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Abstract
In metabolism processes, enzymes are involved in a cooperative manner of step by step mechanisms trying to guarantee 
cell survival. Besides, every change in a biological system and its environment within a cell could lead to metabolism 
alterations due to natural cell response. So, it is reasonable to find metabolism variations within a cell in different condi-
tions. Such enzymes behaviors are very similar to a competitive game where different players try to play for reaching a 
specific outcome, either by a cooperative or selfish strategy. In this study, we have explored an assumption in which there 
exists a shift in playing strategy of enzymes from normal to a different biological condition (here cancer) by investigation 
of pattern alterations in the metabolic subsystem of four cancer cell types (in four cancer stages) using flux calculations 
and Gene Ontology analysis. Based on the results, we found some metabolic subsystems which contained less flux vari-
ation during the cancer progression. The results indicate there might be a game-theoretic strategy in which changing 
from a beneficial (cooperative) to a selfish strategy happened during cancer stages. It also could be interesting since 
picking a similar game strategy for all cells would eventually lead the system toward a tragedy of commons (i.e., lower 
overall fitness for a group or population), in the case of cancer cells, cause the system to be finally disrupted, means death.
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1 Introduction

Noise is an inescapable fact of life, which usually consid-
ers as an undesired disturbance in useful information 
that harms the quality. Although, in most cases, noise 
assumes to be destructive, it could sometimes be ben-
eficial and constructive, especially in biology. For cells, 
noise meaning variability ranging from stochastic pro-
cesses within such as gene expression to randomness in 
an outside environment like food sources, deadly toxins, 
and pathogens would be a matter of life and death [1]. 
Noise has been difficult to study in biology since most 

techniques average the output of many experimental 
results and erase individual variability. Recently, the 
development of high-resolution technologies for sin-
gle cells let scientists be able to capture noise at this 
level and to explore how it influences the emergence 
of a system [2]. Single-cell studies revealed that a cell 
is a nondeterministic machine and could choose dif-
ferent strategies leading to a specific cellular decision 
based on its conditions [3–5]. Hence, noise measurement 
seems to create an opportunity to find discoveries in 
biological systems. Strictly speaking, the exact determi-
nation of noise effects could shed light on treatments 
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for infections, diseases, and even cancer. Cancer mod-
eling has been counted as a complementary tool next 
to experimental studies and developed in recent years 
by the advent of genome-scale models [6]. In addition to 
the genetic aspect of cancer for modeling approaches, 
a metabolic point of view is also informative. It is now 
accepted that cancer cells reprogram their metabo-
lism to attain abnormal cell growth requirements. So, 
genome-scale metabolic (GEM) modeling of cancer is 
still a novice with great potential for various analysis 
methods to deal with [6].

Furthermore, it is also possible to explore geno-
type–phenotype relationships with metabolic systems 
biology approaches. However, modeling at the genome-
scale confronts some limitations due to the large size of a 
system. Therefore, dynamic methods such as kinetic mod-
eling are hard to apply because of an insufficient number 
of parameters. Instead, a metabolic flux overview of a sys-
tem could be driven using the flux analysis method [7]. In 
a flux analysis, a system of stoichiometric matrix kernel is 
calculated under a steady-state using a linear program-
ming approach to obtain an optimum, which satisfies all 
system constraints. For example, a set of flux values of all 
reactions involved in a metabolic model could be obtained 
where maximization of growth rate is considered as an 
objective function. Since the calculated flux set may not 
be unique, it is more realistic to obtain a flux range for 
every reaction, which still keeps the value of an objective 
function optimized. This method is called flux variability 
analysis (FVA) that determines a flux ranges (min and max 
values) for every reaction involved in a metabolic model 
instead of a fixed flux value [8]. Hence, the flux range (or 
flux capacity) for each part of the system might change 
through different GEM cancer models and could consider 
as a criterion emphasizing variation of every part of the 
system. The ability to measure variation (noise) in every 
reaction of a GEM model using an FVA approach would 
make an opportunity to explore some biological assump-
tions related to metabolism and cancer development. In a 
metabolic system, all enzymes are involved in the division 
of labor. It means each enzyme performs some vital func-
tion needed for the next step in a pathway, which finally 
leads to the survival of the cell as a whole. It is very simi-
lar to a game-theoretic approach in which every element 
(enzyme) work together in a cooperative behavior to reach 
a specific goal (cell survival). Therefore, there would be a 
reasonable size of metabolism variation within cell metab-
olism due to the cooperativity of enzymes. But the situa-
tion would not be the same in a cancer system in which 
each cell tries to grow as fast as it is possible. So, there is 
a change in the strategy of the players and the division of 
labor strategy does not work. Instead, every enzyme tries 
to maximize its benefit. Hence, the cooperative scenario 

