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Abstract
Seasonal precipitation forecasting is one of the most challenging tasks in stochastic hydrology. This article proposes a 
new ensemble model, called EGP, to a season-ahead forecast of total seasonal precipitation. The EGP integrates evolution-
ary genetic programming (GP) and gene expression programming (GEP) techniques with multiple linear regression to 
increase forecasting accuracy of standalone GP and GEP models, while it secures their explicit structure. The EGP model 
was trained and validated using 88 years (1930–2017) of measured precipitation data from Muratpasa Station, Antalya, 
Turkey. The model performance was evaluated in terms of different statistical error measures and cross-validated with 
two other ensemble models as well as the state-of-the-art random forest developed in this study as the benchmark. 
The results showed that the proposed model can increase the forecasting accuracy of the best standalone GP and GEP 
models up to 30%. The EGP was also found to be superior to random forest, particularly in predicting low and high 
seasonal precipitation amount. This model is explicit, easy to evolve, and therefore, motivating to be used in practice.

Keywords Precipitation · Genetic programming · Seasonal forecast · Gene expression programming · Multiple 
regression · Random forest

1 Introduction

It is expected that the recent increase in the concentration 
of atmospheric carbon dioxide and global temperature will 
have a significant impact on precipitation patterns in both 
global and regional scales [1, 7, 40]. Like the other water 
cycle components, the precipitation process is highly com-
plex owing to the stochastic attributes of its triggering fac-
tors, such as temperature, wind speed, and humidity. The 
level of uncertainty in precipitation forecasting is signifi-
cantly higher than the other water cycle components such 
as temperature and streamflow [19, 38]. Consequently, the 
problem has been addressed in a variety of recent studies 
(e.g., [8, 22, 33, 39]). Many efforts have been made over 
the past decades to model precipitation patterns at spe-
cific locations. Using the theory of Markov chains and clas-
sic statistical models, observed precipitation series have 

been used to model and predict precipitating in different 
lead times [12, 43]. However, they are not well enough for 
long-lead-time forecasting owing to the highly nonlinear 
structure and presence of non-stationarity in the monthly 
or seasonal rainfall series [10, 15]. Nowadays, emerging 
artificial intelligent (AI) techniques such as artificial neural 
networks (ANNs), support vector machine (SVM), extreme 
learning machines, and genetic programming (GP) are 
from the AI techniques that were used for precipitation 
forecasting (e.g., [2, 11, 24, 34]). However, the techniques 
were criticized as a black box and the results were not pre-
cise enough, particularly in the predictions of drizzles or 
heavy rainstorms [25].

To increase predicting accuracy, the current pertinent 
literature showed an increasing trend in the implemen-
tation of hybrid AI models that combine different data 
pre- or post-processing approached with one or more AI 
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techniques ([14, 18, 20, 32, 41, 44]. For example, Sivapra-
gasam et al. [35] and Chau and Wu [4] coupled singular 
spectrum analysis with SVM and showed the hybrid model 
may perform better than ad hoc SVM and ANN for rainfall 
forecasting. In a recent study, Danandeh Mehr et al. [9] 
confirmed that the firefly optimization algorithm can be 
used to determination of SVM parameters and increase 
its predictive accuracy. More recently, Yaseen et al. [42] 
hybridized an adaptive neuro-fuzzy inference system 
model with the evolutionary algorithms including particle 
swarm, genetic algorithm, and differential evolution. The 
capability of the proposed hybrid models for precipitation 
forecasting was compared with the conventional neuro-
fuzzy model. The results showed that all the hybrid models 
are suitable to improve the neuro-fuzzy inference system; 
however, the particle swarm optimization was superior.

