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Abstract
The initial boundary value problems of dynamics are considered for the isotropic elastic body with double porosity. By 
the Laplace transform these problems are reduced to boundary value problems of pseudo-oscillations. Special represen-
tations are constructed for the general solution of pseudo-oscillation equations by means of metaharmonic functions. 
Such an approach facilitates the solution of problems and their solutions are written explicitly in form of absolutely and 
uniformly converging series. It is proved that inverse transforms yield solutions of initial dynamic problems. The question 
concerning the uniqueness of regular solutions of the considered problems is investigated.

Keywords  Double porosity · Dynamic problems · Explicit solutions · Uniqueness theorems

1  Introduction

In recent years, interest has arisen in the study of prob-
lems of elasticity and thermoelasticity for porous solids. 
Theories of porous media are applied in many branches 
of engineering, technology [1, 2], geomechanics [3] and 
biomechanics [4].

The quasi-static theory for elastic materials with dou-
ble porosity was developed by Aifantis and his coauthors 
in 1979-1986 [5–8]. This theory which the authors called 
consolidation theory combines the Barenblatt model [9] 
for a fluid flow in a medium of double porosity and the Biot 
model [10] for elastic materials with single porosity. In the 
quasi-static case the basic equations for water-saturated 
media with double porosity were obtained in [11, 12]. A 
fundamental solution of a system of equations of station-
ary oscillations in Aifantis’s quasi-static theory of elasticity 
was constructed for solid bodies with double porosity in 
the paper [13].

However the above-mentioned theories of porous elas-
ticity did not take into account the inertia term and the 

studies involved only static and quasi-static problems. But 
the inertia effect plays a key role in the investigation of 
various problems of oscillations and wave propagation in 
elastic media with double porosity. Hence it is important 
to study a complete dynamic model for materials with 
double porosity. A dynamic system for the description of 
deformation in media with single porosity was worked out 
by Biot [14, 15]. Flow and deformation processes in media 
with double porosity are considered with the inertia effect 
taken into account in the paper [16]. A complete dynamic 
case of the combined linear theory of flow and deforma-
tion of media with double porosity is treated in the paper 
[17]. Love and Rayleigh waves are respectively studied in 
[18, 19], respectively. The historical development of the 
mechanics of porous bodies, fundamental results and the 
sphere of their application are presented in detail in the 
monographs [20–23].

From the standpoint of application it is especially 
important to construct solutions in explicit form because 
such solutions allow one to perform effectively quantita-
tive analyses of the considered problem. Questions related 
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to this topic are considered, for example, in the works 
[24–28], where the explicit solutions of static boundary 
value problems of elasticity are constructed for the specific 
liquid-saturated media with double porosity. In [29, 30], 
the static two-dimensional boundary value problems are 
solved explicitly for a porous disk with voids.

In this article, two-dimensional boundary value prob-
lems of dynamics for porous materials are solved explicitly.

Methods for solving problems for private oscillations 
are not considered. These questions can be found in many 
papers, for example, [31–33].

stress) and those of mean pressures (or values normal 
derivatives pressures) of liquid in pores and cracks.

Basic equations of the motion of fluid-saturated media 
with double porosity contain the displacement vector in 
the neighborhood of some point and also the fluid pres-
sure in cracks and the fluid pressure in pores in the neigh-
borhood of the same point.

Let D be a finite plane region surrounded by a closed 
curve K. In what follows we assume that an isotropic and 
homogeneous porous elastic solid occupies a region of D.

A system of equations of the linear theory of elastic 
materials with double porosity has the form [8, 9]:

where � = (x1, x2) ∈ D, t ∈ T ,T ≡ [0, ∞) is time interval; � , 
� , � , �1 , �2 , mi , �i , kare the known elastic and physical con-
stants, �(�, t) = (u1, u2) is the displacement of the point � ; 
p1(�, t) and p2(�, t) are the average pressure values in the 
neighborhood of � in the cracks and pores, respectively.

Let us formulate the following initial boundary value 
problems.

