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Abstract
Continuous wavelet transformation (CWT) as a new mathematical tool has provided deep insights for the identification 
of localized anomalous zone in the time series data set. In this study, a three-layer geological model is investigated by 
CWT to locate seismic reflections temporally and spatially. This model consists of three layers, where the third layers of 
the anticline structure are assumed to act as a pure sandstone hydrocarbon reservoir with 10% porosity. The equation 
of Gassmann has been implemented for the pore fluid substitution in the reservoir. Synthetic seismic data are generated 
for the three-layer geological model. Due to the presence of noise, it is always difficult to interpret seismic data. But, 
CWT has the ability of noise reduction, improving the visualization of a data set and locating the anomalies in terms of 
scalogram and 3D CWT coefficients. Synthetic seismic data of the geological structure are transformed by CWT. The suc-
cessful transformation of P-wave velocity, synthetic seismic data and acoustic impedance inversion provided evidence 
to distinguish different interfaces accurately. CWT has successfully located seismic reflections by localizing high-energy 
spectrum within the cone of influence. Three high-energy spectrums have been identified at 0.8 s, 1 s and 1.07 s, and it 
exactly matches the seismic data and three-layer geological model.

Keywords Gassmann’s equation · P-wave velocity · Synthetic seismic trace · Acoustic impedance inversion · Continuous 
wavelet transformation

1 Introduction

Seismic reflection data are non-stationary in nature, 
because of their frequency variation with time. The geo-
scientist has great interests in the trends and periodicities 
generated by complex subsurface geological structures. 
Generally, the Fourier transform is used to study these 
trends and periodicities in the geophysical time series. 
It is a mathematical tool that breaks down a time series 
signal into its component frequencies. Therefore, Fourier 
transform is a mathematical depiction of signal amplitudes 
of discrete components that construct it. Frequency-
domain representation of the signal and the process of 
transformation from time to frequency domain are called 

Fourier transform [28]. Initially, Fourier transform was first 
introduced for spatial fringe pattern analysis [22, 23]. It 
has been mainly implemented profilometry [24] and for 
the measurement of wave front shape [25]. But in Fou-
rier transform, it has been assumed that the underlying 
processes in the geophysical time series are stationary. 
There are various techniques have been used to analyze 
the non-stationary time series signal. For time–frequency 
mapping, [11] illustrated the data-adaptive method and 
[5] implemented the short-time Fourier transform. The 
spectral decomposition of the seismic signal has also 
been used to delineate the subsurface response in terms 
of time-dependent frequency. To resolve the incised val-
ley, Peyton et al. [19] used spectral decomposition along 
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with coherency. For reservoir characterization, Partyka 
et al. [18] applied window spectral analysis to generate 
discrete frequency cubes, while [4] has used the match-
ing pursuit algorithm for instantaneous spectral analysis 
to distinguish the low-frequency shadow underneath the 
reservoir.

Generally, in signal processing, for feature extraction, 
we are mainly interested to transform the signal in time 
and frequency domains simultaneously. For this purpose, 
the Fourier analysis is used, but it does not generate the 
actual time history of frequency variation when the fre-
quency components are changing in the time domain. The 
Fourier transformation F(� ) of a time series signal S(t) is 
given below:

Fourier transform of a time series signal is inner product 
between the given signal and basis function ( exp (−2�jft) ), 
and t represents the time. Fourier analysis is unable to 
detect any local variation in the time domain. Therefore, 
it is not ideal for non-stationary time signal analysis, while 
[7] provided a partial solution to solve this problem and 
it is known as short-time Fourier transformation (STFT). 
In STFT, Gabor utilized a short-duration fixed window 
to extract all frequencies content in that time window. 
Gabor’s STFT with a fixed short window is given below:

But the major problem of Gabor’s STFT is that it has a fixed 
window followed by fixed frequency. Due to this, fixed 
frequency enables only short and fixed time–frequency 
resolution.