Although the above-mentioned hybrid AI models may 
provide higher prediction accuracy than standalone ones, 
they are still black boxes possessing a complicated model 
structure in most cases. These are two main factors that 
caused demotivation for practitioners to apply such hybrid 
models in practice. Thus, additional efforts are needed 
to address the key issues of accuracy and complexity in 
precipitation forecasting models. The aim of this study is, 
therefore, to develop a new hybrid model that meets both 
precision and simplicity conditions. To this end, several lin-
ear and nonlinear integrations of GP and gene expression 
programming (hereafter GEP) are examined. The main 
contributions of this study are threefold. First, the present 
study, for the first time, investigates predictive capabili-
ties of standalone GP and GEP for seasonal precipitation 
forecasting. These are emerging AI techniques with explicit 
tree structures typically known as grey-box techniques 
[16]. Thus, they overcome the ultimate black box feature 
of earlier models. Second, this study integrates linear and 
nonlinear regression techniques to develop an ensem-
ble model that prioritizes both predictive accuracy and 
model simplicity. The proposed method can be used to 
forecast seasonal precipitation with an explicit tree struc-
ture. Finally, this is the first study that compares the ability 
of GP- and random forest (RF)-based models for long-term 
precipitation modeling. RF is a robust regression and clas-
sification technique that was considered as the benchmark 
in this study.

2  Study area and data preparation

The Antalya Province with a population of more than two 
million is located on the Mediterranean coast of southwest 
Turkey, between the Torus Mountains and the Mediterra-
nean Sea (Fig. 1a). Modern precipitation measurement in 
Antalya has been commenced since 1929. The data used in 

this study are from Muratpasa station (36.9063 N, 30.7990 
E) located in Antalya downtown (Fig. 1b, c). The daily pre-
cipitation data from January 1, 1930, till December 31, 
2017, were collected from the Turkish State Meteorologi-
cal Service and used in this study.

The mean monthly precipitation for the period of 
1930–2017 is depicted in Fig. 1d. Because of a pronounced 
variation in the mean monthly precipitation, conventional 
autoregressive time series modeling approaches could 
not be a wise choice for long-term precipitation forecast-
ing in the Muratpasa station. This implies the Mediter-
ranean climate that prevails in Antalya with hot and dry 
summers and wet autumns, winters, and springs. From a 
meteorological perspective, summer precipitations in the 
region are generally convective with high intensity and 
short duration. Significant differences in the seasonal dis-
tribution of the number of rainy days are also observed. 
While the long-term average of rainy days in the summer 
is about 4.0 days, the corresponding numbers for winter, 
spring, and autumn are 34, 22, and 15 days, respectively 
[5]. Owing to such a significant difference in the precipita-
tion pattern between summer and wet seasons, this study 
aimed at the modeling and forecasting seasonal precipita-
tion at wet seasons (autumn, winter, and spring) in which 
the evolved models merely uses historical data from the 
wet seasons. From a modeling point of view, this strategy 
may yield in the elimination of abundant zero values from 
the input vectors (predictors) and consequently will lead 
to more precise predictions for wet seasons. There are 
88-year observed data with a total of 352 (88 × 4) seasons. 
Hence, this study is based on 264 (88 × 3) seasons. Time 
series plot of the observed total seasonal precipitation 
(TSP) and their statistical characteristics are presented in 
Fig. 2 and Table 1, respectively. For information about the 
socioeconomic development of the Antalya Province, the 
interested reader is referred to the recent paper by Özku-
bat and Selim [30].

3  Methodology

3.1  Determination of optimum predictors

Determination of optimum inputs is an important task in 
any system identification or hydrological modeling prob-
lem that dictates the accuracy/complexity of evolved mod-
els. In previous studies, different input combinations were 
examined via trial and error method to determine suitable 
predictors (e.g., [28, 42]). However, this is time-consuming, 
and the modeler might not achieve the best inputs if it 
is not considered as the potential predictor in advance. 
In this study, the autocorrelation function (ACF) and par-
tial autocorrelation function (PACF) of the TSP series were 
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considered to determine optimum inputs (Fig. 3). The sea-
sonal oscillation pattern is seen in the ACF diagram. As 
expected, the partial correlation markedly decreased after 

nine lags. These patterns point to the selection of nine lags 
as expressed in Eq. (1). The structure optimization features 

Fig. 1  Location of the Antalya Province (a), meteorology station (b, c), and mean monthly precipitation for the period 1930–2017 (d)
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of GP, GEP, and RF are used to select the most effective 
inputs in the present study.

where Pt is TSP amount at the season t.