could not be guaranteed and a decrease in variation size 
of metabolism is now expected.

To explore this assumption, we have performed flux 
variability and Gene Ontology (GO) analysis on various 
stages of four different cancer cell types and studied flux 
variations together with their distributions in the GO meta-
bolic process tree for metabolic subsystems.

2  Materials and methods

A summary of the workflow of this study has been demon-
strated in Fig. 1. Here, we describe the methods in detail.

2.1  Gene expression data

Whole genome-based microarray data were downloaded 
from the Gene Expression Omnibus (GEO) database and 
summarized in Table 1. All datasets selected from the same 
platform (GPL570) and related to the four different types of 
cancer, including colon, lymphoma, neuroblastoma, and 
ovarian.

Microarray data were preprocessed and analyzed using 
the LIMMA package in R [9], which was originally devel-
oped for differential expression analysis of microarray data. 
The detail definition of each cancer stage is provided in 
the Supplementary file S1. More detailed descriptions of 
the methods can be found in the original studies on colon 
cancer [10, 11], lymphoma [12, 13], neuroblastoma [14], 
and ovarian cancer [15].

2.2  Model reconstruction

We have used the corrected human metabolic model 
[16], which contains 1905 genes, 2766 metabolites, and 
3748 reactions. Gene expression values related to meta-
bolic genes have been mapped into the human meta-
bolic model using the E-Flux algorithm for constraining 
the possible flux through the reactions [17]. The E-Flux 
method does not reduce gene expression levels to 
binary states. Instead, it constrains the upper and low-
ers bound of each reaction according to its correspond-
ing gene expression level. In summary, for integration 
of the expression data, gene expression values have 
been mapped into the Recon1_corrected model using 
the E-Flux method. The E-Flux approach tries to map 
gene expression data into a GEM by constraining the 
maximum possible flux through the reactions. However, 
this method does not reduce gene expression levels to 
binary states, as some other algorithms (such as GIMME, 
iMAT, and MADE) do. E-Flux constrains the upper and 
lower bound of a reaction according to its correspond-
ing gene expression level. Using this approach, we have 
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constructed four cancer tissue-specific metabolic mod-
els based on their corresponding gene expression data. 
We have written a Mathematica script to apply the E-Flux 
method to the human metabolic model (supplemen-
tary file S1). This script reads gene expression data, per-
forms the E-Flux algorithm, and changes the upper and 

lower bounds of each reaction according to its Gene-
Protein-reactions Relationships (GPRs) Matrix available 
through the human metabolic model. Then, the RPMI-
1640 medium and biomass equation have been added 
to the models. The biomass and the medium composi-
tions are given in the supplementary file S1 (Tables 1, 2), 

Fig. 1  Schematic overview of this study; Integration of gene 
expression data into a generic metabolic model, performing FVA 
on reconstructed cancer models, detecting subsystems with decre-

ment or increment in flux variations, performing a GO analysis on 
selected subsystems and exploring the distribution of metabolic 
pathways through the GO metabolic process tree