Wavelet transformation (WT) is a new mathemati-
cal tool to identify the localized variations within a time 
series [14]. This provides a timescale spectrum instead of 
the time–frequency spectrum [20]. WT is a powerful tech-
nique to analyze random oscillation in a time series data 
set [9]. Continuous wavelet transform (CWT) is a subclass 
of wavelet transformation and it is mostly used for feature 
extraction from time series. The idea of CWT was derived 
from [7] short-time Fourier transform (STFT), where he 
fixed the time duration window to extract all the frequen-
cies within the window.

Klausner et al. [12] have discussed in detail the applica-
tion of CWT to address different issues, e.g., data availabil-
ity and quality, database gaps and error points. In order to 
acquire high-quality delineation of data, Yi et al. [29] pre-
sented two normalizations for estimation of CWT. Adhikari 

(1)F(�) =

∞

∫
−∞

S(t) exp (−2�jft)dt

(2)X(�, �) =

∞

∫
−∞

x(t)w(t − �) exp (−i�t)dt

[1] did a study for characterization of a signal in terms of 
time and scale. Tian et al. [26] has successfully integrated 
Mann Kendal test and CWT to assess the sediment load 
and runoff variations in Yellow River, China. Palupi [17] 
used the CWT for the prediction of depth of different 
minerals in the mineral-rich Pacitan East, Java, Indonesia. 
Costa and Santos [6] implemented the CWT on standard 
precipitation index for the characterization of droughts in 
Sao Francisco river catchment. Zhou et al. [10] did a com-
parative study between Morlet and Pethat wavelets using 
CWT for singularity and damage detection.

The basic idea behind CWT is the wavelet implemen-
tation as a band-pass filter to the time series signal. This 
causes the translation and dilation of the mother wavelet. 
CWT can expand a time series in the time and frequency 
domains at the same time. Therefore, CWT can examine 
and find a localized anomaly in time series analysis distrib-
uted at equal intervals. The equation of CWT of a signal f(t) 
at scale ‘a’ and time ‘b’, is given below:

where �(t) is the CWT and called mother wavelet, *is the 
complex conjugate, W(a, b) are CWT coefficients. Here, 
‘a’ and ‘b’ are translation and dilation parameters, respec-
tively. The small values of ‘a’ cause the mother wavelet con-
tracted, and it produces high-frequency functions, while 
high values of ‘a’ cause the mother wavelet stretched, and 
it produces low-frequency functions. Since the wavelet of 
CWT is not entirely localized, it has some edge artifacts 
and Torrence and Compo [27] called it the cone of influ-
ence (COI).

In this study, we are going to implement continuous 
wavelet transformation on 1D and 2D synthetic seismic 
data and on seismic attributes like P-wave velocity and 
acoustic impedance inversion (AI) to characterize differ-
ent seismic interfaces. Particularly, the characterization 
of pore fluid contact in the reservoir through continuous 
wavelet transformation using only seismic data will be a 
good tool to develop new fields, where the geoscientists 
do not have the well log data. This can help the explora-
tion geoscientists in decision making for exploring new 
areas and determining new well location.

2  Methodology

In this study, continuous wavelet transformation (CWT) is 
implemented on the P-wave velocity, AI and the synthetic 
seismic data of a geological model composed of three lay-
ers. In this model, the third layer acts as a pure sandstone 

(3)W(a, b) =

∞

∫
−∞

f (t)
1√
a
� ∗

�
t − b

a

�
dt
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reservoir with 10% porosity. Whereas the uppermost part 
of the reservoir is hydrocarbon-saturated, the lower part 
is the brine water zone. Similarly, the second layer is shale 
and it is the cap rock for reservoir and first layer initiate 
from the surface to apex of second layer, as shown in Fig. 1.

