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Abstract
Patient-specific surgical guides are increasingly demanded. Material Extrusion (ME) is a popular 3D printing technique to 
fabricate personalized surgical guides. However, the ME process usually generates deleterious surface topography which 
is not suitable for orthopaedic emergencies. We designed and optimized parametric combinations of a laser polishing 
approach as post process to improve the surface quality of ME-made poly-lactic acid (PLA) objects. In this study, we 
investigated the contribution of processing variables to the mechanical properties and the biocompatibilities in vitro of 
the ME-made PLA objects. Conventional surface grinding was conducted as comparison. The results demonstrate that the 
ME-made PLA samples exhibit good mechanical properties and favourable biocompatibility after being post processed 
using laser polishing. The post laser polishing, as a powerful tool in manufacture of ME-made PLA objects, will open a 
new approach with a great promise in its applications in personalized and timely management of medical emergencies.

Keywords  Biocompatibility · Fused deposition modelling · Mechanical strength · Orthopaedics · Surgical guide · Three 
dimensional printing

1  Introduction

Orthopaedic implants and surgical guides are usually 
standardized products that are categorized into a limited 
number of sizes to fit all patients [1]. However, bone geo-
metrical and structural parameters and the complexity of 
a traumatic injury or joint reconstruction vary individually 
[2, 3]. Consequently, the geometric mismatch between a 
surgical device and individual bone increases the possibil-
ity of nerve roots or visceral damage [4, 5], biomechanical 
disadvantages [6], implant mobility and loosening [7], and 
implant failure [8]. Good fitting accuracy of implants or 
surgical guides will reduce the risk of body rejection and 

complications, and influence on the osseointegration at 
the interface between bone and implants after surgery, 
which will largely improve clinical outcomes. Therefore, 
customized patient-specific medical implants with an 
accurate implant configuration and appropriate implant 
placement have become attractive [9]. Likewise, patient-
specific surgical guides are increasingly demanded, par-
ticularly by orthopaedic surgeons worldwide in planning 
their surgeries and improving the accuracy during their 
performances [10].

Three-dimensional (3D) printing, a modern additive 
manufacturing technology, emerges as asimple and 
feasible solution to the manufacturing issue related to 
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medical devices that are highly demanded by medical 
field, particularly in orthopaedic emergencies because it 
buildspatient-specific models and fabricate surgical guides 
and implants. To date, material extrusion (ME) is the most 
commonly used and the most accessible 3D printing tech-
nology for customized medical applications [11]. A hot-
end tip extrudes melted material filament which solidi-
fies at the designated spatial position of a proposed 3D 
model. This technique allows physical fabrication from a 
computer-aid-design (CAD) model at a relatively low cost 
[12].

Poly-lactic acid (PLA) is one of the most commonly 
used thermoplastic materials in ME printing which has 
been shown to have sufficient geometrical accuracy [13], 
strength resistance and good biocompatibility in vitro [14, 
15]. ME prototypes have been used successfully as guiding 
instruments to assist surgical procedures [16–18]. How-
ever, a number of limitations still exist. Research showed 
that the ME process changes the chemical properties of 
the original PLA, making it more susceptible to degrada-
tion in physiological conditions [19]. Such PLA objects 
exhibit a rough surface topography, specifically a stair-
case surface texture with a low directional resolution [20, 
21]. Surface roughness of a bio-material is essential to its 
mechanical strength and cell growth [22]. Poor surface 
quality of the ME-made PLA parts that contains the del-
eterious staircase structure constrains their application 
as a final product for medical applications. Other than 
improving the surface quality by optimizing the process-
ing parameters [23, 24], post surface treatment reduces 
the deleterious staircase surface characteristics of ME 
products, which can be directly quantified by a reduction 
of surface roughness. Studies have investigated different 
post processing methods for improving surface quality of 
the ME products [25, 26], such as barrel finishing, vapour 
smoothing and chemical etching techniques [27, 28]. 
These methods are currently offering available options for 
post surface processing on the ME-made PLA parts. How-
ever, the disadvantages, such as chemical contamination, 
high production cost and long processing time length 
make them impractical to the use in emergent medical 
situations, like trauma management.

