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Abstract
A new artificial neural network architecture that helps generating longer melodic patterns is introduced alongside with 
methods for post-generation filtering. The proposed approach, called variational autoencoder supported by history, is 
based on a recurrent highway gated network combined with a variational autoencoder. The combination of this archi-
tecture with filtering heuristics allows the generation of pseudo-live, acoustically pleasing, melodically diverse music.
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1  Introduction

The rapid progress of artificial neural networks is gradually 
erasing the border between the arts and the sciences. A 
significant number of results demonstrate how areas pre-
viously regarded as entirely human due to their creative or 
intuitive nature are now being opened up for algorithmic 
approaches [24]. Music is one of these areas. Indeed, there 
were a number of attempts to automate the process of 
music composition long before the era of artificial neural 
networks. Well-developed theory of music inspired a num-
ber of heuristic approaches to automated music composi-
tion. The earliest idea that we know of dates as far back as 
the nineteenth century, see [15]. In the middle of the twen-
tieth century, a Markov-chain approach for music compo-
sition was developed in [8]. Despite these advances, Lin 
and Tegmark [14] have demonstrated that music, as well as 
some other types of human-generated discrete time series, 
tends to have long-distance dependencies that cannot be 
captured by models based on Markov chains. Recurrent 
neural networks (RNNs), on the other hand, are better able 

to process data series with longer internal dependencies 
[21], such as sequences of notes in a tune [1]. Indeed, a 
variety of different recurrent neural networks such as hier-
archical RNN, gated RNN, long short-term memory (LSTM) 
network, and recurrent highway network were successfully 
used for music generation in [4–6, 10, 20, 28] or [23]. Yang 
et al. [27] use generative adversarial networks for the same 
task. For a broad overview of generative models for music, 
we address the reader to [3].

The similarity between the problem setup for note-
by-note music generation and the setup used in the 
word-by-word generation of text makes it reasonable 
to review some of the methods that proved themselves 
useful in generative natural language processing tasks. 
We would like to focus on a variational autoencoder 
(VAE) proposed in [2, 18]. A VAE makes assumptions con-
cerning the distribution of latent variables and applies a 
variational approach for latent representation learning. 
This yields an additional loss component and a specific 
training algorithm called Stochastic Gradient Variational 
Bayes (SGVB), see [16] as well as [11]. Thus, a generative 
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VAE obtains examples similar to the ones drawn from the 
input data distribution. It also gives significant control over 
the parameters of the generated output, see [13, 26]. This 
theoretically opens the door for controlled music output 
and makes the idea of applying VAE-based method to 
music generation very inviting.

The advantages mentioned above are quite promis-
ing, but artificial neural networks also have a well-known 
problem when applied to music or language generation. 
A significant percentage of generated sequences, despite 
their statistical similarity to the training data, are regularly 
flagged as wrong, boring or inconsistent when reviewed 
by human peers. This hinders the broader adoption of neu-
ral networks in these areas. The contribution of this paper 
is twofold: (1) we suggest a new architecture for the algo-
rithmic composition of monotonic music called Variational 
Recurrent Autoencoder Supported by History (VRASH) and 
(2) we demonstrate that, when paired with simple filtering 
heuristics, VRASH can generate pseudo-live, acoustically 
pleasing, melodically diverse melodies.

2 � Music representation and data

Four gigabytes of midi files that included songs of differ-
ent epochs and genres formed a proprietary dataset that 
was used for the experiments. The data was already avail-
able but required significant preprocessing. A single midi 
file can contain several tracks with meaningful information 
and some tracks of little importance. The files were therefore 
split into separate tracks. A certain normalization of the data 
is often needed to facilitate learning, and so the following 
normalization procedures were applied to every track indi-
vidually. Each note in midi file is standardly defined with 
several parameters such as pitch, length and strength plus 
the parameters of the track (e.g. the instrument that is play-
ing the note) and the parameters of the file (such as tempo). 
Although nuancing plays an important role in musical 
compositions, the strength of the notes was omitted in our 
experiments. This particular paper focuses on the melodic 
patterns determined by the pitches and by the temporal 
parameters of the notes and pauses in between. The median 
pitch of every track was transposed to the 4th octave. The 
pauses throughout the dataset were also normalized as 
follows. For each track, a median pause was calculated. It 
was expected that the absolute majority of the pauses in 
the track are equal to the median pause multiplied with a 
rational coefficient (1/2 and 3/2 being especially popular 
for the majority of the tracks). Tracks with more than eleven 
different values for the pauses were filtered out. Generally, 
temporal normalization of midi files can be rather challeng-
ing, but the pause filtering trick described above allows 
us to normalize the obtained tracks using the value of the 