The elastic and seismic properties of two distinct pore 
fluids (gas and brine water) have been computed using 

Baztle and Wang [2] equations. Next, the equation of 
Gassmann has been utilized for pore fluid substitution in 
the hydrocarbon reservoir. Then 2D synthetic seismic data 
are generated for the geological model using the Finite 
difference method (Fig. 2). Finally, the synthetic seismic 
data have been transformed using CWT in order to locate 
different seismic interfaces.

Fig. 1  Three-layer geological 
model

Fig. 2  2D seismic data of the three-layer geological model
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2.1  Fluid Properties

In this study, two different fluids have been used as pore flu-
ids in the hydrocarbon reservoir, gas and brine water-bearer 
zones. At the first stage of this study, gas and brine’s seismic 
and elastic properties are determined by implementing 
Baztle and Wang [2] equations. Then, for pore fluid substitu-
tion, the equation of Gassmann has been implemented to 
validate the anomalous zone. The computation of pore fluid 
properties is explained below.

2.2  Reservoir’s Gas Properties

In this study, methane is used as a hydrocarbon pore fluid 
substitution in the reservoir. To determine the gas density, 
at first, the Kelvin equation is exercised to compute absolute 
temperature as:

Here, Tabs and T are the absolute temperature in Kel-
vin and the reservoir temperature in  °C and it is 150 °C 
(assumed), respectively. Then, the water gradient equation 
is used to compute the pressure at the reservoir level:

Here, P and D are pressure in psi and depth in m, respec-
tively. Then, to compute the pseudo-pressure and tem-
perature, the following equations of Batzle and Wang [2] 
are used:

Tr =
Ta

94.72+170.75∗G
 , Tr =

Ta

94.72+170.75∗G
 , Tr =

Ta

94.72+170.75∗G
 Here, 

G is the gas-to-oil ratio and for methane, it is 0.56.
Then, the gas density is calculated as [2]:

Here, �g and R are gas density in g∕cm3 and gas constant 
(R = 8.31441 Jg−1∕mol deg ), respectively, and Z is evalu-
ated as [2]:

Here,

(4)Tabs = T + 273

(5)
P = ((D ∗ 0.433) + 14.7) ∗ 0.006894757293178 ∗ 3.28

(6)Pr =
P

4.892 − 0.4048 ∗ G

(7)Tr =
Tabs

94.72 + 170.75 ∗ G

(8)�g =
28.8 GP

ZRTabs

(9)Z = aPr + b + cd

(10)a = 0.03 + 0.00527
(
3.7 − Tr

)3

Finally, the gas bulk modulus is determined as [2]:

Here,

In Table  1, all the results of the above equations are 
arranged.

2.3  Reservoir’s Brine water properties

Initially, brine water density is calculated as [2]:

Here, �b is brine water density in (g/cm3), �w is the fresh-
water density of 1 g/cm3, S is salinity with 84,000 PPM 
(assumed), and T and P are temperature and pressure, 
respectively.

(11)b = 0.642Tr − 0.007T 4
r
− 0.52

(12)c = 0.109
(
3.85 − Tr

)2

(13)d = EXP

{
−

[
0.45 + 8 ∗

(
0.56 −

1

Tr

)2
]
P2
r

Tr

}

(14)Kg =
P�

1 −
Pr

Z
f

(15)� = 0.85 +
5.6

Pr + 2
+

27.1

(Pr + 3.5)2
− 8.7e−0.65(Pr+1)

(16)f = cdm + a

(17)m = 1.2 ∗

{
−

[
0.45 + 8 ∗

(
0.56 −

1

Tr

)2
]
P0.2
r

Tr

}

(18)

�b = �w + S
{
0.668 + 0.44S + 10

−6

[300P − 2400P ∗ S + (80 + 3T − 3300S − 13P + 47P ∗ S)]}

Table 1  Gas-computed elastic and seismic properties

S/No. Property Computed value

1 Pressure (MPa) 21.160
2 Tabs (K) 423.150
3 Tr (K) 2.2232
4 Pr (MPa) 4.5357
5 Z 0.9857
6 �g (g/cm3) 0.0945
7 m −0.3995
8 γ 10.377
9 f 0.01203
10 Kg (Pascal) 21,960
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Brine water velocity is calculated as [2]:

Here, Vb and Vw are brine water velocity and freshwater 
velocity, respectively. Freshwater velocity is determined 
as [2]:

The wij coefficients are given below:

Finally, the brine water fluid bulk modulus is computed as:

The outputs of the above equations are listed in Table 2.