(1)Pt = f
(
Pt−9, Pt−6, Pt−3,, Pt−2, Pt−1

)
,

3.2  Multiple linear regression (MLR)

The MLR is the advancement for linear regression method 
in which the dependent variable (Pt) is linearly regressed to 
the selected five lagged TSP values as shown in Eq. (2). The 
m-values are coefficients corresponding to each param-
eter, and b is a constant value. Indeed, the attained equa-
tion is a straight line that best fits the TSP data and can be 
used to predict the target value based on unseen inde-
pendent variables within their initial ranges. The unknown 
coefficients and the constant value can be calculated using 
the “least squares” method. The task can be easily done 
using the LINEST function in MS Excel.

(2)
Pt = m1Pt−9 +m2Pt−6 +m3Pt−3 +m4Pt−3 +m5Pt−1 + b.

Fig. 2  Total seasonal precipitation observed in Antalya, Turkey

Table 1  Statistical characteristics of the total seasonal precipitation 
observed in rainy season at Antalya during the 1930–2017 period

Season Mean (mm) Minimum 
(mm)

Maximum 
(mm)

Standard 
deviation 
(mm)

Autumn 221.8 11.4 925.5 167.6
Winter 663.9 92.1 1744.6 301.2
Spring 178.7 21.8 611.4 95.6

Fig. 3  Correlogram of the observed total seasonal precipitation
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3.3  Overview of classic GP

GP [21] is an emerging evolutionary AI technique fre-
quently used for symbolic regression problems. The best 
solution is an individual computer program which gener-
ated on the basis of the principle of the survival of the 
fittest [36]. In classic GP, each individual has a form of a 
tree, called the genome. For example, Fig. 4 represents 
a genome and corresponding mathematical equation 
encompassing a root node (addition), inner nodes of 
multiplication and addition, and terminal nodes of the 
independent variables (x1 and x2) and random numbers 
(R1 and R2). Each node in a genome accepts only a specific 
type(s) of elements. While the root node merely accepts 
a function (logical, mathematical, etc.), the inners can 
be fill by a function or independent variables. Therefore, 
creating a set of appropriate functions and variables is of 
the most important tasks of the GP modelers. In order to 
avoid overfitting problem and keep away from intricate 
solutions, use of low depth genomes has been suggested 
[17]. A wise decision on these factors not only supports 
the algorithm to achieve more accurate solutions but also 
reduce computation cost.

To solve a regression problem using GP, the algorithm 
starts with the formation of the initial population of 
potential solutions using the modeler defined functions/
variables. The individuals that show better fit between 
the dependent and independent variables are consid-
ered as parents to produce offspring. Typically, three evo-
lutionary operators including Reproduction, Crossover, and 
mutation are acted on the parents [6]. The reproduction 
is the relocating the best individual into the new set of 
offspring without any transform. The process commences 
with the goodness of fit assessment of initial programs 
and ceases after the identification of the best fitted one. 
The crossover is the exchange of branches/nodes between 

two high-performance individuals that results in two off-
spring [6]. Figure 5 illustrates the process in which a branch 
of parent 1 (red nodes) is replaced with a branch of parent 
2 (blue nodes). The offspring are solutions that possess 
the genetic materials of their parents. Many studies have 
shown that offspring fit to the training set better than their 
parents [16]. As illustrated in Fig. 6, the mutation is the 
random change of branches/nodes (i.e., genetic materi-
als) in a single parent at the mutation point. In the figure, 
the branch x1 × sin x2 in the parent was replaced with the 
randomly created Log x2 in the offspring. All the above-
mentioned operations are repeated till an individual dis-
plays the desired level of accuracy in both training and 
holdout testing data sets.

3.4  Overview of GEP

GEP is a GP variant that uses fixed-length linear genome, 
aka chromosomes, to represent computer programs in the 
form of expression trees [13]. It is trained with the same 
evolutionary process acting on a population of initial 
chromosomes of different sizes and shapes. The parents 
are selected according to fitness and genetic operators 
are implemented to improve their fitness. A linking func-
tion (e.g., addition, multiplication, etc.) is used to join the 
evolved offspring and the best model is selected among 
the joint expressions. An example of a linear GEP chromo-
some and associated mathematical function is presented 
in Fig. 7. The chromosome has four types of functions 
( Sin,+,−,×,÷ ) and four terminals (X1, X2, 3, 2), where X1 
and X2 are the input variables, and 3 and 2 are random 
numbers. the multiplication function between the paren-
thesis (i.e., sub-ETs) is called linking functions.