median pause. Finally, to prevent the model from possible 
over-fitting and to make the input diverse enough, tracks 
with exceedingly small entropy were also excluded from 
the training data. Since tracks are generated on a note-by-
note basis, a disproportionate number of tracks with low 
pitch entropy (say, a house bass line with the same note 
repeating itself throughout the whole track) would drasti-
cally decrease the quality of the output. The final dataset 
consisted of 15+ thousand normalized tracks and was used 
for further training.

A concatenated note embedding was constructed for 
every note in every track. This embedding included the pitch 
of the note, its octave and a delay that corresponded to the 
length of the note. Meta-information of a given MIDI track 
was also embedded for each individual track.

3 � Architecture

We have trained three different architectures for the task of 
melody generation. The baseline for such tasks is usually a 
classic language model (LM), as shown in Fig. 1. A classic 
language model tries to predict the next token in a given 
sequence using information on previous tokens.

A variational autoencoder was originally proposed for the 
tasks of text generation in [2, 18]. Figure 2 demonstrates this 
architecture in application to music generation.

A standard language model uses some form of a state 
that represents information on the previous tokens in a 
sequence. However, the effectiveness of such representa-
tions is hard to assess. This is why contrast with the classical 
Variational Autoencoder, the Variational Recurrent Autoen-
coder Supported by History shown in Fig. 3 uses previous 
outputs as additional inputs to build the prediction on. In 
this way, VRASH ‘listens’ to the notes that it has already com-
posed and uses them as additional ‘historic’ input.

In the VRASH scheme, the support by history partially 
addresses the issue of slow mutual information decline that 
seems to be typical for natural discrete sequences such as 
natural language, notes in a composition or even for genes 
in a human genome, as shown in [14]. Let us now look at 
this issue a little closer. The following definitions of mutual 
information I between two random variables X and Y are 
equivalent

(1)

I(X , Y) ≡S(X) + S(Y) − S(X , Y)

= D(p(XY)‖p(X )p(Y))

=

�
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where S = ⟨− log2 P⟩ is a Shannon entropy measured in 
bits, see [19], and D is the Kullback–Leibler divergence, 
see [12]. Indeed, Lin and Tegmark [14] show that in a 
number of natural datasets, mutual information between 
such tokens declines relatively slowly. VRASH addresses 
this problem specifically, trying to compensate for slow 
mutual information decline with the history support mech-
anism. Contrary to the approach proposed in [17], where 
a network generates short loops and then connects them 
in longer patterns, thus providing a possibility to con-
trol melodic variation, we focus on whole-track melody 
generation. Let us now describe the experimental results 
obtained.

4 � Experiments and discussion

Before discussing the proposed architectures, we feel it is 
necessary to make the following remarks. It is still not clear 
how one could compare the results of generative algo-
rithms that work in the area of the fine arts. Indeed, since 
music, literature, cinema, etc., are intrinsically subjective, 
it is rather difficult to approach them with truly rigorous 
metrics. The majority of approaches is usually based on 
peer-review systems where the number of human peers 
can vary significantly. For example, in [9] the authors refer 
to the subjective opinions of only 26 peers, whereas in [7] 

Fig. 1   Language model 
scheme for music generation

Fig. 2   Variational autoencoder 
scheme for music generation. 
Bottleneck between decoder 
and encoder aims to com-
press the macrostructure of 
the melody effectively and 
obtain a diverse melody with 
a human-like macrostructure. 
The variational Bayesian noise 
highlighted with light yellow 
color

Fig. 3   Variational recurrent 
autoencoder supported by 
history (VRASH) scheme for 
music generation. Previously 
generated notes are used for 
the generation of further notes
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more than 1200 peer responses are analyzed. Such col-
laborative approaches based on individual subjective 
assessments could be used to evaluate the quality of the 
output, but they are typically costly and can hardly be used 
to obtain scalable results. The number of peers required 
to compare several different architectures and obtain rig-
orous quantitative differences between them drastically 
exceeds the ambition of this particular work. Keeping 
these remarks in mind, we would like to further discuss 
possible objective metrics that are frequently used to com-
pare generative models; we would also like to suggest a 
simple yet useful workaround for quality assessment.