(19)

Vb = V
E
+ S

(
1170 − 9.6T + 0.055T

2 − 8.5 × 10
−5
T
3 + 2.6P − 0.0029TP − 0.0476P

2
)

+ S
1.5
(
780 − 10P + 0.16P

2
)
− 1820S

2

(20)Vw =

4∑
i=0

3∑
j=0

wiT
iPi

w00 = 1402.85 w02 = 3.437 × 10−3

w10 = 4.871 w12 = 1.739 × 10−4

w20 = −0.04783 w22 = −2.135 × 10−6

w30 = 1.487 × 10−4 w32 = −1.455 × 10−8

w40 = −2.197 × 10−7 w42 = 5.230 × 10−11

w01 = 1.524 w03 = −1.197 × 10−5

w11 = −0.0111 w13 = −1628 × 10−6

w21 = 2.747 × 10−4 w23 = 1.237 × 10−8

w31 = −6.503 × 10−7 w33 = 1.327 × 10−10

w41 = 7.987 × 10−10 w43 = −4.614 × 10−13

(21)Kb =
(
� ∗ Vp

)
∕106

3  Gassmann’s equation

The equation of Gassmann is an established equation 
for fluid substitution to examine seismic properties 
variations. Gassmann’s equation for saturated rock bulk 
modulus is defined as:

Here, in this study, reservoir rock is pure sandstone; 
according to published data, matrix bulk modulus ( Km ) of 
sandstone is 36.6 GPa (Mavko et al.). Kd and �d are dry rock 
bulk modulus and shear modulus, respectively. They are 
calculated using critical porosity equations of Nur et al. 
[15] as: For Kd,

For �d,

Here, ∅ is reservoir porosity and it is 10%, whereas it is the 
critical porosity of sandstone and it is 40% [15]. The density 
log equation has been used to compute the saturated rock 
density for gas and brine water as:

Finally, saturated rock’s velocity is computed as:

The outputs of the above equations for gas and brine 
water are listed in Table 3.

(22)Ks = Kd +

(
1 − Kd∕Km

)2

�

Kf
+

1−�

Km
−

Kd

K2
m

(23)Kd = Km

(
1 −

�

�c

)

(24)�d = �m

(
1 −

�

�c

)

(25)�s − (1 − �)�m + ��f

(26)Vp =

√
Ks + 4∕3�s

�s

Table 2  Brine water-computed elastic and seismic properties

S/No. Property Computed value

1 S (PPM) 84,000
2 �b (g/cm3) 1.0595
3 Vb (m/sec) 1499
4 Kb (Pascal) 2.3775 * 109

Table 3  Computed parameters of brine and gas using Gassmann’s 
equation

S/No. Property Gas Brine
Value Value

1 �s (Kg/m3) 2139 2332
2 �d (Pascal) 2.99* 1010 2.99* 1010

3 Kd (Pascal) 2.74* 1010 2.74*1010

4 Ks (Pascal) 2.74*1010 2.60*1010

5 Vp (m/sec) 4344 4963
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4  Inversion and wavelet transformation

In this paper, the synthetic seismic data are generated for 
the geological model, using each layer’s velocity and den-
sity. Then, P-wave velocity and acoustic impedance (AI) are 
computed from seismic data. The interval velocity is com-
puted using Dix’s equation. Recursive inversion method of 
Becquey et al. [3] has been used for AI inversion,

Here, is the final product of AI inversion, is the acoustic 
impedance of the first layer and this must be known, and 
is the reflection coefficient of each reflector.