Find in the D × T  domain a regular solution 
�(�, t) = (�(�, t), p1(�, t), p2(�, t)) of system (2.1) that sat-
isfies the initial conditions

and, on the boundary K  , one of the conditions:

where � = (z1, z2) ∈ S, �(�) = (n1(�), n2(�)) is the external 
normal to K ; � = (f1, f2) , �(�, t) ∈ C1(D̄) ∩ C2(D), D̄ = D ∪ K ; 
f1, f2, f3, f4 are the given functions on S ; �l =

�

�l
 , l  is an arbi-

trary function. It is assumed [7] that mi > 0 , k > 0 , i = 1, 2.

is the stress vector in the porous medium and

is the stress vector in classical elasticity.

(2.1)
�Δ� (�, t) + (� + �)grad div� (�, t) − �1grad p1(�, t) − �2grad p2(�, t) = ��

2

t
� (�, t)

m1Δp1(�, t) − �1�tp1(�, t) + k(p2(�, t) − p1(�, t)) − �1div�t�(�, t) = 0

m2Δp2(�, t) − �2�tp2(�, t) − k(p2(�, t) − p1(�, t)) − �2div�t�(�, t) = 0

(2.2)lim
t→0

�(�, t) = 0, lim
t→0

�t�(�, t) = 0,

(2.3)
lim
x→z

u(�, t) = �(�, t), lim
x→z

pi(�, t) = fi+2(�, t), i= 1, 2, in Problem I;

(2.4)
lim
x→z

�(�x, n)�(�, t) = � (�, t), lim
x→z

�npi(�, t)

= fi+2(�, t), i= 1, 2, in Problem II,

(2.5)
R(�x ,�)�(�, t) = �(�x ,�)�(�, t) − �1�(�)p1(�, t) − �2�(�)p2(�, t)

�(�
x
,�)�(�, t) = � �

n
�(�, t) + ��(�)div �(�, t)

+ �

2
∑

i=1

n
i
(�)grad u

i
(�, t)

In the present paper in Sect. 2 the basic equations of the 
motion of fluid-saturated media with double porosity are 
given, the basic the initial boundary value problems are 
formulated for an isotropic elastic body with double poros-
ity. By the Laplace transform these problems are reduced 
to boundary value problems of pseudo-oscillations.

In Sect. 3 Green’s identities are established and the 
uniqueness theorems are proved for solutions of both 
the initial problems and the corresponding problems of 
pseudo-oscillations.

In Sect. 4 the general solution of pseudo-oscillation 
equations are constructed by means of metaharmonic 
functions.

Examples of the application of these representations 
are given in Sect. 5. The problems of pseudo-oscillations 
for a specific elastic body - a porous disk - are solved. Solu-
tions to these problems are obtained in the form of series. 
Conditions are provided that ensure the absolute and 
uniform convergence of these series and the use of the 
inverse Laplace theorem. It is proved that the inverse trans-
forms provide a solution to the initial dynamic problems.

2 � Formulation of boundary value problems

Let us consider the motion of a medium consisting of 
porous and permeable blocks separated from each other 
by a system of cracks (e.g. bone, granite). At every point 
of the medium are introduced two pressures: liquid pres-
sure in pores and that in cracks. For such a body, called a 
medium with double porosity [7, 8], in the Aifantis theory 
of consolidation the problems of the theory of elasticity 
are formulated with the following boundary conditions: 
there are given the values of the displacement vector (or 
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Let us assume that on the boundary K  the so-called con-
sistency conditions [31]

are fulfilled, while for large t  the functions �and f  satisfy 
the conditions

uniformly with respect to � ∈ D and � ∈ K , ; �0 ≥ 0, M>0 
are constant values, i = 0, 1, 2, q = 0, 1, 2, 3, 4 ; j = 1, 2, 3, 4.

Consider the Laplace transform giving the originals � 
and fj their images �̃and f̃j , respectively,

w h e re  � = � + i�  ,  Re𝜏 = 𝜉 > 0  ,  Im� = � ∈ (−∞;∞), 
�̃ = (�̃, p̃1, p̃2); j = 1, 2, 3, 4.

