − (l − x)2

(3)

⎧⎪⎨⎪⎩

Wx = W� = W0 − R(cos� − cos �)

b� = R − R cos� + 2h0 − ΔW

� = sin−1 (l∕R)

(4)

vy = vyIII − vyII =
d
(
W0 −W�

)
dt

= R sin�
d�

dt
= �R sin� = vR sin�

(5)

⎧⎪⎨⎪⎩

vzII = AvR sin�
2z

b�
e2cy∕ b� , −b�

�
2 ≤ y ≤ 0

vzIII = AvR sin�
2z

b�
e−2cy∕ b� , 0 ≤ y ≤ b�

�
2

(6)𝜀̇zIII =
𝜕vzIII

𝜕z
=

2AvR sin𝜑

b𝜑
e−2cy∕ b𝜑 = −𝜀̇yIII = −

𝜕vyIII

𝜕y

Based on the geometric equation [21] of the relation-
ship between strain rate and displacement velocity, vyIII is 
obtained as follows:

while y = 0, vy = 0 , substituting this boundary condition 
to Eq. (7), f(z) is obtained:

Then the following expression is the velocity field in plastic 
zone III:

while y = b�
/
2, vyIII = −

vR sin�

2
, substituting this boundary 

condition to Eq. (9)

Thus, A
c
=

1

2(1−e−c)
 is calculated by Eq. (10), then substituting 

it to Eq. (9) yields velocity field as follows:

That leaves only one undetermined parameter c in Eq. (11) 
which is called bulge parameter [22]. According to Cauchy 
equation [23], the strain rate field is determined as follows:

In Eqs. (11)–(12), 𝜀̇x + 𝜀̇y + 𝜀̇z = 0 ; vyIII|y=b�∕ 2,�=� = −
vR sin �

2
 ; 

vyIII|y=b�∕ 2,�=0 = 0;vyIII|y=0,�=� = 0 ; vyIII|y=0,�=0 = 0 . So, they 
are kinematically admissible velocity and strain rate field.

(7)

vyIII = ∫ 𝜀̇yIIIdy = −
2AvR sin𝜑

b𝜑 ∫ e−2cy∕ b𝜑dy

=
AvR sin𝜑

c
e−2cy∕ b𝜑 + f(z)

(8)f(z) = −
AvR sin�

c

(9)

⎧⎪⎨⎪⎩

vxIII = vR

vyIII =
AvR sin�

c

�
e−2cy∕ b� − 1

�

vzIII = AvR sin�
2z

b�
e−2cy∕ b�

(10)vy|y=b�∕ 2 =
AvR sin�

c

(
e−c − 1

)
= −

vR sin�

2

(11)

⎧⎪⎨⎪⎩

vxIII = vR
vyIII =

vR sin�

2(1−e−c)

�
e−2cy∕ b� − 1

�

vzIII =
cvR sin�

1−e−c
z

b�
e−2cy∕ b�

(12)

⎧⎪⎨⎪⎩

𝜀̇yIII =
𝜕vyIII

𝜕y
= −𝜀̇zIII =

cvR sin𝜑

b𝜑(e
−c−1)

e−2cy∕ b𝜑

𝜀̇yzIII =
1

2

�
𝜕vyIII

𝜕z
+

𝜕vzIII

𝜕y

�
=

1

2

𝜕vzIII

𝜕y
=

c2vR sin𝜑

(e−c−1)

z

b2
𝜑

e−2cy∕ b𝜑

𝜀̇zx = 𝜀̇yx = 𝜀̇x = 0
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3 � Total power functional

According to the first variation principle of rigid-plastic 
material [24], the total power functional is:

where Ẇi is the internal deformation power; Ẇs is the shear 
power and Ẇf  is the friction power.