CWT has emerged with the localization concept of the 
filtering function of Gabor [7]. The main objective of CWT 
transformation is to recognize the local anomalies for feature 
extraction in the time series data set. CWT has the ability to 
expand a time series into a time–frequency domain at the 
same time. Therefore, CWT can examine and find a localized 
anomaly in time series analysis distributed at equal inter-
vals. In this study, CWT has been adopted to identify and 
confirm seismic reflections as a localized anomaly. To local-
ize the anomalous zones, ‘Haar’ wavelet has been used as a 
mother wavelet because it can detect sudden discontinuities 
and abrupt changes in the time series analysis. Haar wavelet 
is a string of rescaled squared shape functions which form 
orthonormal wavelet basis. There are two functions: Scaling 
function and mother wavelet play an important role in wave-
let analysis. Scaling function of Haar wavelet is defined as:

The mother wavelet of Haar wavelet can be defined as:

The analysis is presented in the form of scalogram and 3D 
CWT coefficients.

5  Results

In this study, the three-layer geological model is used 
to observe different seismic variations through statisti-
cal and CWT. As discussed before, the third layer of this 
model acts as a reservoir in the constituted model using 
Gassmann’s equation. The uppermost part of the reservoir 

(27)AIi = AIz
1 + ki

1 − ki

(28)�(x) =

{
1, if 0 ≤< 1

0, otherwise

(29)𝜓(x) =

⎧⎪⎨⎪⎩

1, 0 ≤ x < 1∕2

−1, 1∕2 ≤ x < 1

0, otherwise

is gas-saturated, and subsequently, lower part is the brine 
water-saturated zone. The objective of this study is fea-
ture extraction by CWT application. Initially, 5% Gaussian 
noise is added to compute P-wave velocity, synthetic seis-
mic data and acoustic impedance inversion. The signal-to-
noise ratio (SNR) is −12 dB, the negative SNR means that 
noise power is higher than signal power and it makes this 
a more realistic scenario. Due to the presence of noise, it 
is hard to define precisely different zones and contacts in 
seismic data. But CWT has the ability of noise reduction, 
identification of different trends and recognition of discon-
tinuities in a time series data set. After the computation 
of seismic data, P-wave velocity and AI inversion with 5% 
Gaussian noise, CWT is implemented to identify different 
zones and contacts by localizing the anomalous zone in 
time series data set in the form of scalogram and 3D CWT 
coefficients.

5.1  P‑wave velocity

In this paper, P-wave velocity is computed from seismic 
for the geological model of this study. Then, 5% Gaussian 
noise is added to P-wave velocity to make it more realis-
tic and applicable in the real world and CWT is applied to 
P-wave velocity. In Fig. 3, one can see 2D scalogram as a 
function of time and wavelet sampling period with a cone 
of influence (COI). The white dashed line is representing 
the COI as variation in mother wavelet. Within COI, the 
results provided by CWT are reliable and accurate, while 
beyond this line, the wavelet has been stretched outside 
the observational interval and it is affected by edge effect 
artifacts. Within the COI of CWT of P-wave velocity, three 
high-energy spectrums are identified and they are con-
centrated at three different points on timescale, i.e., 0.8 s, 
1 s and 1.07 s. The first region of high-energy spectrum 
represents the contact between the first layer and the 
second layer at 0.8 s, second region of high energy repre-
sents the contact between second layer (shale) and third 
layer (sandstone reservoir) at 1 s and the third region is the 
contact between hydrocarbon-saturated zone and brine 
water-saturated zone within the reservoir at 1.07 s.