Table 1  Summary of four types 
of cancers and the number of 
samples for each stage

Name Sample Stages GEO ID PMID References

Colon cancer 177 Stage1: 24
Stage2: 57
Stage3: 57
Stage4: 39

GSE17536 22,115,830
19,914,252

Freeman et al. [10]
Smith et al. [11]

Lymphoma 406 Stage1: 66
Stage2: 122
Stage3: 97
Stage4: 121

GSE10846 19,038,878
21,546,504

Lenz et al. [13]
Cardesa-Salzmann et al. [12]

Neuroblastoma 60 Stage1: 11
Stage2: 17
Stage3: 7
Stage4: 25

GSE12460 18,923,523 Janoueix-Lerosey et al. [14]

Ovarian 60 Stage1: 17
Stage2: 8
Stage3: 30
Stage4: 5

GSE44104 23,934,190 Wu et al. [15]
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respectively. All cancer metabolic models are available 
in the supplementary file S2 as MATLAB structure files.

2.3  FVA for metabolic models

We have used the COBRA toolbox (Constraints Based 
Reconstruction and Analysis) [18] for calculating fluxes of 
the metabolic models through the maximization of the 
biomass equation. The glpk solver has been used for linear 
programming problems on a computer with the Intel Core-
i7-3770 k CPU and 8 GB RAM. For FVA, the fluxVariability 
function has been performed by just considering solutions 
that give at least 90 percent of the optimal solution. We 
wanted to compare the behavior of a cancer system (in 
term of its noise) while the system tries to keep its objec-
tive value in the maximum value. This means the system 
always keeps to have the maximum biomass (by maximiz-
ing the objective function) although it is in different can-
cer stages. So, the flux variability of each reaction in such 
condition (while a system always reaches to its maximum 
objective value) could resemble the narrowness of the flux 
in various situations. Therefore, using FVA, we could be 
sure about the system to keep its biomass value in the 
maximum value, and now we could deal with the noise of 
the system through the allowance of reactions fluxes (i.e., 
the range of the fluxes). In another words, we want to keep 
the objective value in its maximum value in all calculations 
to resemble the biological aspect of a cell and now look-
ing at the noise effect in the system through its reactions 
flux ranges. The FVA output would be two vectors, includ-
ing minimum and maximum fluxes for each reaction. So, 
the flux range for every reaction could be calculated using 
corresponding minimum and maximum values. Then, we 
have calculated flux ranges for 101 different subsystems 
by averaging over their corresponding reactions. The sub-
systems information is available through the vector called 
subSystems in the MATLAB model structure. The biological 
definition of 101 subsystems is based on metabolic path-
way classification [19]. All FVA results related to different 
cancer stages are available in the supplementary file S3.

2.4  Gene Ontology (GO) analysis

To identify flux variations together with their distributions 
in the GO metabolic process, we detect all genes that par-
ticipate in the subsystems (974 genes). Then, we analyzed 
the genes using the Biological Networks Gene Ontology 
tool (BiNGO) app [20] that is a tool to define which Gene 
Ontology (GO) terms are considerably overrepresented in 
a set of genes. Also, the GO (biological process) analysis 
was repeated using two gene lists; one list includes sub-
systems in which flux variations were decreased in four 
cancer types (282 genes), and the other contains sub-
systems with decrement in flux variations for two cancer 
types and increment in flux variations for two other cancer 
types (194 genes). The results of the two lists were high-
lighted through the tree that was reconstructed via 974 
genes (Fig. 2).