3.1 � Inter‑deformation power

The inter-deformation power per unit length can be cal-
culated as follows:

3.2 � Shear power and friction power

From Eq. (11), the tangential discontinuity exists at the 
interface between roll and slab, and the tangential veloc-
ity discontinuity is:

(13)J∗ = Ẇi + Ẇs + Ẇf

(14)

Ẇi =2
�
ẆiII + ẆiIII

�
= 4∫V

𝜎eIII𝜀̇eIIIdV = 4

�
2

3
𝜎s ∫V

�
𝜀̇ij 𝜀̇ijdV

=4

�
2

3
𝜎s ∫

h0

0 ∫
b𝜑

2

0

�
𝜀̇2
yIII

+ 𝜀̇2
zIII

+ 2𝜀̇2
yzIII

dydz

=
2𝜎svR sin𝜑√

3

⎡⎢⎢⎣
h0

�
1 +

�
ch0

b𝜑

�2

+
b𝜑

c
ln

⎛⎜⎜⎝
ch0

b𝜑
+

�
1 +

�
ch0

b𝜑

�2⎞⎟⎟⎠

⎤⎥⎥⎦

Considering symmetry, the shear power is:

3.3 � Total power and its minimization

Summarizing Eqs. (14) and (16), the total power per unit 
length Ẇ  can be obtained as follows:

Then integrating Ẇ  over the whole contact arc and the 
analytical solution of total power J∗ is:

(15)Δvf = vz =
cvR sin�

1 − e−c
z

b�
e−c

(16)

Ẇs = Ẇf =∫Ff

𝜏f
||Δvf ||dF

=4mk ∫
h0

0

cvR sin𝜑

1 − e−c
z

b𝜑
e−cdz

=
2mkcvR sin𝜑h

2
0

(ec − 1)b𝜑

(17)

Ẇ =Ẇi + Ẇs + Ẇf

=
2𝜎svR sin𝜑√

3

⎡⎢⎢⎣
h0

�
1 +

�
ch0

b𝜑

�2

+
b𝜑

c
ln

⎛⎜⎜⎝
ch0

b𝜑
+

�
1 +

�
ch0

b𝜑

�2⎞⎟⎟⎠

⎤⎥⎥⎦
+

4mkcvR sin𝜑h
2
0

(ec − 1)b𝜑

(18)

J∗ = ∫
𝜃

0

ẆRd𝜑 =
2𝜎svRR√

3 ∫
𝜃

0

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣
h0

�
1 +

�
ch0

b𝜑

�2

+
b𝜑

c
ln

⎛⎜⎜⎝
ch0

b𝜑
+

�
1 +

�
ch0

b𝜑

�2⎞⎟⎟⎠

⎤⎥⎥⎦
+

2mch2
0

(ec − 1)b𝜑

⎫
⎪⎬⎪⎭
sin𝜑d𝜑

=
2𝜎svRh

2
0
c

√
3

⎧⎪⎪⎨⎪⎪⎩

ln

⎡⎢⎢⎢⎢⎣

ch0

2h0−ΔW
+

�
1 +

�
ch0

2h0−ΔW

�2

c

2
+

�
1 +

c2

4

⎤⎥⎥⎥⎥⎦
−

�
1 +

�
2h0 − ΔW

ch0

�2

+

�
4

c2
+ 1

⎫⎪⎪⎬⎪⎪⎭

+
2𝜎svRh

2
0
c

√
3 ∫

ch0
2h0−ΔW

c

2

ln
�
t +

√
1 + t2

�

t3
dt +

4m𝜎svRh
2
0
c

√
3(ec − 1)

ln
2h0

2h0 − ΔW
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According to the mean value theorem of integrals, the 
total power J∗ is:

In Eq. (19), due to the mean value � ∈
[
c

2
,

ch0

2h0−ΔW

]
 and this 

interval is very small, �= c

2
 is selected in this paper to facili-

tate the calculation.
J∗ is only relevant to bulge parameter c when the defor-

mation resistance �s , the peripheral velocities vR , initial thick-
ness of slabs 2h0 and friction factor of edge roll-slab arc m are 
given. The optimal value of c = 1.617 is obtained by MATLAB 
searching algorithm when J∗ attains the minimum value 
J∗
min

 as shown in Fig. 5, and the search results are shown in 

(19)

J∗=
2�svRh

2
0
c

√
3

⎧
⎪⎪⎨⎪⎪⎩

ln

⎡
⎢⎢⎢⎢⎣

ch0

2h0−ΔW
+

�
1 +

�
ch0

2h0−ΔW

�2

c

2
+

�
1 +

c2

4

⎤
⎥⎥⎥⎥⎦
−

�
1 +

�
2h0 − ΔW

ch0

�2

+

�
4

c2
+ 1

⎫
⎪⎪⎬⎪⎪⎭

+
�svRh

2
0
c

√
3

ln
�
� +

√
1+�2

��
4

c2
−

�
2h0 − ΔW

ch0

�2
�
+

4m�svRh
2
0
c

√
3(ec − 1)

ln
2h0

2h0 − ΔW

Fig. 6. Then the minimum of total power functional J∗
min

 is 
obtained by substituting the optimal value of c into Eq. (19).