Given the conditions (2.2) and applying the rule of dif-
ferentiation of the original, the dynamic problems I and II 
can be reduced to the following auxiliary so-called tasks 
of pseudo-oscillations:

(2.6)�
l
t
fj(�, 0) = 0, l = 0, 1, 2, 3; j = 1, 2, 3, 4,

(2.7)
|

|

|

𝜕
i
t
�(�, t)

|

|

|

< Me𝜉0t ,
|

|

|

𝜕
q
t fj(�, t)

|

|

|

< Me𝜉0t

(2.8)(�̃(�, 𝜏), f̃j(�, 𝜏)) =

∞

∫
0

e−t𝜏(�(�, t), fj(�, t))dt,

(2.9)
𝜇Δ �̃(�, 𝜏) + (𝜆 + 𝜇)grad div �̃(�, 𝜏) − 𝛽1grad p̃1(�, 𝜏) − 𝛽2grad p̃2(�, 𝜏) = 𝜌𝜏

2
�̃(�, 𝜏)

m1Δ p̃1(�, 𝜏) − 𝛼1𝜏 p̃1(�, 𝜏) + k [p̃2(�, 𝜏) − p̃1(�, 𝜏)] − 𝛽1𝜏 div �̃(�, 𝜏) = 0

m2Δ p̃2(�, 𝜏) − 𝛼2𝜏 p̃2(�, 𝜏) − k [p̃2(�, 𝜏) − p̃1(�, 𝜏)] − 𝛽2𝜏 div �̃(�, 𝜏) = 0

3 � Uniqueness theorems

In this section Green’s identities are established and the 
uniqueness theorems are proved for solutions of both 
the initial problems and the corresponding problems of 
pseudo-oscillations.

(2.10)
�̃(�, 𝜏) = �̃ (�, 𝜏), p̃i(�, 𝜏) = f̃i+2(�, 𝜏), i = 1, 2 Problem I

𝜏
;

(2.11)
�(𝜕z ,�) �̃(�, 𝜏) = �̃ (�, 𝜏), 𝜕Rp̃i(�, 𝜏) = f̃i+2(�, 𝜏) − Problem II

𝜏

As is known [31], in the D × T  domain, for arbitrary regu-
lar vectors � = (u1, u2)

and �t� = (�tu1, �tu2) and differential operator 
A(�x) = �Δ + (� + �)grad div  Green’s formula has the 
form

w h e r e  E (�t�(�, t),�(�, t))  i s  t h e  n o n n e g a t i v e 
well-defined quadratic form. I t  is  symmetric: 
E(�t �(�, t), �(�, t)) = E(�(�, t), �t�(�, t)) , and therefore

where

(3.1)

∫
D

[�t�(�, t)A(�x)�(�, t) + E(�t�(�, t), �(�, t))]d�

= ∫
K

�t�(�, t)�(�y ,�)�(�, t)}dyK ,

(3.2)E(�t�(�, t),�(�, t)) =
1

2
�tE(�(�, t),�(�, t)),

is the potential deformation energy, 3𝜆 + 2𝜇 > 0 , 𝜇 > 0 . 
Using formulas (3.2) and the formulas

E(�,�) =
1

3
(3� + 2�)

(

�u1

�x1

+
�u2

�x2

)2

+
�

3

[

(

2
�u1

�x1

−
�u2

�x2

)2

+ 3

(

�u2

�x2

)2
]

+ �

(

�u1

�x2

+
�u2

�x1

)2

�t� ⋅ � �
2

t
� =

�

2
�t
|

|

�t�
|

|

2
, �t� ⋅ grad pi =

�

�x1

(

�

�t
u1pi

)

+
�

�x2

(

�

�t
u2pi

)

− pi div
�

�t
�,
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from (2.1) and (3.1) we obtain Green’s formula for porous 
bodies in the case of dynamic problems:

where the vector �(�x ,�)�(�, t) is defined from (2.5).
Let �′ and �′′ be arbitrary regular solutions of anyone 

of problems (2.1), (2.2), (2.3) or (2.1), (2.2), (2.4). Then the 
difference �(�, p1, p2) = �� − ��� is a regular solution of the 
corresponding homogeneous problems. In that case, the 
right-hand side of formula (3.3) is equal to zero and we 
can write

Therefore in the time interval t ∈ [0;∞) the value of the 
integral

diminishes or remains constant and equal to zero. But 
since the integrand is nonnegative and equal to zero at 
the initial moment of time, each of the summands must 
be equal to zero too. Hence it follows that � = 0, p1 = 0 , 
p2 = 0 , �(�, p1, p2)=0. So, the following statement is true.