Laser scanning for post polishing of metal 3D print-
ing prototypes has been widely used [29, 30]. Although 
the laser treatment usually applies on polishing of flat 
surface because of its technical nature, the laser polish-
ing is greatly desired for medical device manufacturing 
because it possesses contactless and wearless machining 
abilities and penetrates material surface to polish the inner 
structure [31–33]. Our laboratory and other researchers 
developed a novel laser polishing method on polymer 3D 
printed object, and conducted preliminary studies [34, 
35]. Although researchers have reported the mechanical 

strength of PLA composite with or without laser polish-
ing, the mechanical and biocompatible behaviours of laser 
post processed ME-made PLA object have not been fully 
investigated [36, 37]. Its feasibility on orthopaedic appli-
cation remains unknown. In this study, we explored the 
contribution of processing variables to the mechanical 
properties and biocompatibilities of ME-made PLA and 
identified the optimal set of laser scanning parameters. 
Conventional mechanical grinding was conducted as 
comparison. We expect to provide comprehensive experi-
mental evidence to support the post laser polishing as a 
powerful tool in manufacture of ME-made PLA objects for 
the use in personalized and timely management of medi-
cal emergencies.

2 � Material and methods

2.1 � 3D printing

As demonstrated in Fig. 1, the 3D model contains three dif-
ferent parts to fill in a solid material. The first part is a brim, 
i.e. fringe of a model at each layer, where the extruder 
scans. The second part is infill, in which the inside area 
of the model is filled by a proposed pattern and density. 
The third part is a supporting structure which refers to the 
features that do not exist in the 3D model, but support the 
upper layer to maintain its spatial position. The 3D model 
was designed using Solidworks (Dassault Systemes SA, 
France), and were converted to.stl file to be recognizable 
by the 3D printer. The slicing strategy was generated using 
the software Simplify3D (Simplify3D, OH, USA). To examine 
the mechanical properties of the ME-made PLA objects 
and post processed with the laser scanning, we designed 

Fig. 1   Schematic diagram of 3D printing
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model geometries based on the requirements of Interna-
tional Organization for Standardization (ISO). We prepared 
samples for tensile and compression tests and flexural 
properties under the defined conditions according to the 
standards of ISO 527 [38], ISO 604 [39], and ISO 178 [40], 
respectively. In addition to the mechanical tests, we also 
prepared sample discs for in vitro biocompatibility test at 
12 mm radius and 1.5 mm thickness, with a surface area 
of 1.02 cm2. These parameters were determined accord-
ing to ISO 10,993–5 [41], including the requirement of a 
ratio between the size of test sample and density of cell 
seeding. This study focuses on the mechanical and bio-
compatible comparison of post treated samples, thus the 
influence of complex sample geometry is not discussed.

We used an aluminium frame reinforced self-assembly 
deltabot ME 3D printer to manufacture PLA components 
for surface polishing experiments. We selected white PLA 
filaments with a 1.75 mm (Sunhokey-tec, Guangdong, 
China) as stock materials owing to their good thermal 
performance and environmentally friendly nature. During 
ME process, samples for mechanical testing were oriented 
flatly and for interlayer bonding were oriented vertically. 
Parameters were set as 195 ℃ extrusion temperature and 
60 ℃ bed temperature, 60 mm/s printing speed, 70% infill 
density and rectilinear infill pattern with double brim. In 
contrast, samples for biocompatibility testing were printed 
vertically and made in 100% solid infill to avoid hollow 
interior. All models were sliced at 0.25 mm layer thickness.