As illustrated in Fig. 7, the chromosome comprises two 
parts: the head (blue panel) which can take members from 
both functions and terminals, and the tail (green panel) 
which is formed merely with terminals. According to Fer-
reira [13], the length of the head h is chosen by the mod-
eler, and then Eq. (3) is used to determine the length of 
the tail length t.

where n is the maximum arity of all predefined functions. 
For details about evolutionary operations in GP and GEP, 
the reader is referred to Danandeh Mehr et al. [6].

3.5  The proposed ensemble genetic programming 
(EGP) model

The proposed EGP is a hybrid model (Fig. 8) that aimed 
at increasing the accuracy of standalone classic multi-
ple and symbolic evolutionary regression models. While 

(3)t = h × (n − 1) + 1,

Fig. 4  A tree-shaped genomes and corresponding mathematical 
representations
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Fig. 5  An example of crossover operation

Fig. 6  Mutation operation acts on a GP chromosome
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the standalone regression models map the dependent 
variables to the independent variable using either the 
method of least squares or evolutionary optimization 
technique, the new model improves the predictive 
accuracy through the combination of both tools. As 
illustrated in Fig. 8, the proposed model includes three 
stages of data preparation (Stage 1), standalone mod-
eling (Stage 2), and ensemble modeling (Stage 3).

In the first stage, the historical data are gathered and 
preprocessed to determine input/output time series and 
to feed the standalone regression models. A classic linear 
regression model (i.e., MLR) together with two symbolic 
regression models (i.e., GP and GEP) was individually 
evolved to forecast Pt in the second stage. Finally, in the 
third stage (i.e., ensemble modeling unit), the results 
(outputs) obtained from the standalone modeling unit 
were integrated through three ensemble methods; (1) 
ordinary arithmetic mean, (2) linear ensemble, and (3) 
nonlinear ensemble techniques that, respectively, yields 
in ensemble mean model (Eq. 4; hereafter EMM), ensem-
ble linear model (Eq. 5; hereafter ELM), and ensemble 
nonlinear model in which a classic GP is trained and veri-
fied to figure out optimum nonlinear structure (Eq. 6; 
hereafter EGP) for a season-ahead TSP forecasting.

where Pt  is the ensemble model estimation, i represents 
the number of training data at each input/output vectors. 
The mj (in the present study j = 3) and c are, respectively, 
the weights of every single model and the constant com-
ponent of the multivariable linear ensemble model. The 
optimum weights and constant are calculated by the least 
squares method via a multiple linear regression analysis 
in this study. Previous studies have proven that ensemble 
use of the outputs of several models improves the model 
accuracy [29, 36].

3.6  Overview of random forest (RF)

The RF [3] is an advancement of the conventional decision 
tree algorithm that refers to the creation of a set of ran-
dom decision trees based on a random subset of variables 

(4)Pt =
1

3

∑
(PtMLR(i) + PtGP(i) + PtGEP(i))

(5)Pt = m1PtMLR(i) +m2PtGP(i) +m3PtGEP(i) + c

(6)Pt = f
(
PtMLR(i), PtGP(i), PtGEP(i)

)
,

Fig. 7  An example of GEP chromosome representing 
(
Sin

(
X
1
+ X

2

)
− X

1

)
2X2

X1

Fig. 8  Schematic of the proposed EGP model for seasonal precipitation forecasting
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from the bootstrapped data set. In RF, a wide variety of 
random trees are created that makes the algorithm more 
effective than traditional decision trees. To predict a tar-
get variable, the corresponding features are taken and run 
them down all the created random trees. Then, voting is 
done among the outputs to see which alternative received 
more votes. This strategy has been proven that performs 
well in both classification and regression problems and 
is robust against overfitting [26]. Therefore, the approach 
is selected as a benchmark in this study. For the funda-
mentals of RF and its applications in water resources, the 
reader is referred to the review paper conducted by Tyralis 
et al. [37]. Details of RF created for seasonal precipitation 
forecasting are presented in the results section.