3  Results

The flux ranges of each subsystem have been calculated 
for four different stages of cancer cell types (including 
ovarian, colon, lymphoma, and neuroblastoma). To better 
distinguish the results, the outputs of stages 1 and 2 have 
been merged as well as stages 3 and 4. Then, the flux range 
comparison between initial stages (stages 1 and 2) and 
more developing stages (stages 3 and 4) have been per-
formed for all cancers. As it is shown in Table 2, there are 
17 subsystems in which ranges of the fluxes are decreased. 
It means flux capacity or variation of the subsystems have 
been reduced, and the subsystems confronted with a lack 
of variation through the cancer development. Flux ranges 
of the remaining subsystems do not satisfy a reasonable 
pattern. We have chosen one of these cases (increment in 
two cancer cell types, whereas decrement in two others) 
to be assumed as random behavior of subsystems among 
cancer cells (Table 3). It should be noted that surpris-
ingly, there is not any subsystem in which flux capacity is 
increased in four cell types during cancer progression. For 

Table 2  Subsystems with a 
decrement in flux ranges

Subsystem

Aminosugar metabolism Arginine and proline metabolism

Alanine and aspartate Metabolism Bile acid biosynthesis
Butanoate metabolism CoA biosynthesis
Citric acid cycle Fatty acid metabolism
Fatty acid oxidation Glyoxylate and dicarboxylate metabolism
N-Glycan degradation Transport peroxisomal
Transport mitochondrial Transport extracellular
Transport lysosomal Tyrosine metabolism
Sphingolipid metabolism
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example, for glycolysis sub-system, there were increment 
in flux ranges in four type of cancers (as expected) but in 
terms of variations (i.e., standard variation values) there 
were increment in three cancer types, but a decrement in 
ovarian cancer. It has been reported that drug resistance 
in ovarian cancer is directly associated with a decrease 
in glycolysis ability [21]. So, it seems cancer cells might 
use such mechanism to increase the chance of being 

drug-resistance. A complete list of flux variations for all 
subsystems is available in the supplementary file S3.

The GO tree was reconstructed to investigate flux vari-
ations with their distributions in the GO metabolic pro-
cess, and the results were visualized using Cytoscape [22]. 
The result showed 820 biological processes for the whole 
imported gene list. Besides, the result of analysis repre-
sented 141 biological processes for the first gene subsets 

Fig. 2  Distribution of genes/enzymes in a metabolic process 
branch of a GO analysis represented as a hierarchical tree. Orange 
nodes are metabolic genes related to all subsystems. Violet nodes 
are genes corresponding to 17 metabolic subsystems with a decre-
ment in flux ranges during the tumor development of four cancer 

types. These genes are gathered in six clusters through the biologi-
cal process tree. Blue nodes are genes which include increment in 
flux variation of two cancer cell types and decrement in two others. 
The inline figure is the cluster number 3, which was zoomed in for 
better representation (see text)
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(contains subsystems with a decrement in flux variations 
for two cancer types and increment in flux variations for 
two other cancer types). Moreover, the result illustrated 
196 biological processes for the second subsets (in which 
flux variations were decreased in four cancer types) that 
overrepresented in the original tree (Fig. 2). Finally, 144 
GO are common for both gene subsets. All GO results have 
been provided in the supplementary file S4.

4  Discussion and conclusion

The noise could be both an obstacle for some kinds of 
cellular behaviors along with a beneficial feature for oth-
ers. Noise study in biology started in 2002 when Elowitz 
and his collaborators mapped random gene activity in 
single cells and demonstrated that a cell is a nondeter-
ministic machine [23]. After that, many studies have been 
performed to figure out whether noise might influence 
important cellular decisions. It seems noise could control 
cell fate decisions, and this makes some cells to switch 
fates randomly [5]. In 2009, Cagatay et al. also demon-
strated that noise could influence the cells’ survival [3]. 
The consequences of noise aren’t limited to microbes. 
Noise might also play an important role in the develop-
ment of more complex organisms, including humans 
[24]. Understanding how noise works in the cell would 
help scientists to clarify a confusing occurrence of ran-
dom fluctuations in gene activity, which possibly plays 
a role in some diseases [25, 26]. Such fluctuations could 
lead to generating diversity through a system. However, 
In contrast to the production of diversion, nature has been 
developed influential ways to control it. In other words, 
each cell contains some best-fitted variations which try 
to attain benefits for the whole system, including growth 
and cell division. For example, in the metabolism process, 
all enzymes are supposed to be involved in the division 
of labor in a step by step mechanism, which goes to cell 
survival. The division of labor situation enforces variation 
increment since each set of enzymes concentrates on a 