2.2 � Post processing using laser scanning

We used a 40 W laser scanning machine (King Rabbit HX-
40A, Shandong, P.R. of China) and a mechanical grinding 
machine to prepare the test samples. To achieve shallow 
melt regime on the surface, we used a set of the param-
eters of laser polishing treatment at 3 W output power, 
0.025 mm scan line gap, 30 ms delay between pulses, 
and 150 mm/s scan speed as previously described [35]. A 
square area that fully covered the sample was scanned by 
laser and each laser pulse scanned along the short side. 
Samples were post processed at all sides of faces. A 700 
grit sandpaper was applied with water as lubricant at a 
rotation speed of 150 r/min for mechanical surface grind-
ing. Although the manually controlled grinding pressure 
could hardly be quantified to a standard procedure, we 
optimised and set the grinding duration at 40–50 s/corre-
sponding side. A grinding depth of 0.25 mm was achieved 
at each side.

2.3 � Validation of surface roughness

A Wyko NT1100 optical profiler (Veeco, AZ, USA) was 
used to determine the surface roughness ( Sa ) (µm) of the 

ME-made PLA samples before and after post surface treat-
ment [42], shown below:

The effectiveness of the topography optimization was 
evaluated by the roughness reduction of surface (%), 
shown below:

An area of 1.3 × 0.9 mm2 that contained over 5 layers 
of waviness on each sample was scanned to calculate 
the overall surface roughness. The same area of scan was 
applied on measuring the grinded samples that had no 
obvious waviness.

2.4 � Mechanical properties

An Instron mechanical tester (Instron®4505, MA, USA) was 
employed for investigating tensile, compression and flex-
ure properties of the PLA parts at room temperature, 23 °C 
and 50% relative humidity according to the standards of 
ISO 527. To quantify mass loss during the laser polishing 
treatment, the samples were weighted before and after 
the post processing on an electronic balance with an accu-
racy of 0.0001 g. In tensile test, velocity was 5 mm/min and 
the specimen was loaded until it was broken with a load 
cell of 5 kN. In compression test, cross-sectional dimen-
sions after post processing were measured using a 50 kN 
load cell and velocity at 1.3 mm/min. We used the same 
load cell for flexural test at a speed of 2 mm/min. The 
three point bending method was used, with a load cell 
of 5 kN and a speed of 2 mm/min, to calculate the flexural 
modulus.

2.5 � Biocompatibility testing

We further investigated cytotoxicity of the various ME-
made PLA samples in vitro by culturing bone cells on 
their surface [41]. Three groups of PLA disks were used 
in this study, i.e. laser scanning polished, as-printed and 
mechanical grinded discs (control groups). Sample discs 
were immersed in deionized water for ultrasonic cleaning 
for 20 min, and irradiated with UV light for 30 min on each 
side for further use.

Human primary osteoblast cells (OBs), human osteoclast 
cells (OCs) and human Saos-2 cell line supplied by ECACC 
(Sigma, Melbourne, Australia) were used in in vitro cytotox-
icity test. The human primary OBs were derived from nor-
mal human trabecular bone specimens as we previously 
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described with mild modifications [8], with the permission of 
the Australia Capital Territory (ACT) Health Human Research 
Ethics Committee (Ref. ETH.9.07.865). To assess whether the 
different material discs influence on OB cell growth, the cells 
were seeded at a density of 5 × 103 cells per well in 1 mL of 
cell culture medium in 24-well plate containing discs. The 
cells were cultured at 37 °C, 5% CO2 for 3 days before were 
measured for cell density. The experiments were performed 
at triplicates in each sample group. At the end point, the 
cells were washed, trypsinized, and resuspended in cold PBS. 
The cells were counted using Vi-CELL™ Cell Viability Analyser 
(Beckman Coulter, IN, USA). Cell numbers represented the 
quantity of surviving cells on each disc.