Theorem  1  A unique regular solution of homogeneous 
problems of dynamic is identically zero.Now let us prove 
the uniqueness theorems for pseudo-oscillatory problems. 
Let �̃ = (�̃, p̃1, p̃2) be a solution of the homogeneous prob-
lem corresponding to one of problems (2.9), (2.10) or (2.9), 
(2.11), and ̄̃𝐔 = ( ̄̃𝐮, ̄̃p1, ̄̃p2) be the complex-conjugate vector. 

(3.3)

∫
D

{
�

2
�t
|

|

�t�(�, t)
|

|

2
+

1

2
�tE(�(�, t),�(�, t)) +m1

|

|

grad p1(�, t)
|

|

2
+m2

|

|

grad p2(�, t)
|

|

2

+
1

2
�1�t

|

|

p1(�, t)
|

|

2
+

1

2
�2�t

|

|

p2(�, t)
|

|

2
+ k[p2(�, t) − p1(�, t)]

2}d�

= ∫
K

{m1p1(�, t) �np1(�, t) +m2p2(�, t) �np2(�, t) + �t�(�, t)�(�y ,�)�(�, t)}dyK ,

1

2
�t �

D

{

�|
|

�t�(�, t)
|

|

2
+ E(�(�, t),�(�, t)) + �1�t

|

|

p1(�, t)
|

|

2
+ �2�t

|

|

p2(�, t)
|

|

2
}

d�

= −�
D

{m1
|

|

grad p1(�, t)
|

|

2
+m2

|

|

grad p2(�, t)
|

|

2
+ k(p2(�, t) − p1(�, t))

2}d� ≤ 0

∫
D

{

�|
|

�t�(�, t)
|

|

2
+ E(�(�, t),�(�, t)) + �1�t

|

|

p1(�, t)
|

|

2

+�2�t
|

|

p2(�, t)
|

|

2
}

d�

For arbitrary regular vectors �̃ and ̄̃𝐮 and differential operator 
A(�x) = �Δ + (� + �)grad div Green’s formula has the form

(3.4)

∫
D

[ ̄̃𝐮A(𝜕x) 𝐮̃(𝐱, 𝜏) + E(𝐮̃(𝐱, 𝜏), ̄̃𝐮(𝐱, 𝜏))]d𝐱

= ∫
K

̄̃𝐮(𝐲, 𝜏)𝐓(𝜕y ,𝐧) 𝐮̃(𝐲, 𝜏)}dyK ,

w h e r e E(𝐮̃, ̄̃𝐮) =
1

3
(3𝜆 + 2𝜇)

|

|

|

𝜕ũ1

𝜕x1

+
𝜕ũ2

𝜕x2

|

|

|

2

+
𝜇

3

[

|

|

|

𝜕ũ1

𝜕x1

−
𝜕ũ2

𝜕x2

|

|

|

2

+

3
|

|

|

𝜕ũ2

𝜕x2

|

|

|

2
]

+ 𝜇
|

|

|

𝜕ũ1

𝜕x2

+
𝜕ũ2

𝜕x1

|

|

|

2

.

Since 3𝜆 + 2𝜇 > 0 , �>0 and 𝐮̃ ⋅
̄̃𝐮 = |𝐮̃|

2
> 0 , we have 

E(𝐮̃, ̄̃𝐮) =E( ̄̃𝐮, 𝐮̃),

Applying the equality ∫
D

p̃iΔ ̄̃pid� = ∫
K

p̃i𝜕n ̄̃pidK−

∫
D

|

|

grad p̃i
|

|

2
d� , i = 1, 2 for system (2.9) we obtain Green’s 

formula for the porous body

(3.5)ReE(𝐮̃, ̄̃𝐮) ≡ E(𝐮̃, ̄̃𝐮) ≥ 0, ImE(𝐮̃, ̄̃𝐮) = 0.

(3.6)

∫
D

{𝜌𝜏2|𝐮̃|
2
+ E(𝐮̃, ̄̃𝐮) +

m1

𝜏

|

|

grad p̃1
|

|

2
+

m2

𝜏

|

|

grad p̃2
|

|

2
+

1

𝜏
[(𝛼1𝜏 + k)|

|

p̃1
|

|

2
+

+ (𝛼2𝜏 + k)|
|

p̃2
|

|

2
− k(p̃1 ̄̃p2 + p̃2 ̄̃p1)]}d𝐱 =

= ∫
K

{
m1

𝜏
p̃1(𝐲, 𝜏)𝜕n ̄̃p1(𝐲, 𝜏) +

m2

𝜏
p̃2(𝐲, 𝜏)𝜕n ̄̃p2(𝐲, 𝜏) +

̄̃𝐮(𝐲, 𝜏)𝐑(𝜕y ,𝐧)𝐔̃(𝐲, 𝜏)}dyK
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For zero boundary conditions the right-hand side of 
equality (3.6) is equal to zero. Taking equality (3.5) into 
account and separating the real and the imaginary part 
in (3.6), we obtain

where a1 = �1 +
k�

|�|
2 , a2 = �2 +

k�

|�|
2 , a12 =

k�

|�|
2 .