Furthermore, we showed variation in P-wave velocity 
for single trace and for the whole 2D seismic data by 3D 
CWT and it exhibits a sequence of better results in order 
to identify different boundaries and contacts (Fig. 3). Due 
to the abrupt changes in time series, CWT generates large 
wavelet coefficient values at the points of sudden transi-
tions. Therefore, 3D representation of CWT wavelet coef-
ficients generates better visualization for the interpreta-
tion of time series and it provides a better result for the 
identifications of different contacts. Besides negative SNR, 
three clear boundaries in terms of time slices of CWT coef-
ficients have been identified at 0.8 s, 1 s and 1.07 s (Fig. 3). 
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In this study, the third high-energy spectrum represents 
the pore fluid contact in the reservoir, as it is pointed with 
a red arrow in Fig. 3.

5.2  Synthetic seismic trace

In order to provide more stringent proof and evidence, 
a synthetic seismic trace is generated using [16] conven-
tional model. The acoustic impedance was computed 
using the P-wave velocity and density model, and then, 
zero-phase wavelet is convolved with acoustic imped-
ance to get the seismic trace, and finally, Gaussian noise 
is added to synthetic trace (Fig. 4). This synthetic seismic 
trace with noise in the middle of the geological model has 
been used for CWT to identify different interfaces. 

Figure 5 shows the CWT of seismic trace in the form of 
2D and 3D scalogram representation, respectively. Within 
the COI of scalogram of synthetic seismic trace, three 
high-energy spots are identified and it is effectively con-
centrated at three different points of timescale at 0.8 s, 1 s 
and 1.07 s. These high-energy spots represents: The first 
region is the contact between first layer and second layer 
at 0.8 s, the second region of high energy represents the 

contact between second layer (shale) and the third layer 
(sandstone reservoir) at 1 s and the third region is the con-
tact between hydrocarbon-saturated zone and brine water 
within the reservoir at 1.07 s, as shown in Fig. 5.

Similarly, the CWT of seismic trace exhibits much bet-
ter results in the form of a 3D plot (Fig. 5). This presents 
better visualization of CWT coefficients for the interpreta-
tion of a time series. Apart from the noise addition in the 
seismic trace, three significantly high-energy spectrums of 
CWT coefficients can be easy to distinguish at 0.8 s, 1 s and 
1.07 s (Fig. 6). In this study, the third high-energy spectrum 
represents the pore fluid contact in the reservoir, as it is 
pointed with a red arrow in Fig. 5. They are exactly at the 
same point in time as these were assumed in the three-
layer geological model.

Furthermore, we showed variation in 2D synthetic seis-
mic data as 2D and 3D CWT and it exhibits a sequence of 
better results in order to identify different boundaries and 
contacts (Fig. 6c). 2D and 3D representation of CWT pro-
duced better visualization for the interpretation of seismic 
data and it provides a better result for the identifications 
of different contacts. Besides negative SNR, three clear 
boundaries in terms of time slices of CWT coefficients have 

Fig. 3  Continuous wavelet 
transformation of P-wave 
velocity with ‘Haar’ wavelet 
a scalogram and b CWT of 
single-trace P-wave veloc-
ity, while c is the 3D CWT of 
P-wave velocity model of the 
three-layer geological model
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been identified at 0.8 s, 1 s and 1.07 s (Fig. 6c). In this study, 
the third high-energy spectrum represents the pore fluid 
contact in the reservoir.

5.3  Acoustic impedance inversion (AI)

The recursive inversion method of Becquey et al. [3] has 
been used for AI inversion (Fig. 7). In this study, Fig. 7a 
shows AI inversion without any noise addition to seismic 
trace. All the contacts are prominent and they can be easily 
marked with significant accuracy. Similarly, Fig. 7b shows 
AI inversion after the Gaussian noise addition to the seis-
mic trace. The second and third interface is not clear as in 
the case of previous analysis (Fig. 7a).