The human OCs were induced from “buffy coat” (a 
42-year-old male volunteer) provided by Australian Red 
Cross Blood Service with approval from Human Research 
Ethics Committee of Australian National University (Ref. 
2014/253). Peripheral blood mononuclear cells (PBMCs) 
were separated from the buffy coat as we descripted previ-
ously [43], and approximately 2.5 × 105 cells were placed 
in a well of 12-well plate containing the sample disc in 
1 mL of OC conditional culture medium. The medium is a 
α-MEM based with supplements of 10% FCS and antibiot-
ics, 10 × 10–9 M dexamethasone Sigma-Aldrich, Australia), 
25 ng mL-1 human M-CSF (Merck Millipore, Australia), and 
10 × 10–9 M 1,25(OH)2D3 (Sigma-Aldrich, Australia). Cell 
culture medium was refreshed every 2 days. The OC induc-
tive medium supplemented with recombinant human 
RANKL (Merck Millipore) at 50 ng mL-1 was used and the 
induced OCs were measure at the day 8 of culture. In the 
Vi-CELL™ Cell Viability Analyser, we set 70 µm filter for cells 
selected as induced matured/prematured OCs. Three inde-
pendent experiments were performed by two independ-
ent researchers.

2.6 � Statistical analysis

Experimental data were analysed using software Graph-
pad Prism7.0 (GraphPad Software, Inc. CA, USA). Student 
t-test was performed to analyse differences between two 
means in the experiments. Data is Gaussian distribution 
without equal standard deviations (SDs) for unpaired com-
parison. Welch’s correction was applied. The statistical sig-
nificance was set at p ≤ 0.05. Three to six replicates of each 
experiment were performed.

3 � Results and discussion

3.1 � Surface morphologies of post treatment

Surface roughness of FDM-made PLA samples polished by 
laser scanning and grinding are shown in Table 1. The laser 

scanning reduced 47% surface roughness and the grind-
ing 94%. We noted that the surface roughness reduction 
was not as much as that on laser polishing metal material, 
laser treatment of polymer still has great potential when 
it attract more researchers. The profiles of cross-sectional 
surfaces are shown in Fig. 2. As-printed PLA surface and 
laser treated surface present a heterogeneous character. 
We noted that laser scanning evaporated a thin layer of 
surface material in Figs. 2a, b. We further measured the 
height difference of a single layer between as-printed 
area and laser scanned area in Fig. 2c, the later showed 
a surface roughness at 9.78 µm. We found that the laser 
evaporated area declined 24.18 ± 4.28 µm compared to 
that of as-printed (n = 5 per group). The result indicates 
that parameters of laser polishing treatment that we set 
for this project induced ignorable material evaporation.

In this study, only the flat surfaces were laser treated 
due technology and equipment limitation. Studies 
reported successful applying laser surface treatment onto 
curved or complex surface geometry. We planned further 
investigation about the influence of different sample 
geometries on laser polishing outcome [44, 45]. It worth 
to note that a sample at high area-volume ratio may not 
be suitable to apply laser processing method to improve 
the surface quality, such as lattice structure. Although the 
geometry is rare in surgical guide design, an alternative 
surface treatment method might be required, such as 
vapour smoothing [28].

3.2 � Influence of laser polishing on tensile stress

Slight weight reduction is a common phenomenon after 
post surface processing. In this study, we measured the 
weight of samples from all groups and found that both 
laser and grinding treatments reduced the weight of sam-
ples as showed in Table 2. Next, we compared the tensile 
properties of laser treated samples to that of as-printed 
and grinded samples as showed in Table 2. There was no 
significant difference in tensile strain and Young’s modulus 
at break in the samples post processed either using laser 
polishing or grinding when compared with the as-printed 
samples. Even though the weight of samples was reduced 

Table 1   Surface roughness of samples with different post treat-
ments

Data represent mean of 3 replicates, ± SD

Surface type Surface roughness ((µm) Roughness 
reduction 
(%)

As-printed 14.42 ± 2.55
Laser treated 7.68 ± 0.65 47
Grinded 0.88 ± 0.18 94
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by laser treatment from 7.52 to 6.98 g (7.18%), the ulti-
mate tensile stress (UTS) was not significantly influenced 
(p > 0.05).