Figure 4 shows the cross entropy of the language model 
(LM), VAE and VRASH architectures near the saturation 
point. The untrained random network is used as a refer-
ence baseline. The LM and VRASH models demonstrate 
comparable cross entropy.

Formally speaking, VRASH demonstrates only margin-
ally better performance in comparison with the language 
model, but we claim that the results produced by VRASH are 
more subjectively interesting. Further development of this 
architecture in context of music generation looks promis-
ing. After a subjective assessment of the tracks produced by 
different algorithms, we find that VRASH yields the highest 
percentage of tracks with qualitative interesting temporal 
and melodic structures. In [24] the artistic applications of the 
VRASH architecture are highlighted along with positive feed-
back from listeners as well as from professional musicians.

All three of the proposed architectures work relatively 
well and generate music that is diverse and sufficiently 
interesting as long as the training dataset is large enough 
and of high quality. Still the architectures do have cer-
tain important differences. The first general problem that 
occurs in many generative models is the tendency to 
repeat a certain note. This issue is more prominent for the 

language Model, whereas VAE and specifically VRASH tend 
to deal with this challenge more successfully.

Another issue is the macrostructure of the track. 
Throughout the history of music, a number of standard 
music structures have been developed, starting with a 
relatively simple song structure (characterized by a repeti-
tive chorus that is divided with verses) and finishing with 
symphonies that comprise a number of different, less 
sophisticated forms. Despite the fact that VAE (and VRASH, 
specifically) have been developed to capture the macro-
structures of the track, they do not always provide the dis-
tinct structural dynamics which characterizes a number of 
human-written musical tracks. However, VRASH seems to 
be the step in the right direction.

To date, every generative model based on artificial 
neural networks has had problem of low-quality output. 
Currently, among the melodically diverse and acoustically 
pleasing tracks which could be generated, we also inevita-
bly hear tracks with annoyingly simple recurrent patterns, 
off-beat sequences, obscure macrostructures, etc. Faced 
with this problem, we proposed the following worka-
round. Alongside the generative VRASH-based model, we 
used a set of automated filtering heuristics that allowed to 
obtain a pseudo-real-time non-stop stream of generated 
music with very limited computational power, for example, 
we have managed to run a pseudo-real-time generation of 
non-repeated tunes on Raspberry Pi (Fig. 5).1 

The heuristics were obtained in a straightforward man-
ner yet turned out to be extremely effective. Using human 
assessment for 1000+ tracks, we trained a classifier to pre-
dict whether or not a track would be acoustically pleas-
ant. Human peers were asked to evaluate tracks on a scale 

Fig. 4   Cross-entropy of the 
proposed architectures near 
the saturation point. The 
untrained random network is 
used as a reference baseline

1  To hear pseudo-live generation by the VRASH-based model work-
ing on Raspberry Pi go to https​://youtu​.be/Yu8iX​OyG8k​E.

https://youtu.be/Yu8iXOyG8kE
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from 1 to 5, where 5 was the highest mark. Then we split 
the evaluated tracks into two categories: those that had a 
mark of 4 or 5 were considered acceptable, whereas the 
tracks were marked with 3, 2 or 1 were to be detected and 
removed by the filtering algorithm. For each track in the 
training dataset, we calculated the following set of theo-
retic informational features:

•	 entropy of notes without octave information;
•	 entropy of changes between consecutive notes with-

out octave information;
•	 entropy of notes lengths;
•	 entropy of changes between consecutive notes 

lengths;
•	 entropy of notes with octave information;
•	 entropy of changes between consecutive notes with 

octave information;
•	 minimal entropies for sliding windows that were 8, 16, 

32, 64 and 128 notes long;
•	 average entropy for sliding windows that were 8, 16, 

32, 64 and 128 notes long;
•	 coordinates of the sampling vector.

Due to the size of the dataset, we were limited in our 
choices of methods. Table 1 shows how different methods 
perform depending on the size of the test dataset.