In order to identify the seismic interfaces accurately, 
CWT is adopted on the AI noisy data. Figure 8 shows a 
2D scalogram as a function of time and wavelet sam-
pling period with COI of the single seismic trace. Within 
the COI of a wavelet transformation of AI, three signifi-
cant spectrums are identified at 0.8 s, 1 s and 1.07 s. Due 

Fig. 4  Synthetic seismic trace at the middle of the geological 
model a without noise, b with 5% Gaussian noise

Fig. 5  Wavelet spectrum of 
synthetic seismic trace with 
5% Gaussian noise using ‘Haar’ 
wavelet, a scalogram, b CWT 
of synthetic seismic trace; the 
fluid contact is marked by red 
circle at 1.07 s

Fig. 6  Continuous wavelet 
transformation of 2D seismic 
data of the three-layer geologi-
cal model with 5% Gaussian 
noise, a 2D and b 3D represen-
tation of CWT of seismic data
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to small-time separation between the second layer and 
third layer, the second and third high-energy spectrums 
are overlapping on each other (i.e., Figure 8). The second 
high-energy spectrum represents the contact between the 
shale (second layer) and sandstone (third) of the geologi-
cal model. On the other hand, third high-energy spectrum 
is pore fluid contact between the hydrocarbon-saturated 
zone and brine water-saturated zone within the reservoir.

Furthermore, we showed variation in AI inversion for 
single trace and for the whole 2D seismic data by 3D 
CWT and it exhibits a sequence of better results in order 
to identify different boundaries and contacts (Fig. 8). Due 
to the abrupt changes in time series analysis, CWT gener-
ates large wavelet coefficient values at points of imme-
diate transitions between different strata. Therefore, 3D 
representation of CWT wavelet coefficients generates 
better visualization for the interpretation of a time series 
of AI for the three-layer model. Besides the presence of 
negative SNR, three clear boundaries can be explicitly 
identified by CWT analysis. These prominent anomalous 
zones can be seen at 0.8 s, 1 s and 1.07 s, as it was antici-
pated in the previous investigation in this study.

Fig. 7  Acoustic impedance inversion using Becquey et  al. [3]. a 
Without noise, b with 5% Gaussian noise

Fig. 8  Continuous wavelet 
transformation of acoustic 
impedance inversion with 
‘Haar’ wavelet (a) scalogram 
and (b) CWT of single-trace 
AI inversion, while (c) is the 
3D CWT of AI inversion of 2D 
seismic data of the three-layer 
geological model



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1835 | https://doi.org/10.1007/s42452-020-03618-w

At the end of the CWT study, in order to analyze the 
ability to recognize different seismic interfaces in the pres-
ence of noise by two different methods, a comparative 
study between convolution method and CWT technique 
has been added, as shown in Table 4. This shows that CWT 
is a powerful tool to identify different seismic reflectors 
using seismic data and seismic attributes. Besides that, the 
statistical study is also carried out in terms of confidence 
bound with a 95% interval for normalized CWT coefficients 
of P-wave velocity, seismic trace, acoustic impedance and 

synthetic seismic trace, as shown in Fig. 9. At three differ-
ent points on the timescale, the CWT coefficients are stand 
out of the upper and lower bounds as anomalous zones, 
at 0.8 s, 1 s and 1.07 s. This also validates the results of 
the continuous wavelet transformation of P-wave velocity, 
seismic trace and acoustic impedance. 

Table 4  Comparative results between convolution and CWT technique

Method Equation Comparison

Convolution y(t) = g(t) ∗ f (t) + noise Seismic Trace
Peaks
0.8 s
1.0 s
1.07 s

Continuous wavelet trans-
formation W(a, b) =

∞∫
−∞

f (t)
1√
a
� ∗

�
t−b

a

�
dt

Seismic signal with noise

Scalogram 3D coefficients
Bright spots High-energy spectrums
0.8 s
1.0 s
1.07 s

0.8 s
1.0 s
1.07 s

P-wave velocity
Scalogram 3D coefficients
Bright spots High-energy spectrums
0.8 s
1.0 s
1.07 s

