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Abstract
Blast-induced ground vibration is still an adverse impact of blasting in civil and mining engineering projects that need 
much consideration and attention. This study proposes the use of Self-Adaptive Differential Evolutionary Extreme Learn-
ing Machine (SaDE-ELM) for the prediction of ground vibration due to blasting using 210 blasting data points from an 
open pit mine in Ghana. To ascertain the predictive performance of the proposed SaDE-ELM approach, several artificial 
intelligence and empirical approaches were developed for comparative purposes. The performances of various devel-
oped models were assessed using model performance indicators of mean squared error (MSE), Nash–Sutcliffe Efficiency 
Index (NSEI) and correlation coefficient (R). Furthermore, the Bayesian Information Criterion (BIC) was applied to select 
the best performing approach. The obtained prediction results based on the performance indicators showed that the 
SaDE-ELM outperformed all the competing models as it had the lowest MSE value of 0.01942, respectively. The SaDE-ELM 
also achieved the highest R and NSEI values of 0.8711 and 0.7537, respectively. The other artificial intelligent approaches 
had MSE, R and NSEI in the ranges of (0.02166–0.03006), (0.8012–0.8537) and (0.6188–0.7254), respectively. The empiri-
cal approaches performed poorly relative to the artificial intelligence approaches by having had MSE, R and NSEI in the 
ranges of (0.03419–0.06587), (0.7466–0.7833) and (0.1649–0.5665), respectively. The prediction superiority of SaDE-ELM 
was confirmed when it is achieved the lowest BIC value of − 293.40. Therefore, the proposed SaDE-ELM has demonstrated 
great potential to be used for on-site prediction, control and management of blast-induced ground vibration to prevent 
unwanted effects on the environment.
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1  Introduction

Blast-induced ground vibrations are a major environmen-
tal impact of blasting that results from seismic waves mov-
ing through the ground. It is noteworthy that the resulting 
ground vibration after a blast is unavoidable. However, the 
magnitude of occurrence is of utmost concern as higher 
magnitude can cause damage to mining pit wall, cracks on 
buildings of the neighbouring community, disturbance to 

humans and can even result in conflict between the min-
ing company and the neighbouring community. Hence, 
there is a need to predetermine their level of occurrence 
before each blast is carried out through modelling and 
prediction.

In modelling and prediction of blast-induced ground 
vibration, several approaches ranging from conventional 
empirical approaches [1–5] to the use of computational 
intelligence ([6–8] and references therein) have been 
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developed with the latter being superior to the former 
[9, 10]. It is worth mentioning that several computational 
intelligence approaches have been developed over the 
years for predicting blast-induced ground vibration. 
Authors such as Faradonbeh et al. [11] developed and 
applied gene expression programming (GEP) model to 
predict blast-induced ground vibration using blast data 
from a quarry in Malaysia. Hasanipanah et al. [12] devel-
oped and applied a classification and regression tree 
(CART) model to predict blast-induced ground vibration 
at Miduk copper mine, Iran. Shahnazar et al. [13] proposed 
a hybrid model of adaptive neuro-fuzzy inference system 
(ANFIS) optimised by particle swarm optimisation (PSO) 
to predict blast-induced ground vibration in Pengerang 
granite quarry, Malaysia. Taheri et al. [7] proposed a com-
bination of artificial bee colony (ABC) and artificial neural 
network (ANN) for the prediction of blast-induced ground 
vibration at Miduk copper mine, Iran. Fouladgar et al. [14] 
proposed a novel swarm intelligence algorithm based 
on cuckoo search (NSICS) to create a precise equation for 
predicting the blast-induced ground vibration in Miduk 
copper mine, Iran. In Faradonbeh and Monjezi [15], an 
optimised gene expression programming (GEP) model 
using cuckoo optimisation algorithm (COA) was devel-
oped to predict blast-induced ground vibration with blast 
data from Gol-E-Gohar iron mine, Iran. Hasanipanah et al. 
[16], proposed a new hybrid model of fuzzy system (FS) 
designed by imperialistic competitive algorithm (ICA) for 
the prediction of blast-induced ground vibration resulting 
from blasting at Miduk copper mine, Iran. Sheykhi et al. 
[17] proposed a novel hybrid model of support vector 
regression (SVR) and fuzzy C-means clustering (FCM) for 
the estimation of blast-induced ground vibration. Mokfi 
et al. [18] applied group method of data handling (GMDH) 
as a novel approach to predict blast-induced ground vibra-
tion from a quarry in Penang, Malaysia. Nguyen et al. [19] 
proposed a hybrid hierarchical k-means clustering algo-
rithm (HKM) and artificial neural network (ANN) for the 
prediction of blast-induced ground vibration. Arthur et al. 
[20] developed and applied Gaussian Process Regression 
(GPR) for predicting blast-induced ground vibration from 
an open pit mine in Ghana. Bui et al. [21] developed and 
applied the hybrid fuzzy C-means clustering (FCM) algo-
rithm and quantile regression neural network (QRNN) for 
the prediction of blast-induced ground vibration. Nguyen 
et al. [22] developed a support vector regression model 
optimised by particle swarm optimisation (PSO) algo-
rithm, genetic algorithm (GA), imperialist competitive 
algorithm (ICA) and artificial bee colony (ABC) for the pre-
diction of blast-induced ground vibration. Yu et al. [23] 
applied random forest model optimised by Harris Hawks 
Optimisation Algorithm to predict blast-induced ground 
vibration. Among the numerous computational intelligent 