If the filtering needs to be done faster, the obtained 
classifier can be replaced with a set of manually con-
structed empirical heuristics. Due to the fact that we are 
not interested in the recall of the obtained classifier (when 
working with neural generative models one often faces 
an excessive amount of generated melodies, yet wants to 

filter more pleasing ones), one can make such heuristics 
even more strict so that 100 % accuracy is achieved. A simi-
lar approach was used in [25] for text generation and in 
[22] for drum pattern sampling and proved itself useful. We 
believe that such filtering could be adopted across various 
generative tasks and can significantly improve the result-
ing quality at a relatively low development cost.

Another way for comparing generated music with real 
tracks is to build mutual information plots analogous 
to the ones shown in [14]. We have written above that 
VRASH is designed to capture long-distance dependencies 
between the notes in a track. Figure 6 shows how mutual 
information in terms of Equation 1 declines with distance 
in different types of VRASH-generated tracks.

Looking closely at Fig. 6, several interesting details 
are worth mentioning. First of all, Bach-stylized VRASH-
generated music tends to have higher mutual informa-
tion between notes that are further apart. Similar to real 
tracks, mutual information declines slowly (if at all) in 
Bach-stylized VRASH-generated music. Its higher values 
might explain the feedback which we often received 
from human peers: they noticed that the music was 
harmonious yet somehow “mechanical”. Higher levels of 
mutual information between distant notes can partially 
account for that. Second, jazz-stylized VRASH-generated 
music demonstrates a mutual information profile that is 
closest to the profile of real tracks. However, as the dis-
tance between the notes gets longer, mutual informa-
tion in generated tracks tends to decrease faster than 
in real data. This also corresponds with the qualitative 
feedback of human peers who generally characterized 
jazz-stylized music as diverse and more human-like.

Fig. 5   VRASH accompanied 
with heuristic filters is compact 
enough to run pseudo-real-
time music on Raspberry Pi
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Filtering jazz-stylized music significantly affects the 
decline of mutual information between the notes. This 
could be ascribed to the fact that the filter was trained 
on Bach-stylizations. A filter that manages to provide a 
high-quality melody stream for a certain style of music 
needs to be retrained for other different styles of music 
in order to guarantee that it will preserve the complex-
ity needed for the music to stay entertaining. Finally, 
Fig. 6 shows that VRASH-generated melodies tend to 
demonstrate a slower decline of mutual information 
than music generated by a language model.

5 � Conclusion

In this paper, we described several architectures for mono-
tonic music generation. We compared the Language 
Model, the Variational Autoencoder and the Variational 
Recurrent Autoencoder Supported by History (VRASH). 
This is the first application of VRASH to music generation 
that we know of. There are several compelling advantages 
of this model that make it especially useful in context of 
automated music generation. First of all, VRASH pro-
vides a good balance between the global and the local 
structure of the track. VAE allows to partially reproduce 

Table 1   Accuracy of the 
filtering mechanism varies 
across different test sets and 
methods but allows up to 87% 
of tracks classified as good are 
also positively evaluated by 
human

Method Share of test # of bad tracks # of good 
tracks

Good tracks 
recall on test

Logistic regression 0.5 207 44 0.79
0.4 189 35 0.81
0.3 162 24 0.85
0.2 128 18 0.86

SVC with linear kernel 0.5 238 64 0.74
0.4 199 43 0.78
0.3 138 22 0.84
0.2 60 9 0.85

SVC with rbf kernel 0.5 229 53 0.77
0.4 205 39 0.81
0.3 162 30 0.81
0.2 86 11 0.87

Fig. 6   Mutual information 
defined in Eq. 1 as a function 
of distance between two notes 
in real musical tracks. The 
figure shows VRASH-generated 
and automatically filtered 
Bach-stylized tracks, VRASH 
generated jazz-stylized tracks, 
VRASH generated auto-
matically filtered jazz-stylized 
tracks, and tracks generated 
by a language model shown 
in Fig. 1
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macrostructure, but VRASH is able to generate more locally 
diverse and interesting patterns. Second, VRASH is rela-
tively easy to implement and train. Finally, VRASH allows 
to control the style of the output (through the latent rep-
resentation of the input vector) and to generate tracks 
corresponding to the given parameters. Beyond this, we 
proposed a simple filtering method to deal with the prob-
lem of inconsistent generative output. We also proposed 
an information theoretic approach to compare different 
generative architectures output with empirical data.
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