0.8 s
1.0 s
1.07 s

Acoustic Impedance Inversion
Scalogram 3D coefficients
Bright spots High-energy spectrums
0.8 s
1.0 s
1.07 s

0.8 s
1.0 s
1.07 s

Fig. 9  Normalized CWT coef-
ficients of P-wave velocity, seis-
mic trace, acoustic impedance 
and seismic trace along with 
confidence bounds
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6  Discussion

Here, we discuss the implementation of CWT in order to 
identify different seismic reflections from different inter-
faces. Several examples have been cited using wavelets 
transform by Gurley and Kareem [8] in order to identify 
and characterize in the fields of wind, ocean engineering 
and earthquakes. This includes the spectral analysis for 
the identification of transient events, simulation of non-
stationary signals and noise reduction. CWT can be used to 
interpret seismic data in time and frequency domain simul-
taneously. For the detection of hydrocarbon, Sun et al. [21] 
implemented the instantaneous spectral analysis hinge on 
matching pursuit decomposition. But Mallet and Zhang [13] 
explained that matching pursuit decomposition separates 
the given signal structure that is consistent as regards to 
the given wavelet. However, if the given signal is combi-
nation of several fundamental dictionaries, then it will be 
hard to select a specific one to study a non-stationary signal. 
CWT of a non-stationary time series data is accomplished 
by a mother wavelet. This technique gives better resolution 
and visualization of data. We have transformed the seismic 
data and it attributes with 5% Gaussian noise using CWT 
and presented as scalogram and three-dimensional coef-
ficients. CWT has the ability of noise reduction, identifica-
tion of different trends and recognition of discontinuities in 
a non-stationary time series data set. Scalogram has been 
acquired by windowing the time series with scaling and 
shifting in time of mother wavelet. Due to the scaling and 
shifting in time, the mother wavelet shrinks and stretches 
which produces high CWT coefficient values. The shrinking 
of mother wavelet produces high-frequency functions, and 
this is good to identify transient events. the stretching of 
mother wavelet produces low-frequency functions, and this 
is good to detect long duration of low-frequency events.

7  Conclusion

A large number of algorithms exist to identify different 
patterns in a non-stationary time series. In this study, 
we have implemented CWT on a non-stationary raw 
seismic data in order to localize and identify seismic 
reflections in a time–frequency domain. The CWT has 
the ability to expand a time series signal into time as 
well as frequency domain. The spectral decomposition 
of 1D seismogram into 2D scalogram and 3D CWT time 
slice is a great improvement in signal processing. It can 
separate different seismic events of different seismic 
frequencies and it can localize the events as anomalous 
zones. CWT mainly depends on the selection of mother 

wavelet as well as translation (a) and dilation (b) of the 
mother wavelet.

We have studied the three-layer geological model, 
where the third layers acted as a pure sandstone reser-
voir with 10% porosity. The equation of Gassmann has 
been used for pore fluid substitution, and synthetic seis-
mic data with -12 dB SNR have been generated. Then, 
CWT has been implemented on seismic attributes like 
P-wave velocity, synthetic seismic trace and AI. The main 
outcomes of this study can be summarized as:

1. CWT is found as an effective tool for the identification 
of abrupt, sudden variations in time series seismic sig-
nals.

2. These abrupt changes and boundaries in times series 
data set outcomes with substantial big wavelet coef-
ficient values are obtained.

3. These large wavelet coefficients are concentrated at 
a narrow region on timescale, known as the cone of 
influence. This COI is the indication and position of the 
transition in a time series data set.

4. Even in the presence of noise in the time-series signals, 
CWT successfully identifies all the boundaries of the 
proposed three-layer geological model.

5. The proper localization of the anomaly or abrupt change 
in a time series largely depends on the selection of 
mother wavelet, translation and dilation scale of CWT.

6. CWT can be implemented on seismic data as well as 
on seismic attributes for the confirmation of the final 
results of seismic inversion and attributes.
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