3.7  Performance evaluation

To validate the models’ performance, Nash–Sutcliffe effi-
ciency (NSE), root mean squared error (RMSE), and mean 
absolute percentage error (MAPE) measures were used in 
this study. These indicators are commonly used for the jus-
tification of hydrological models (e.g., [23, 26])

where Xobs
i

 is the observed TSP, Xpre

i
 is the TSP calculated 

by the models, and n is the number of samples.

4  Results

In this section, at first, the results of standalone modeling 
via MLR, GP, and GEP techniques are provided. Then, the 
outcomes from the ensemble modeling stage and dis-
cussion on different models are presented. The ensemble 
models are finally compared with an RF model developed 

(7)NSE = 1 −

∑n

i=1
(Xobs

i
− X

pre

i
)2

∑n

i=1
(Xobs

i
− Xobs

mean
)2

(8)RMSE =

�
∑n

i=1
(Xobs

i
− X

pre

i
)2

n

(9)MAPE =
1

n

n∑

i=1

|||
||

Xobs
i

− X
pre

i

Xobs
i

|||
||
,

as the benchmark. It is worth mentioning that two soft-
ware packages, namely GPdotNET [16] and GeneXproTools 
[13] were applied in this study to evolve the GP and GEP 
models, respectively. Both tools were trained and tested 
with the same input/target sample size, fitness function, 
and terminal sets. The best RF model was generated using 
RapidMiner Studio software.

In the evolution of AI models, particularly GP and GEP, 
dimensions and range of the inputs must be carefully 
adjusted before training the models [36]. As suggested 
by Tür [36], to achieve dimensionally truthful models, the 
TSP values were normalized into the range [0.1 and 0.9] 
using Eq. (10). Therefore, all the results presented in this 
paper are normal values.

4.1  Results of standalone linear and nonlinear 
models

Table 2 presents the efficiency results of the best evolved 
MLR, GP, and GEP models. The corresponding explicit 
expressions are also presented in Eqs. (11–13), respectively.

According to the efficiency results, the GEP model 
provides the highest accuracy comparing to its counter-
parts both in the training and testing periods. The stan-
dalone GP model is also superior to the MLR. This is not a 

(10)Pnt = 0.8 ×
Pt − Pmin

Pmax − Pmin

+ 0.1.

(11)

Pt = 0.271Pt−9 + 0.206Pt−6 + 0.205Pt−3

− 0.16Pt−2 − 0.155Pt−1 + 0.159

(12)

Pt = (((cos((((tan(Pt−9)) × (0.38016 − 0.38831))

× (cos((Pt−1 − 0.5559)))))) × (sqrt((Pt−9

× (sqrt((Pt−6 × Pt−3))))))) ∗ (cos((Pt−9

× (sqrt((Pt−9 × (0.38016∕0.38831))))))))

(13)

Pt = [(0.0064((exp((0.2418∕Pt−3))
2) × 0.2418))2]

+ [(0.76122) × (cos
((
Pt−6 + Pt−3

))
× (

(
0.4608Pt−6

)

+ Pt−3))] + [((cos
(
Pt−9

)
× cos

(
Pt−6

)
) × (

(
0.1566Pt−9

)

+ Pt−6)) × Pt−9].

Table 2  Performance indices 
calculated for the standalone 
models

Models Training set Testing set

RMSE NSE MAPE RMSE NSE MAPE

MLR 0.091 0.529 0.284 0.127 0.289 0.341
GP 0.089 0.543 0.287 0.111 0.462 0.317
GEP 0.086 0.575 0.287 0.107 0.500 0.337
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surprising result as the former uses a nonlinear structure 
having more complicated functions which indicate the 
complex relationship between the TSP and its antecedent 
values. From a model complexity perspective, the evolved 
GEP model is the most complex one as it uses more func-
tional nodes. To further assess the models, the scatter plots 
of forecasts vs observations are presented in Fig. 9. Accord-
ing to the figure, MLR overestimates the lower TSP values 
in the testing period. By contrast, the GP underestimates 
the corresponding values. Comparing to the MLR and GP 
results, the observed experiments and corresponding GEP 
estimations are distributed more closely to the 1:1 line 
indicating its superiority.