Technical schematic diagrams are presented in Fig. 3a, 
which demonstrates samples geometry, post treated 
faces, and force direction. The stress–strain curves of the 
as-printed, laser treated, and grinded samples are shown 
in Fig. 3b and experimental setup is presented in Fig. 3c. 

The morphologies of interlayer breaks are shown in Fig. 3d. 
The laser treated samples had slightly higher UTS than that 
of the grinded samples at break as presented by red and 
blue curves, respectively, in Fig. 3b. Our results suggested 
that the tensile performance is, to some extent, related 
to the thickness of outer shell of sample. This is agreed 
with the results by Bagsik et al. who found that the tensile 
stress of samples build up in the side direction were higher 

Fig. 2   Surface profile. a surface 
roughness, images taken 
from inverted microscope; b 
Quantitative measurement of 
surface waviness of 3D printed 
samples under different post 
treatment; c Surface profile of 
the peak of a layer

Table 2   Summary of weight and tensile test

UTS, ultimate tensile strength; Data represents mean ± SD of triplicates; p test groups compared to as-printed group

Weight (g) p UTS
(MPa)

p Strain at UTS (%) p Young’s 
modulus 
(GPa)

p Transverse young’s 
modulus(GPa)

p

As-printed 7.52 ± 0.04 28.47 ± 1.30 2.53 ± 0.46 1.15 ± 0.23 0.76 ± 0.12
Laser treated 6.98 ± 0.01  < 0.01 26.36 ± 2.24 0.25 2.25 ± 0.24 0.41 1.18 ± 0.11 0.87 0.75 ± 0.12 1.00
Grinded 6.23 ± 0.12  < 0.01 21.94 ± 2.10 0.02 2.21 ± 0.16 0.35 0.99 ± 0.04 0.35 0.99 ± 0.06 0.06

Fig. 3   Tensile test. a Schematic 
of tensile test; b Stress–strain 
curves of FDM specimens 
with different post processing. 
Grinded samples had lower 
ultimate tensile stress at all the 
three repeats; c The experi-
mental setup of tensile; d SEM 
images of the morphologies 
of the edges at the break 
interlayer
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than the one build up in the flat direction [46]. The higher 
tensile stress may also be a result of more build-in shell 
material along the force direction. This is also ascribed 
to the low adhesion strength between layers. Further 
interlayer bonding experiments validated that a more 
uniformed surface makes the object less likely to break at 
the binding interface between layers, i.e. isotropic surface 
at low surface roughness. In Fig. 3d, the as-printed sample 
showed clear border where layers bonded and then broke 
along. The laser treated sample had flatter waviness, and 
the border was less clear, but the stress concentration was 
not reduced. As shown in Table 2, there was no difference 
between as-printed and laser treated samples (p = 1.00), 
and between as-printed and grinded samples (p = 0.06). 
The raster infill structure can be improved in the software 
algorithm to change the mechanical property to be suit-
able for a specific load bearing task [47]. It is worth to note 
that comparing to the strength of polypropylene which 
is also widely applied in medical device fabrication, laser 
treated ME-made PLA samples showed 19.82% higher 
UTS than that of pure polypropylene samples [48]. This 
provides supporting evidence to the potential of the pro-
posed surgical guide application.

3.3 � Laser polishing achieved favourable 
compressive stress

To understand the mechanisms that laser treatment 
achieved a favourable compressive stress, we further 

investigated the factors, which could be related to com-
pressive stress, such as weight, deformation morpholo-
gies of samples’ surface, and infill density. Both post treat-
ments generally reduced the ultimate compressive stress 
(σB) compared with that of as-printed samples as shown 
in Fig. 4b. As we can see from Table 3, the samples in as-
printed group presented the maximum stress. The reduc-
tion of maximum σB might due to the weight loss during 
the post processing. The dimensional reduction by surface 
treatment reduced cross-sectional area. However, it was 
not sufficient to compensate the decline of compressive 
stress. This might be an explanation of the σB reduction. In 
addition, there was no statistically significance difference 
between groups on compressive strain when the samples 
were broken (p > 0.05), regardless of whether the samples 
were with or without post processing.