Since 𝜉, k, 𝛼1, 𝛼2 > 0 , we have a1a2 − a2
12

> 0.
If � = 0, then from (3.7) we obtain �(�, p1, p2) = 0 . If 

� ≠ 0, then from (3.8) it follows that �̃ = 0, grad p̃i = 0, p̃1 =
p̃2 = const. Taking (2.9) into account, we finally obtain p̃1 =
p̃2 = 0. The following statement is true.

Theorem 2  Problems I
�
 and II

�
 have unique solutions.

4 � General representation of solution 
of a system of equations 
pseudo‑oscillations

In this section for the general solution of system (2.9), spe-
cial representation are constructed through elementary 
functions.

Applying the operator div to the first equation of sys-
tem (2.9), we obtain a system of equations with respect to 
the sought value div �̃,p̃1 and p̃2 . The determinant of this 
system has the following form

(3.7)

∫
D

{𝜌(𝜉2 − 𝜂
2)�𝐮̃�

2
+ E(𝐮̃, ̄̃𝐮) +

m1𝜉

�𝜏�
2
�

�

grad p̃1
�

�

2
+

m2𝜉

�𝜏�
2
�

�

grad p̃2
�

�

2

+

�

�

�

�

�

�

√

a1p̃1 −
a12
√

a1
p̃2

�

�

�

�

�

�

2

+
a1a2 − a2

12

a1

�

�

p̃2
�

�

2
}d𝐱 = 0;

(3.8)

𝜂{∫
D

{2𝜉|ũ|2 +
m1

|𝜏|
2
|

|

grad p̃1
|

|

2
+

m2

|𝜏|
2
|

|

grad p̃2
|

|

2

+
k

|𝜏|
2
|

|

p̃2 − p̃1
|

|

2
}d�} = 0,

(4.1)

det(Δ) =�0m1m2Δ
3 + {−�0(�1m2 + �2m1)� − �0k(m1 +m2) − (�2

2
m1 + �

2

1
m2)�

−m1m2��
2}Δ2 + {�0k(�1 + �2)� + ��

3(�1m2 + �2m1) + ��
2k(m1 +m2)

+ k�(�2
1
+ �

2

2
) + �

2(�2�
2

1
+ �1�

2

2
) + 2�1�2k� + �0�1�2�

2}Δ

− �k�3(�1 + �2) − ��
4
�1�2,

where the numbers (−�2

j
) are the root of polynomial (4.1), 

j = 1, 2, 3. Relations between these roots are expressed by 
Vieta’s formulas

It is assumed that �2
0
≡ �

2
3
.

Thus, using (4.2), with respect to div �̃, p̃1 and p̃2 we 
obtain the new equations

Now, applying the operator rot = −�2 + �1 to the first 
equation of system (2.9), we obtain

where �2
4
= −

��
2

�
, rot �̃ = 𝜙4.

A solution of system (4.4) can be written in the form

where �l(�, �) are scalar metaharmonic functions with a 
complex argument

while �2

l
 are complex numbers which differ from one 

another in the half-plane Re𝜏 > 0 , �2
1
≠ �

2
2
≠ �

2
3
;

(4.3)

3
∑

j=1

�
2

j
= −

1

�0m1m2

[�0(�1m2 + �2m1)� + �0k(m1 +m2)

+ (�2
2
m1 + �

2

1
m2)� +m1m2� �

2]

3
∑

j=1

�
2

j−1
�
2

j
=

�

�0m1m2

[�0k (�1 + �2) + ��
2(�1m2 + �2m1)

+ k � �(m1 +m2) + k(�2
1
+ �

2

2
) + �(�2�

2

1
+ �1�

2

2
)

+ 2�1�2k + �0�1�2�],

3
∏

j=1

�
2

j
= −

��
3

�0m1m2

[k(�1 + �2) − ��1�2].