approaches developed over the years, the artificial neural 
network (ANN) with the backpropagation algorithm has 
been the most widely and successfully used approach in 
predicting blast-induced ground vibration [8]. The univer-
sality of the ANN approach can be attributed to their ability 
to map the input parameter(s) to the output parameter(s) 
without any prior assumptions about their corresponding 
statistical properties. This makes it easy for ANN to learn 
from the training data and generalise well on the test data 
[24]. Nevertheless, the ANN approach requires the fine-
tuning of several user-defined parameters such as select-
ing suitable activation functions, number of neurons in 
the hidden layer(s), number of hidden layers, maximum 
number of iterations, weight initialisation, momentum 
coefficient and learning rate, to achieve optimal perfor-
mance. This makes it time-consuming and computation-
ally expensive. Additionally, the ANN approach has the 
possibility of falling into local minima because it uses 
variety of gradient descent algorithms, hence selecting 
the less optimal solution [24].

In addressing the fine-tuning problem of the ANN 
approach, Huang et  al. [25] developed the Extreme 
Learning Machine (ELM) approach for solving both clas-
sification and regression problems. The ELM approach is 
a single-hidden layer feedforward neural network (SLFN) 
that assigns input weight and bias randomly. Unlike the 
ANN which requires iterative adjustment of the network 
parameters, the ELM arbitrarily selects the hidden layer 
nodes and input weights. The ELM thereafter deter-
mines analytically the SLFNs’ output weights using the 
Moore–Penrose generalised pseudo-inverse [26]. It then 
uses the smallest norm least square to arrive at the global 
solution. Within the recent years, the ELM approach has 
been extensively applied in several fields of sciences and 
engineering [27–29] including a few notable studies in 
blast-induced ground vibration prediction [30, 31]. Pre-
diction results from these studies have shown how well 
the ELM approach is able to generalise across the entire 
testing data. Nevertheless, according to Zhai et al. [32] 
the ELM algorithm tends to be unstable as the hidden 
neurons and input weights are selected arbitrarily. Fur-
thermore, the hidden layer feature mapping is something 
unknown to users. In that regard, Huang et al. [33] pro-
posed the kernel-based ELM (KELM) which adds a positive 
regularisation coefficient in the computation of the output 
weight to enhance stability and a kernel matrix when the 
hidden layer feature mapping is unknown. Additionally, 
other researchers tend to rely on the search abilities of 
metaheuristic optimisation algorithms notably particle 
swarm optimisation (PSO) and genetic algorithm (GA) to 
select the optimal input weights and hidden neurons of 
the ELM approach [34–37]. With regard to blasting studies, 
authors such as Armaghani et al. [38] developed a novel 
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hybrid ELM model optimised by autonomous groups 
particle swarm optimisation (AGPSO) algorithm for blast-
induced ground vibration prediction. Murlidhar et al. [39] 
also developed a novel hybrid model of ELM optimised 
by biogeography-based optimisation (BBO) as well as a 
PSO-ELM model for flyrock prediction. The developed 
BBO-ELM and PSO-ELM models were compared to basic 
ELM model. Prediction results revealed the superiority of 
the optimised ELM models over the basic ELM model. Wei 
et al. [40] developed a Nested-ELM approach for the pre-
diction of blast-induced ground vibration.