Interestingly, we also noted that the deformation 
morphologies of the samples are different as shown in 
Fig. 4c. In addition to the Young’s Modulus of interlayers 
that the anisotropic surface is lower than the isotropic 
surface, this is a further evidence of weak adhesion 
between the layers when there was no solid infill den-
sity. Compressive behaviour in this study is also differ-
ent from that of a solid material test reported by other 
researchers [46], in which a break caused by shear strain 
can be found. This is because our study reduced infill 
density from 100% solid to 70% to fabricate the samples, 
which consumed a shorter manufacturing time.

Fig. 4   Compression test. a 
Schematic of compression test; 
b stress–strain curves of FDM 
specimens with different post 
processing; c Different com-
pressive break morphology 
of specimens before and after 
post treatment. More cracks 
were generated on rougher 
surface at layer bonding area. 
Cracks were evenly distributed 
between layers
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3.4 � Influence of post treatment on flexure stress

We further analysed differences in flexural modulus, flex-
ural stress and flexure strain of ME-made PLA samples 
post treated using laser and grinding. The laser treated 
samples demonstrated similar results to the as-printed 
samples in the flexure test, while the grinded samples 
exhibited brittle fracture in Fig.  5b. As presented in 
Table 4, laser treated samples showed no difference in 
all parameters compared with those of as-printed sam-
ples at break (p > 0.05). The grinded samples reached 
brittle fracture as we reported in the last section, but 
the weight reduction in the samples grinded was in an 
acceptable range (5%).

However, there is no significant increase on flexure 
strain at break when samples were post grinded, which 
was calculated from the deflection correspondent to the 
maximum load. As shown in Fig. 5b, we noted that the 

stress–strain curves of grinded samples (blue curves) 
declined dramatically at a short deflection. We infer that 
the heterogeneity surface, surface at high roughness in 
this study, reduces the overall rigidity of PLA samples. 
Therefore, we can conclude that the smoother surface 
influenced on the flexural capacity of object.

3.5 � Laser polishing had less reduction 
of mechanical properties

There is no statistical difference in Young’s Modulus, flex-
ural modulus, and flexure stress at break. Grinding reduced 
tensile stress and compressive stress with deformed sam-
ples, and laser treatment reduced compressive stress at 
break. We calculated the reduction of mechanical proper-
ties from Table 2, 3, 4. Among all mechanical tests of laser 
treated samples, a maximum of 17.24% stress reduction at 
break was found (compression from 16.02 to 13.26 MPa), 
with an average reduction of 9.40%. Ultimate compres-
sion stress was sensitive to the post laser treatment that 
has statistical reduction (p < 0.05). Tensile strength and 
flexure property on average only reduced 7.41% from 
28.47 to 26.36 MPa and 3.56% from 56.89 to 54.87 MPa 
after laser processing, respectively. In comparison, grind-
ing reduced 16.30% ultimate compressive stress from 
16.02 to 13.41 MPa (p > 0.05), 22.95% UTS (from 28.47 to 
21.94 MPa), and 6.00% flexural stress at break from 56.89 
to 53.48 MPa, which on average 5.68% lower than that of 
laser polished samples.

We infer that the post surface treatment made the 
object more likely to break under compression, and vary-
ing material weights might significantly influence the ten-
sile property. However, the resistance to deformation was 
statistically no difference as shown in all strain analyses. 