(4.4)
3
�

j=1

(Δ + 𝜔
2

j
)

⎛

⎜

⎜

⎝

div �̃

p̃1
p̃2

⎞

⎟

⎟

⎠

= 0.

(4.5)(Δ + �
2

4
)�4 = 0,

(4.6)

�̃ ≡ (ũ1, ũ2) = c1grad 𝜙1 + c2grad 𝜙2 + c3grad 𝜙3 + c4rot 𝜙4

p̃1 = 𝜀1𝜙1 + 𝜀2𝜙2 + 𝜀3𝜙3,

p̃2 = 𝜙1 + 𝜙2 + 𝜙3,

(4.7)(Δ + �
2

l
)�l = 0, l = 1, 2, 3, 4where 𝜆0 = 𝜆 + 2𝜇 > 0 . Expression (4.1) with respect to 

Δ is a third degree polynomial with complex coefficients, 
𝜆0m1m2 > 0 . Let us write it as the product

(4.2)det(Δ) = �0m1m2

3
∏

j=1

(Δ + �
2

j
),
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where

By an immediate check we conclude that representa-
tions (4.6) satisfy equations (2.9).

Remark  The check of the third equation of system (2.9) 
becomes easier if (4.9) in formula (4.8) is replaced by the 
following

It is proved that �j = �
�
j
 ; j = 1, 2, 3.

5 � Construction of solutions of boundary 
value problems of pseudo‑oscillations 
for the porous disk

In this section, using representation (4.6), problems I
�
 and 

II
�
 are solved explicitly for a circle.
Let region D have the form of a disk bounded by a cir-

cumference K with radius R, the center of which coincides 
with the origin. Solutions of problems of pseudo-oscil-
lation are obtained in the form of the series. The condi-
tions are given which provide the absolute and uniform 
convergence of these series and the use of the Laplace 
inverse theorem. It is proved that inverse transforms yield 
solutions of initial dynamic problems.

Problem I
�
 Regular solutions of equations (4.7) in the 

circle can be represented as follows [34]:

where � = (r,�), r2 = x2
1
+ x2

2
, Jm is the Bessel function of 

a complex variable with integer index mXml = (X
�

ml
, X

��

ml
) 

is the sought constant vector, �m(�) = (cosm� , sinm�), 
�m(�) = (− sinm� , cosm�), l = 1, 2, 3, 4.

(4.8)cj = −

{[

�0

� �1�
3
(m1�

2

j
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�1

� �2

]

�j +
�1 �2 � − �0k

� �1�
3

}

, c4 = −
�

��2
,

(4.9)
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2k

(�0�
2
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+ ��2)(m1�

2
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2
1
� �

2
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, j = 1, 2, 3.

�
�
j
=

�2 �
2

j
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2

j
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(5.1)

�j(�, �) =

∞
∑

m=0

Jm(�j r)(Xmj ⋅ �m), �4(�, �) =

∞
∑

m=0

Jm(�4r)(Xm4 ⋅ �m),

Let us write the boundary conditions (2.10) of Problem 
I
�
 in terms of normal and tangent components

where f̃n = n1 f̃1 + n2 f̃2, f̃s = −n2 f̃1 + n1 f̃2.
From representation (4.6) we write

We expand the functions f̃n , f̃s and f̃i+2 into Fourier series 

f̃n(�, 𝜏) =
∞
∑

m=0

(�m(𝜏) ⋅ �m(𝜓)),

w h e r e  �m(�) = (�m1, �m2),  �m(�) = (�m1, �m2)  a n d 
�mi(�) = (�mi1, �mi2) are the Fourier coefficients of the 
respective functions f̃n , f̃s and f̃i+2 , i = 1, 2.

Taking (4.6) into account, we substitute representations 
(5.1) into (5.3) and pass to the limit as r → R . Then, taking 
(5.4) into account, from the boundary conditions (5.2), for 
each m we obtain a system of algebraic linear equations

where J′
m

 is the derivative of the function Jm with respect 
to its argument. We solve system (5.5) and substitute the 
obtained values of the vectors Xmj and Xm4 into (5.1), and 
thereafter into (4.6). We obtain the solution of Problem I

�
.