According to the relationship between rolling power J∗
min

 
and rolling force P̄:

where M is rolling torque, M=P ⋅ a ; P is the total edge roll-
ing force, P=P̄ ⋅ F , P̄ is rolling force per unit slab thickness 
and width, F is the projection of the contact area between 
the slab and edge roll in the width direction, F=l ⋅ b̄𝜑 , l  
is the projected length of contact arc, l=

√
2RΔW  , b̄𝜑 is 

the average width of plastic zone and b̄𝜑 = 2h0 −
ΔW

2
 , a is 

the arm of force and a=� ⋅ l = �
√
2RΔW ;� is roll angular 

velocity. The arm factor � = 0.3 ∼ 0.6 was researched in 
hot rolling process by Lundberg [25]. And �=0.5 is selected 
in this paper under equipment and process parameters.

4 � Exponent function dog‑bone shape model

Exponent function dog-bone shape model is proposed 
based on plastic flow rules and the deformation character-
istics in vertical rolling, as shown in Fig. 7, he is the height 
of the dog-bone area.

(20)J∗
min

= M𝜔 = 4b̄𝜑h0P̄𝜒RΔW𝜔

Fig. 5   Flow chart of calculation Fig. 6   Results of the research for the minimum value of the J∗∕�s
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According to the velocity field Eq. (11), the distribution 
of the metal flow along z-direction in the deformation 
zone IIand III is:

Then substituting the optimal value c = 1.617 obtained 
above into Eq. (21), the extended velocity of dog-bone 
area is:

Consequently, the average velocity of particles in the plas-
tic deformation region II is derived as follows:

Similarly, in region III:

Thus, on the basis of integral mean value theorem, the 
result of Eqs. (23)–(24) can be expressed as follows:

(21)

⎧⎪⎨⎪⎩

vzII =
cvR sin�

1−e−c
z

b�
e2cy∕ b� , −b�

�
2 ≤ y ≤ 0

vzIII =
cvR sin�

1−e−c
z

b�
e−2cy∕ b� , 0 ≤ y ≤ b�

�
2

(22)

⎧⎪⎨⎪⎩

vzII =
1.617vR sin�

1−e−1.617
z

b�
e3.234y∕ b� , −b�

�
2 ≤ y ≤ 0

vzIII =
1.617vR sin�

1−e−1.617
z

b�
e−3.234y∕ b� , 0 ≤ y ≤ b�

�
2

(23)

v̄zII =
∫ 𝜃

0
vzIIRd𝜑

l
= �

𝜃

0

1.617vR sin𝜑R

l
(
1 − e−1.617

) z

b𝜑
⋅ e3.234y∕ b𝜑d𝜑

=�
2h0

2h0−ΔW

1.617vR

l
(
1 − e−1.617

) z

b𝜑
⋅ e3.234y∕ b𝜑db𝜑

=
1.617zvR

l
(
1 − e−1.617

) �
2h0

2h0−ΔW

e3.234y∕ b𝜑

b𝜑
db𝜑

(24)v̄zIII =
1.617zvR

l
(
1 − e−1.617

) ∫
2h0

2h0−ΔW

e−3.234y∕ b𝜑

b𝜑
db𝜑

In Eqs. (25)–(26), the mean value �=2h0 −
ΔW

2
 is chosen in 

present paper.
Based on the Euler method [26] of studying the move-

ment of continuum:

In addition, it is noticed that the time for the roll to rotate 
from inlet to outlet of the slab is:

(25)v̄zII=
1.617zvR

l
(
1 − e−1.167

) ⋅ e3.234y∕ 𝜉 ⋅ ln
2h0

2h0 − ΔW

(26)v̄zIII=
1.617zvR

l
(
1 − e−1.167

) ⋅ e−3.234y∕ 𝜉 ⋅ ln
2h0

2h0 − ΔW

(27)d
(
he − h0

)/
dt = v̄z

(28)t = l∕vR

Fig. 7   Sketch of exponent 
function dog-bone profile

Fig. 8   Comparison rolling force predicted by proposed model with 
on-line measured data
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Summarizing Eqs. (25)–(28), the function of the dog-bone 
area height’s distribution along the y-direction at outlet of 
slab can be obtained as follows:

Equation (29) shows that he is a function of the slabs’ initial 
half thickness h0 , the width coordinate y, edge roll radius 
R and the unilateral reduction ΔW .

(29)

he =

⎧⎪⎨⎪⎩

h0 +
1.617h0

(1−e−1.617)
⋅ e3.234y∕ � ⋅ ln

2h0

2h0−ΔW
, −b�

�
2 ≤ y ≤ 0

h0 +
1.617h0

(1−e−1.617)
⋅ e−3.234y∕ � ⋅ ln

2h0

2h0−ΔW
, 0 ≤ y ≤ b�

�
2

5 � Results

5.1 � Edge rolling force

For the purpose of verifying the validity of the analytical 
solution model proposed in this paper, the results obtained 
from Eq. (20) are compared with the measured data of ver-
tical rolling force in a hot strip mill. The slabs’ width were 
reduced from 1.518 m-1.524 m to 1.48 m-1.51 m, initial 
thickness 2 h0 = 0.18–0.23 m, R = 0.6 m and �=3.09 rad/s . 
More than 1500 records of rolling force P̄ were collected 
while changing the vertical roll radius R , the engineering 
strain ΔW∕W0 and initial half thickness h0 , and the com-
parison between the analytical model and measured ones 
was shown in Fig. 8. The error of the vertical rolling force 
calculated by analytical model is within 10% compared 
with the practical data. Results indicate that the proposed 
exponent velocity field can be successfully applied to 
analyze the edge rolling process. Furthermore, the results 
show that the proportion (predicted results greater than 
the actual measured ones) is about 70%, that because the 
method used to calculate the vertical rolling force in this 
paper is based on the upper bound analysis.

5.2 � Dog‑bone shape

The slab’s shape at exit is another key parameter to 
measure the quality of hot rolled products. The follow-
ing sections will discuss the relationship between height 
of the dog-bone area he and associated parameters (ini-
tial half thickness h0 and engineering strain ΔW∕W0 ). 
Figure  9 shows the comparisons between exponent 

Fig. 9   Comparison of exponent function, Liu’s, FEM and Yun’s mod-
els

Fig. 10   Slab cross section shape in FEM model
Fig. 11   Effect of ΔW∕W

0
 and R∕W

0
 on stress state coefficient n� 

while h
0
∕W

0
= 0.143

(
W

0
= 0.7 m

)
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function dog-bone shape model in this paper and Yun’s 
model [11], FEM simulation’s results and Liu’s sine func-
tion model [12]. It can be seen that the exponent func-
tion’s error is less than 1.24% compared with Liu’s model 
and within 1.53% compared with FEM simulation. The 
maximum error with Yun’s model is slightly higher and 
it can reach 8.19%. This is because Yun assumed that the 
entire deformation can be extended across the width 
direction, then the final dog-bone shape was obtained 
by FEM fitting. This led the length of plastic deforma-
tion zone was larger and the peak height of dog-bone 
was lower than other models. But considering the defor-
mation characteristics of large width-thickness ratio in 

vertical rolling, it is more reasonable to assume the mid-
dle position of slab as rigid zone in exponent function 
model. This feature is also proved by FEM simulation, as 
shown in Fig. 10.