Table 3   Summary of weight 
and compression test

Data represents mean ± SD of triplicates; p test groups compared to as-printed group

Weight (g) p Ultimate compres-
sive stress (MPa)

p Compressive strain 
at break (%)

p

As-printed 3.21 ± 0.03 16.02 ± 0.73 5.72 ± 0.74
Laser treated 2.99 ± 0.01  < 0.01 13.26 ± 0.73 0.01 4.35 ± 0.59 0.38
Grinded 2.96 ± 0.08 0.02 13.41 ± 2.22 0.17 4.95 ± 1.28 0.81

Fig. 5   Flexure test. a Schematic of flexure test; b Stress–strain 
curves of ME specimens with different post processing. There is no 
statistically significant difference, but grinded samples exhibited 
brittle fracture

Table 4   Summary of weight 
and flexure test

Data represents mean ± SD of triplicates; p test groups compared to as-printed group

Weight (g) p Flexure stress 
at break (MPa)

p Flexure strain 
at break (%)

p Flexural 
modulus ( 
GPa)

p

As-printed 2.70 ± 0.05 56.89 ± 3.76 3.99 ± 0.29 1.32 ± 0.08
Laser treated 2.70 ± 0.02 0.88 54.87 ± 5.54 0.63 4.04 ± 0.06 0.76 1.21 ± 0.17 0.37
Grinded 2.56 ± 0.03 0.02 53.48 ± 1.50 0.25 4.41 ± 0.11 0.12 1.25 ± 0.01 0.24
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It was reported and experimentally validated that the 
E-modulus value of ME-made PLA falls within the range 
of trabecular bone (0.76–10 GPa) and within the lower 
limit of cortical bone (3.3–20GPa) [49]. The stiffness of PLA 
was also suitable for maxillofacial applications [14]. For a 
surgical guidance that requires geometrical accuracy, we 
recommend to use laser scanning as a post treatment for 
a better surface quality. However, if tensile functionality is 
primarily desired, it is more suitable to use an as-printed 
object without surface treatment, as long as a smooth sur-
face is not highly required. A more accurate conclusion 
might be gained by expanding the sample size in further 
study.

3.6 � Laser polishing demonstrated preferable 
biocompatibility

We next investigated the influence of laser polishing on 
the biocompatibility of ME-made PLA samples. After being 
cultured for 3 days, the cell densities of primary OB cells 
were analysed and compared among groups. As presented 
in Fig.  6a, although a slightly higher cell density was 
observed in laser scanning group than that of as-printed 
and grinding groups, there was no statistical significance 
when the laser scanning group was compared to the as-
printed and the grinding groups (p = 0.489 and p = 0.401, 
respectively). From Fig. 6b, we observed that the laser 
scanning group has no statistically significant influence 
on Saos-2 cell proliferation compared to the as-printed 
(p = 0.058) and grinding (p = 0.084) groups. In contrast, 
analysis based on the cell density revealed a significant 
decrease in Saos-2 cells on the surface of grinded samples 
compared to that of as-printed samples (p < 0.05), which 
might be owing to the surface roughness of grinded sam-
ples. These results demonstrate that the samples treated 
by our designed laser processing parameters are favour-
able to the growth of bone forming cells. Figure 6c pre-
sents the influence of samples tested on the maturation 

of human OC cells. The laser scanning group showed no 
inhibition in the maturation of primary OCs compared 
to as-printed and grinding groups (p = 0.074 and 0.992, 
respectively). Those results provide evidences support-
ing our hypothesis that surface roughness of laser post 
treated PLA has no toxic effect on either OB or OC cells. The 
material surface which possesses such a biocompatibility 
is ideal for use as an intra-operative guidance material in 
trauma and orthopaedic surgeries.

4 � Conclusion

We developed a laser surface scanning for the post pro-
cessing on ME-made PLA samples and demonstrated that 
the processed PLA samples exhibited good mechanical 
properties and favourable biocompatibility. Although 
no conclusive report, by our knowledge to date, has sug-
gested laser method would be applied to the post surface 
polishing on the ME-made PLA objects, laser post process-
ing can be a useful option to decrease the processing time 
in fabricating surgical guides for orthopaedic surgery.

We are planning to conduct further study on validating 
more properties of laser treated ME samples using differ-
ent characterizing strategies, and comparing the outcome 
to other post treatment methods.
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