4.2  Results of ensemble models

As previously mentioned in the ensemble modeling unit, 
the results of the MLR, GP, and GEP models are combined 
through two linear and one nonlinear schemes. Thus, the 
ensemble results are not sensitive to the limits of a stan-
dalone regression model. To attain optimum linear and 
nonlinear ensemble models in this stage, a new MLR and 

GP models are developed using the results of standalone 
models as the inputs. As in the standalone GP, the GPdot-
NET package was used in this stage where the algorithm 
was trained to minimize RMSE as the fitness function and 
the maximum depth of genes and best functions were 
obtained via a trial–error process.

The evolved ensemble GP models were also compared 
with the RF model developed as the benchmark in this 
study. Like ensemble GP models, RF is an ensemble of 
several tree structures. Here, several RF models were 
generated and the best one was selected. To this end, 
several random trees in the range of 2 to 1000 were gen-
erated with varying depth within the range 5 to 15. For 
each tree, a subset of examples was selected via boot-
strapping and optimized with regard to the least square 
error criterion. The trials showed that the best model 
is attained with 50 trees, each of which has a depth of 
five. The results showed that a higher number of trees or 
depths increases the model performance in the training 
set insignificantly and no improvement occurred in the 
validation data. Table 3 compares the efficiency results 
of the best evolved EMM (Eq. 14), ELM (Eq. 15), and EGP 
(Fig. 10) models with the best evolved RF model.

Fig. 9  Scatter plots of the standalone model forecasts versus observed normalized TSP in the training (top panel) and testing (bottom 
panel) periods
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According to the results, the EGP performed better than 
the other ensemble models in terms of all the statistical 
efficiency measures. The improvement was more notice-
able when the testing samples were considered. The EGP 
with the training (testing) NSE of 0.73 (0.67) is much more 
powerful in TSP forecasting than the ELM (EMM) model 
with NSE of 0.61 (0.56) and 0.57 (0.47), respectively. These 
values indicate that EGP is 20% and 28% superior to the 
ELM and EMM models, respectively. Comparing to the 
state-of-the-art RF model, the results indicated the supe-
riority of the proposed ensemble EGP model. Lower gener-
alizability of the RF was found as its main drawback in this 
study. As illustrated in Fig. 10, the EGP can be expressed in 
a single tree structure; however, the best RF, which is the 
combination of 50 trees, cannot be shown in a single tree.

Figure 11 exhibits the scatter plots of the ensemble 
models vs observed normalized TSP. As seen in the scatter 
plot, the EGP forecasts are closer to the 1:1 line that could 
predict the TSP better than the ELM and EMM models. 

(14)Pt =
(
Pt_MLR + Pt_GP + Pt_GEP

)
∕3

(15)
Pt = 0.0729Pt_MLR + 0.1036Pt_GP + 0.7746Pt_GEP + 0.01.

Therefore, the predicted TSP values improved with this 
method and the forecasts are closer to the observed data. 
It is noted the EGP is more powerful than MLR, GP, GEP, and 
RF models in the TSP forecast. In this model, the normal-
ized TSP is predicted only by the knowledge of the his-
torical precipitation events. The model does not depend 
on the large-scale climate indicators, and therefore, it is 
motivating to be used by practitioners.

Figure 12 illustrates the distribution of observed and 
ensemble models’ forecasted TSP over the testing period 
(1990–2014) through displaying their quantiles and skew-
ness. The figure demonstrates that all the models pro-
duced the same median which has an average seasonal 
precipitation of 242.6 mm. The EGP is superior to its coun-
terparts in forecasting the precipitation amount in low and 
extreme rainy seasons. By contrast, the RF model shows 
better performance in predicting within the interquartile 
range.

5  Discussion

The results showed that combining the outcomes of clas-
sic and symbolic regression models may enhance the 
precision of the TSP forecasts. This is well in agreement 

Table 3  Performance indices 
calculated for the ensemble 
models

Models Training set Testing set

RMSE NSE MAPE RMSE NSE MAPE

EMM 0.086 0.571 0.277 0.110 0.474 0.320
ELM 0.083 0.607 0.277 0.100 0.558 0.302
EGP 0.069 0.729 0.252 0.09 0.672 0.269
RF 0.067 0.746 0.207 0.116 0.410 0.337

Fig. 10  Optimum GP tree for the nonlinear ensemble model EGP
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with the findings of the previous studies such as Rahmani-
Rezaeieh et al. [31] and Danandeh Mehr and Safari [10] 
where the ensemble GP approach was introduced as the 
robust modeling technique in hydrological studies. In 
comparison with simple averaging and linear ensemble, 
the forecasted values of TSP using the new EGP model 
were closer to those of observed data set in both training 
and testing samples.