6 � Discussion

6.1 � Edge rolling force

Then, we analyzed how ΔW∕W0 , R and h0 affect the stress 
state coefficient n� , where n𝜎 = P̄

/
𝜎s . Figure 11 shows 

the variation of n� caused by ΔW∕W0 and R when h0 is 
constant, and it is evident from Fig. 11 that the rolling 
force increases with the increasing of ΔW∕W0 and R . This 
is due to the increase of ΔW∕W0 making the deformed 

Fig. 12   Effect of h
0
∕W

0
 and ΔW∕W

0
 on stress state coefficient n� 

while R∕W
0
= 0.857

(
W

0
= 0.7 m

)

Fig. 13   Effect of h
0
∕W

0
 and R∕W

0
 on stress state coefficient n� while 

ΔW∕W
0
= 0.0571

(
W

0
= 0.7 m

)

Fig. 14   Effect of ΔW  on he∕W0
 while h

0
∕W

0
= 0.143

Fig. 15   Effect of h
0
 on he∕W0

 while ΔW∕W
0
= 0.0286
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area closer to the center of the slab, and the total vol-
ume of plastic deformed metal increases, which makes 
the vertical rolling force increase. And when the edge 
roll radius increases, the arc length of the contact area 
and contacting area increase, which lead the increasing 
of deformed metal volume and vertical rolling force. In 
addition, the effect of ΔW∕W0 on n� is more direct than 
that of R . The reason is that the volume of compressed 
metal increase caused by the increasing of ΔW  is larger 
than that caused by the increase of edge roll radius R . 
Figure 12 gives the effects of initial half thickness h0 and 
the engineering strain ΔW∕W0 on n� when R is constant. 
It can be seen that n� decreases as h0 increases, this is 
because the plastic deformation of edge rolling is mainly 
concentrated on the edge of slabs, as the initial thick-
ness h0 increases, the volume of the rigid region also 
increases, although the increase of thickness can make 
the total rolling force larger, the rolling force that acts on 
each metal particle will be smaller. Figure 13 illustrates 
that the influence of initial half thickness h0 on the stress 
state coefficient n� is stronger than roll radius R.

6.2 � Dog‑bone shape

The variations of the value of he∕W0 are obtained under 
different initial half thickness h0 and engineering strain 
ΔW∕W0 . The comparative results between exponent func-
tion model with Liu’s model and FEM simulation’s results 
are given in Figs. 14 and 15. The error of exponent function 
model is below 6.27% compared with FEM simulation’s 
results and less than 8.88% with Liu’s model.

In Fig. 14, it is evident that the value of he increases lin-
early with the increasing of engineering strain ΔW∕W0 . 
This is due to the increasing of the volume of metal in 
deformation zone resulting in the height of dog-bone 
area increasing. In addition, due to the edge rolling as 
a plane deformation process in the calculation of the 
exponential function of the dog bone model, that is, the 
metal under pressure in the width direction is all trans-
formed into the metal bulging in the thickness direction, 
while Liu’s model takes into account the slab deforma-
tion in the rolling direction, resulting in the reduction 
of the metal volume transformed into the dog-bone 
shape. Figure 15 illustrates that the value of he increases 
with the increasing of h0 . This is because when the slab 
thickness increases only, the contact arc length between 
the slab and the vertical roll remains unchanged, but 
the contact area and the volume of the deformed metal 
increase, so the deformation gradually penetrates into 
the center of the slab, which lead the increasing of the 
value of he∕W0.

Through the above verification of the edge rolling force 
model and dog-bone shape model in present paper, the 

accuracy is very close to the numerical solution, which can 
play a guiding role in the actual production.

Moreover, compared with Liu’s model, because the 
exponent function model combines the maximum depth 
of the dog-bone region derived from the theory of slip-
line, it has more theoretical significance. And in the case of 
similar accuracy, the exponent function model is simpler 
and more efficient in predicting the shape of dog-bone 
under different rolling conditions.

7 � Conclusions

1.	 The combination of slip-line and exponent veloc-
ity field is firstly applied to determine the maximum 
depth of the dog-bone zone and establish the kine-
matically admissible velocity field and corresponding 
strain rate field in edge rolling process.

2.	 Using the above velocity field and according to the 
first variation principle of rigid-plastic material, the 
analytical solutions of total power, rolling torque, roll-
ing force and dog-bone shape model are derived by 
minimizing the total power functional.

3.	 The predicted rolling force and final dog-bone shape 
dimensions of edge rolled slab show a good agree-
ment with those of experimental data in reference and 
FEM simulation.

4.	 The stress state coefficient n� increases with the 
increasing of engineering strain and edge roll radius, 
but decreases while initial thickness increases. The alti-
tude of the dog-bone shape increases while engineer-
ing strain or initial thickness increases.
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