specific subsystem different from the others. This is simi-
lar to a game-theoretic method in which different players 
would play in a special way to increase the system ben-
efits, leading to a cooperative state. If a condition of a cell 
is changed, enzymes can resemble a non-cooperative 
behaviour in which all enzymes pick a selfish strategy 
to increase their benefits. In such case, the selection of a 
selfish strategy would lead to extortion, not cooperation. 
Studying game-theoretic mathematical models in cancer 
metabolism seems to be an interesting phenomenological 
modeling area and some studies tries to deal with it in pre-
vious works [27, 28]. To pursue a game-theoretic approach 
of noise in metabolism, we have explored flux variations 
through cancer cell stages. We have assumed there will 
be a decrement in flux variation for essential metabolic 
enzymes in a cancer cell because of a replacement in play-
ing strategy from cooperative to selfish. Therefore, we are 
expected some metabolic subsystems to contain less flux 
variation during the progression of a cancer cell.

The flux balance analysis relies on two assumptions; 
steady-state approximation and optimality. The steady-
state approximation reduces the system to a set of linear 
equations, that is then solved to catch a flux distribution 
which satisfies the steady-state condition subject to the 
specified constraints while maximizing the value of an 
objective function. A standard approach to solve such sys-
tem is to apply linear programming. In this study, by inte-
gration of gene expression data of different cancer stages 
to the Recon1_corrected human metabolic model using the 
E-Flux algorithm, the only thing that changes through the 
models would be the ability to carry flux for each reac-
tion. So, any changes in the FVA results (which uses the 
same objective function to be maximized) would be the 
flux ranges. Therefore, this removes any other sources of 
causes such as environmental or availability of new metab-
olites or reactions which might create uncertainty about 
the resource of the noise in the system. Thus, we could be 
almost sure that we fixed all other parameters and just 
focusing of the noise caused by the flux ranges. So, we 
have performed FVA to calculate flux ranges for metabolic 

Table 3  Subsystems with 
increment in two cancer cell 
types whereas decrement in 
two others