As noted previously, each of the evolved models has 
specific advantages and shortcomings. The MLR is so 
simple and easy to develop, use, and interpret but it 
underestimates heavy rainfall seasons. The GP and GEP 
models always produce better forecasts than MLR. But 
they are more complex. The ensemble models lead to 
higher performance by combining the results so that 
the underestimation problem is solved. As can be seen 
from Tables 2 and 3, the ability of nonlinear ensemble 
method, i.e., EGP, is higher than that of linear and arith-
metic averaging ensembles. In terms of NSE, the best 
nonlinear ensemble technique (EGP) improved the 
modeling efficiency of the best standalone technique 
(GEP) by 25% and 35% in the training and testing peri-
ods, respectively. It is worth mentioning that the perfor-
mance results tabulated in Tables 2 and 3 are the average 

of the entire time series modeled and validated at the 
training and testing periods. Therefore, it is difficult to 
quantify the model’s performance in each season. To 
address this problem, the residuals in at each season 
were calculated and the sum of the normalized absolute 
error of each model in each season is depicted in Fig. 13. 
It is seen that all the models show better performance in 
spring followed by autumn.

Returning to the relevant literature, it is seen that the 
implementation of AI-based models in precipitation 
forecasting has received more attention in recent years. 
However, the existing studies mostly focused on daily 
or monthly scenarios. The higher the modeling hori-
zon, the lower the forecasting accuracy. For example, 
the standalone GEP model suggested by Mehr [25] for 
monthly rainfall forecasting in two rain gauge stations 
in Iran produces the maximum NSE values of 0.53 in the 
testing period. Such performance was considered as 
a good accuracy for monthly rainfall forecasting. For a 
seasonal forecasting scenario, such a level of accuracy 
can be considered as a desirable accuracy [28]. Thus, the 
proposed EGP model is an appropriate alternative for 
seasonal precipitation forecasting.

Fig. 11  Scatter plots of the estimations of ensemble models vs. observed normalized TSP (top panel) and testing (bottom panel) data sets
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6  Summary and conclusion

A three-stage hybrid modeling approach was suggested 
for TSP prediction in this study. The model was evolved 
and verified using long-term observed precipitation 
from Antalya, Turkey. To this end, first, the MLR, GP, 
and GEP-based models were developed and compared 
with each other. Afterward, three ensemble techniques 

were employed to enhance forecasting accuracy. In 
the ensemble modeling stage, the outputs of the best 
evolved MLR, GP, and GEP methods were used as the 
TSP predictors. The results were three hybrid ensemble 
models, namely EMM, ELM, and EGP in which both linear 
and nonlinear combination schemes were considered. 
The GP and GEP models used in the present study are 
from emerging AI techniques that are known as grey-
box models with explicit model structures like a tree. 

Fig. 12  Boxplot of normalized observed and forecasted seasonal 
precipitation for Antalya. The boxes indicate the 25th, 50th, and 
75th percentiles. The ends of the whiskers indicate the lowest 

(highest) TSP within 1.5 times the interquartile range of the lower 
(upper) quartile. Cross-mark denotes extreme precipitation season 
considered as outlier

Fig. 13  Sum of the normalized absolute error of the ensemble models in different seasons
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The standalone modeling stage showed that the ad hoc 
GP and GEP are not well enough for TSP forecasting. This 
agrees with findings in the relevant literature in which 
GEP was reported as an imprecise engine for monthly 
precipitation forecasting [25]. Comparing the efficiency 
results of the ensemble models with those of RF, it was 
shown that the EGP was the best ensemble model. It out-
performed all the standalone and ensemble models that 
implies the combination of different modeling outputs 
could reduce uncertainties of individual models. The 
models evolved in the present study were limited to the 
historical TSP as the predictors. The evolution of similar 
models using large-scale climate indicators is suggested 
as a topic for future studies.
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