Review of relevant literature has shown that hybrid 
approaches based on ELM and optimisation algorithms 
are very rare. It is in this light that in the current study, 
the ELM approach is optimised by the Self-Adaptive Differ-
ential Evolution (SaDE) algorithm to form a hybrid model 
(SaDE-ELM) for blast-induced ground vibration prediction. 
This is aimed to serve as an advancement on the stud-
ies on the ELM approach. Here, the SaDE-ELM has been 
applied for the first time to predict blast-induced ground 
vibration. The SaDE is a powerful and efficient population-
based stochastic search algorithm that is capable of deter-
mining the optimum control parameters and generation 
strategy of a differential evolution (DE) algorithm [41] in 
solving optimisation problems [42]. Here the ELM learn-
ing parameters (hidden node and input weights) are opti-
mised by using the SaDE algorithm. In order to ascertain 
the predictive capabilities of the SaDE-ELM approach, a 
basic ELM, a kernel-based ELM, ANN approaches (gen-
eralised regression neural network (GRNN), radial basis 
function neural network (RBFNN) and backpropagation 
neural network (BPNN)) and five widely used empiri-
cal approaches (USBM [3 Bureau of Indian Standard [5], 
Ambrasey–Hendron [1], Langefors–Kihlstrom [2] and CMRI 
[4] were applied for comparison purposes. In this study, 

the proposed SaDE-ELM model could be used as an accu-
rate and effective tool for the prediction of blast-induced 
ground vibration by the blast engineer in civil and mining 
operations.

The rest of the paper is as follows: The case study is 
presented in Sect. 2. Section 3 presents the methodology. 
Here a concise description of the mathematical framework 
of the ELM, KELM, SaDE-ELM, BPNN, GRNN and RBFNN is 
provided. Furthermore, the model development proce-
dures as well as the model selection and performance 
indicators are outlined. The results obtained and their sub-
sequent discussions are presented in Sect. 4. Section 5 pre-
sents sensitivity analysis on data parameters, and Sect. 6 
finally concludes the paper.

2 � Study area

In this study, the blasting datasets upon which the models 
were developed were obtained from an open pit mine in 
Ghana. The mine is sited in the western region of Ghana, 
precisely in the Tarkwa Nsuaem Municipal Assembly 
between longitude 1°59′ West and latitude 5°16′ North as 
shown in Fig. 1.

The mine employs the use of drilling, blasting, load-
ing and hauling as its main mining cycle. For drilling, long 
vertical holes with an average depth of 9 m and 0.115 m 
diameter are adopted using drill rigs. In fragmenting its 
in situ rock formation, the mine employs the controlled 
blasting method to ensure control in blast-induced effects 
such as ground vibrations, fractures within remaining rock 
walls, over-break and noise. Here, the mine uses emulsion 
RIOMEX 7000 of composition: 70% emulsion and 30% 
ammonium nitrate as the main explosive substance. It has 
a density of 1.20 g/cc and a target density in the range 

Fig. 1   Study area



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1845 | https://doi.org/10.1007/s42452-020-03611-3