Subsystem

Ascorbate and aldarate metabolism Biotin metabolism

Biomass C5-Branched dibasic acid metabolism
D-alanine metabolism Fatty acid elongation
Glutamate metabolism Glycerophospholipid metabolism
Hyaluronan metabolism Inositol phosphate metabolism
N-Glycan biosynthesis NAD metabolism
Pyrimidine biosynthesis ROS detoxification
Triacylglycerol synthesis Transport nuclear
Taurine and hypotaurine metabolism
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subsystems for four different cancer cell types in 4 stages 
to examine the hypothesis. Comparing the flux ranges of 
stages 1–2 with 3–4 for all cancer cell types demonstrates 
there are some metabolic subsystems in which changes in 
flux ranges do not show a specific trend (decrement in 1, 2, 
or 3 cancers whereas increment in others). But, as it is dem-
onstrated in Table 2, 17 metabolic subsystems are com-
mon through 4 cancers in which flux ranges are decreased 
during tumor development. Figure 2 shows the distribu-
tion of corresponding genes/enzymes (violet nodes) in a 
metabolic process branch of a GO analysis represented 
as a hierarchical tree. These genes/enzymes represent 
players with a selfish strategy in the game. We have also 
repeated the analysis for the metabolic genes/enzymes 
(blue nodes), which include increment in flux variation of 
two cancer cell types and decrement in two others. These 
genes/enzymes have been picked up to show players with 
cooperative strategies. This means we considered the most 
ideal one (in which flux variations were decreased in two 
of four cancer types and increased in the two others) as 
a cooperative behavior. It is clear that there are other 
options for such strategy (for instance decrement in one 
or three cancers whereas increment in the others). We 
considered the scenario of two decrement-two increment 
because it was the most ideal cases and could better rely 
on a balanced (and not preferable) strategy among differ-
ent types of cancers. Now, It is possible to explore distribu-
tion of different players (cooperative vs. non-cooperative) 
through the entire system by comparing the violet nodes 
with the blue ones (i.e., all metabolic genes/enzymes of 
the cancer models available in the metabolic process of 
GO analysis tree). It could be realized that while coopera-
tive players are distributed randomly, the non-cooperative 
ones do not satisfy a similar behavior. Instead, they are col-
lected in sub-grouped locations of the metabolic process 
tree (Fig. 2). In other words, the variation reduction, which 
is common to all cancer cells, has been happened to clus-
ters that seem to be essential for cancer development. As 
has been illustrated in Fig. 2, there are six clusters, includ-
ing a well-known process related to the cancer progression 
(supplementary file S5). Many types of research showed 
that cancer cells are dependent on various enzymatic reac-
tions to survive, so metabolic reprogramming must meet 
their requirement [29]. For instance, the cluster number 4 
shows the overrepresentation of fatty acid process during 
cancer progression. However, previous study showed that 
fatty acid oxidation (FAO) pathway cannot be activated 
independent of the microenvironment of the cancer cell 
[29]. In ovarian cancer, FAO (β-oxidation) pathway in inter-
action with adipocytes promotes ovarian cancer metasta-
sis and provides energy for rapid tumor growth [30]. The 
regulation of fatty acid pathway and its effect on cancer 
cells is summarized on [29]. Moreover, recent findings 

indicate that altered metabolism in cancer cells relies on 
the preferential use of alternative isoforms or genomic 
amplification of enzymes involved in glucose and amino 
acid metabolism [31]. As Fig. 2 shows, cluster numbers 3 
and 4 indicate the overrepresentation of the amino acid 
alteration process, which confirms previous studies [31, 
32]. Besides, clusters 2 and 3 indicate activation of the 
glucose metabolism process, which is crucial for cancer 
cells based on previous researches [31, 33]. Furthermore, 
malate-aspartate over-represents in cluster number 6, 
which the previous study indicated the occurrence of the 
malate-aspartate shuttle in various tumor types [34, 35].

Cancer cells try to grow as fast as it is possible. At this 
point, cells try to concentrate on critical metabolic path-
ways for cell division and growth. In the game theory 
language, this tendency goes to change in the game 
strategy of elements (here metabolic enzymes) from a 
division of labor (cooperative) to maximization of benefit 
[36]. Hence, it is expected to see a decrement of meta-
bolic flux ranges associated with the significant subsys-
tems, as it is shown in this study. It should also be noted 
that picking a similar game strategy for all cells would 
eventually lead to a tragedy of commons (TOC). The trag-
edy of commons is considered as a situation in which 
individual players reduce the resources over which they 
compete, leading to lower overall fitness for a group or 
population. This concept has been largely studied in evo-
lutionary biology [37, 38]. There is also a study related to 
tragedy of the commons for cooperators in cancer [39]. 
However, the TOC, in our case (cancer cells), would cause 
the system to be finally disrupted, which means death.

However, in this study we just used some basic con-
cept of the game theory that might be responsible to 
obtain such biological results. So, further theoretical 
and experimental works needed to find more about the 
relationship between game theory and noise effect in 
a metabolic system. In addition, there are still lots of 
questions regarding noise effect in cells and application 
of game theory in biology to be answered since these 
fields have been revived in this decade. For example, 
how would noise influence a community as a whole? Do 
cells have an awareness of each other’s noise? Would a 
cell become noisy if its neighbors are very noisy? Which 
strategy should we enforce to a cancer system to turn 
selfish into a cooperative strategy? These questions 
remain for further study in the future.
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