Problem II
�
Passing in (2.5) to the normal and tangent 

components we obtain

(5.2)
ũn(�, 𝜏) = f̃n(�, 𝜏), ũs(�, 𝜏) = f̃s(�, 𝜏), p̃i(�, 𝜏) = f̃i+2(�, 𝜏), i = 1, 2,

(5.3)

ũn(�, 𝜏) = 𝜕r

3
∑

j=1

cj𝜙j −
c4

r
𝜕
𝜓
𝜙4, ũs(�, 𝜏) =

1

r
𝜕
𝜓

3
∑

j=1

cj𝜙j + c4𝜕r𝜙4.

(5.4)
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∞
∑

m=0

(�m(𝜏) ⋅ �m(𝜓)),

f̃i+2(�, 𝜏) =

∞
∑

m=0

(�mi(𝜏) ⋅ �m(𝜓)), i = 1, 2,

(5.5)

3
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j=1

cj�j J
�
m
(�jR)Xmj +

c4

R
m Jm(�4R)Xm4 = �m(�)

1

R

3
∑

j=1

cjm Jm(�jR)Xmj + �4J
�
m
(�4R)Xm4 = �m(�)

3
∑

j=1

�j Jm(�jR)Xmj = �m1(�),

3
∑

j=1

Jm(�jR)Xmj = �m2(�), m = 0, 1, 2,…

(5.6)
{�(𝜕x ,�)�̃(�, 𝜏)}n = 𝜆0𝜕r ũn(�, 𝜏) +
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ũs(�, 𝜏) − 𝛽1p̃1(�, 𝜏) − 𝛽2p̃2(�, 𝜏),

{�(𝜕x ,�)�̃(�, 𝜏)}s = 𝜇
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where ũn(�, 𝜏) and ũs(�, 𝜏) are defined by formulas (5.3). 
The boundary conditions (2.11) can be written in the form

where f̃n , f̃s and f̃i+2 are the known functions. It is assumed 
that they are expandable into Fourier series. Substitution 
(5.3) into (5.6), using (5.1) and (5.4) and passing to the limit 
as r → R , from (5.7) we obtain for each m a system of alge-
braic linear equations

Substituting the solution of system (5.8) into (5.1), and 
then into (4.6), we thus find the solutions �̃(�, 𝜏), p̃1(�, 𝜏) 
and p̃2(�, 𝜏) of Problem II

�
 . From the uniqueness of the 

solutions of Problems I
�
 and II

�
 it follows that for each m 

the determinants of systems (5.5) and (5.8) are different 
from zero.

As is known, for m → ∞ and |� | ≤ m we have the rela-
tion (see e.g. [35])

After substituting it into the solutions Xmjand Xm4 of sys-
tem (5.5), from representations (5.1) we can write

where ��

m
= max(|

|

�m
|

|

, |
|

�m
|

|

, |
|

�m1
|

|

, |
|

�m2
|

|

) , c is the constant 
not depending on m . As seen from (5.10) and (4.6), for 
�̃(�, 𝜏), p̃1(�, 𝜏) and p̃2(�, 𝜏) , and also for their first order 
derivatives to be expanded into series which absolutely 
and uniformly converge on the boundary K  , it is sufficient 
that the Fourier coefficients �′

m
 satisfy the condition 

(5.7)

{�(𝜕z ,�)�̃(�, 𝜏)}n = f̃n(�, 𝜏), {�(𝜕z ,�)�̃(�, 𝜏)}s = f̃s(�, 𝜏),

𝜕Rp̃1(�, 𝜏) = f̃3(�, 𝜏), 𝜕Rp̃2(�, 𝜏) = f̃4(�, 𝜏),

(5.8)

�0

[

3
∑

j=1

cj�
2

j
J��(�jR)Xmj −

c4

R2
mJm(�4R)Xm4 +

c4�4

R
m J�

m
(�4R)Xm4

]

−

−
�

R

[

1

R

3
∑

j=1

cjm
2Jm(�jR)Xmj + �4mJ�

m
(�4R)Xm4

]

− �1

3
∑

j=1

�j Jm(�jR)Xmj−

− �2

3
∑

j=1

Jm(�jR)Xmj = �m(�)

�

{

−
1

R2

3
∑

j=1

cjmJm(�4R)Xmj + �
2

4
J��
m
(�4R)Xm4 +

1

R

3
∑

j=1

cj�j J
�
m
(�jR)Xmj+

+
c4

R
m2Jm(�4R)Xm4

}

= �m(�)

3
∑

j=1

�j�j J
�
m
(�jR)Xmj = �m1(�, �),

3
∑

j=1

�j J
�
m
(�jR)Xmj = �m2(�, �), m = 0, 1, 2,…
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≤ c

m3
, m = 1, 2,…The latter estimate holds if 

f̃ ∈ C2(K ) . For Problem II
�
 , just like for I

�
 , we can conclude 

that the condition f̃ ∈ C1(K ) ensures the uniform and 
absolute convergence of the series �̃(�, 𝜏), p̃1(�, 𝜏) and 
p̃2(�, 𝜏) and their first order derivatives when � ∈ D̄.

By analyzing the general form of solutions Xml 
(l = 1, 2, 3, 4) and applying conditions (2.6) and (2.7) as 
well as the asymptotic properties of the Bessel function 
for large � (Re𝜁 > 0) and relatively small m

we can establish that the conditions fl(�, t) ∈ C4(0 ≤ t<∞) 
give the following estimate for the solution of Problem I

�

for all �uniformly for each � , � ∈ D̄; l = 1, 2, 3, 4. By an 
analogous reasoning we conclude that under the condi-
tion fl(�, t) ∈ C3(0 ≤ t < ∞) estimate (5.11) is fulfilled for 
the solution of Problem II

�
 too. Since the Bessel functions 

are analytic in the complex half-plane Re𝜏 > 0 , the values 
Xmj  and Xm4  ,  as well  as �j  ,  �4  (j = 1, 2, 3) and 
�̃ = (ũ1, ũ2, p̃1, p̃2) are also analytic functions � in the half-
plane Re𝜏 > 0 for both problems. Under condition (5.11) 

the integral 
∞∫

−∞

|

|

�̃(�, 𝜉 + i𝜂)|
|

d𝜂 converges and �̃(�, 𝜏) → 0 , 

as |�| → ∞, uniformly with respect to � , � ∈ D̄ . By the 
Laplace inversion theorem (see e.g. [31]) vector �̃(�, 𝜏) is 
an image, and the original is defined by the integral

Jm(�) ≈

√

2

��
cos

(

� −
m�

2
−

�

4
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,

(5.11)|
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|𝜏|
4
, c� = const
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where Re� = �>�0 ≥ 0, �0 is the growth exponent of the 
original. Condition (5.11) is sufficient for the existence of 
the derivatives �t�(�, t) and �2

t
�(�, t).

Having in view expressions (2.8), (2.10) or (2.11), by 
direct computations we ascertain that the vector �(�, t)
defined by formula (5.12) satisfies system (2.1), the initial 
conditions (2.2), and also the boundary conditions (2.3) 
or (2.4). In the formula (5.12) vector �̃(�, 𝜏) is solution 
pseudo-oscillations problems (2.9), (2.10) or (2.9), (2.11).

6 � Conclusions

1.	 The novelty of the paper. We consider two-dimen-
sional dynamic initial boundary value problems of 
elasticity for the body with double porosity. By the 
Laplace transform (2.8) these problems are reduced to 
the boundary value problems of pseudo- oscillations 
(2.9)–(2.11). For the general solution of system (2.9), 
special representations (4.6) are constructed through 
elementary (metaharmonic) functions. The properties 
of these functions are well known in mathematical 
physics. Such an approach facilitates the solution of 
two-dimensional problems of pseudo-oscillations. The 
solutions of this problems are obtained in the form of 
absolutely and uniformly convergent series. The condi-
tions are written under which the inverse transforms 
exist and yield solutions of the initial problems. Green’s 
formulas are derived and the uniqueness theorems are 
proved for solutions of both the initial problems and 
the corresponding problems of pseudo-oscillations.

2.	 Main result. Explicit solutions to the original problems 
are expressed by the formula (5.12), where vector 
�̃(�, 𝜏) is solution pseudo-oscillations problems (2.9), 
(2.10) or (2.9), (2.11).

3.	 The application of the considered method enables us 
to investigate a wide class of problems for systems of 
equations in modern linear theories of elasticity, ther-
moelasticity and porous elasticity for materials with 
double porosity; build explicit solutions basic bound-
ary value problems not only for a circle, but also for a 
ring, a plane with a circular hole, etc.
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