1.15–1.17 g/cc. It also has a measured VOD of 5039 m/s. 
Furthermore, a primer of 250 g booster and a detonator 
with 500 ms delay are used to prime the drilled holes. The 
charged holes are stemmed using crushed gravels. An 
average stemming height 3 m is maintained by the mine. 
Inter-hole surface connectors with 67 ms, 42 ms and 17 ms 
delays are used to connect all charged holes to the initia-
tion point. The mine employs the use of the non-electronic 
initiation system to initiate the blast. It is worth mention-
ing that the mine employs the use of staggered explosive 
pattern for its blasting operation. After the charged holes 
are blasted, the rock fragments are loaded by excavators 
into Komatsu HD 465, Volvo AD35 and CAT 777F rear dump 
trucks which are hauled to the crushing for processing or 
to the waste dump.

3 � Methodology

In this section, the theories of various ELM models as well 
as benchmark models of BPNN, GRNN, RBFNN would be 
presented. The description of the empirical models will not 
be presented here as they have extensively been treated 
in literature. Detailed explanations of their concepts are 
available in [1–5]

3.1 � Extreme learning machine algorithms

3.1.1 � Basic extreme learning machine

The ELM developed by Huang et al. [25] is a new learn-
ing algorithm for single-hidden layer feedforward neural 
networks (SLFNs). Unlike the traditional back-propaga-
tion learning algorithm which is iteratively used to tune 
the control parameters of the SLFNs, the ELM randomly 
chooses hidden neurons based on Gaussian Probabil-
ity Distribution and analytically determines the output 
weights of the SLFNs using the Moore–Penrose general-
ised pseudo-inverse [25].

Given S arbitrary training samples 
(
xk , yk

)
 where 

input vector xk =
[
xk1, xk2, ..., xkn

]T
∈ Rn , target vector 

yk =
[
yk1, yk2, ..., ykn

]
∈ Rm , a SLFN with activation func-

tion g(x) and M number of hidden neurons for the training 
samples is mathematically modelled using Eq. (1).

where wi =
(
wk1,wk2, ...,wkn

)
 is the connecting weight 

vector between the input nodes and the ith hidden 
node, bi is the threshold of the ith hidden node and 
�i =

(
�k1, �k2, ..., �kn

)
 is the connecting output weight vec-

tor between the output nodes and the ith hidden node. It 

(1)
M∑
i=1

�ig
((
wi ⋅ xk

)
+ bi

)
= yk , where k = 1, 2, 3, ..., S

is noteworthy that the weight vector wi is randomly cho-
sen. The ELM’s output function can be expressed in Eq. (2) 
as:

where t(x) is the hidden layer’s output vector with respect 
to the input x.

Equation (1) can be compactly expressed in [Eq. (3)] as:

where H [Eq. (4)] is the output matrix of the hidden layer.

To train an SLFN with fixed input weights wi and the 
hidden layer biases bi is to find a least square solution 𝛽  of 
the linear system [Eq. (3)]. Applying the smallest norm least 
squares solution of Eq. (3), the resulting 𝛽  becomes Eq. (5).

where H† =
(
HTH

)−1
HT or HT

(
HHT

)−1
 , depending on the 

singularity of HTH or HHT  is the Moore–Penrose general-
ised inverse of matrix H [25, 43].

3.1.2 � Kernel‑based extreme learning machine

In order to obtain an ELM that has a more stable and 
better generalisation solutions than that obtained by 
the least squares approach, Huang et al. [33] proposed 
the addition of a positive regularisation coefficient, 1∕� in 
computing for the output weights β. This is expressed in 
Eq. (6) with its corresponding regularised ELM function 
expressed in Eq. (7).

According to Huang et  al. [33], a kernel matrix Ω 
[Eq. (8)] can be defined for the ELM if the t(x) is unknown.

where K
(
xi , xj

)
 is the kernel function. The radial basis func-

tion (RBF) kernel as expressed in Eq. (9) was selected for 
this study.

(2)FH(x) =

M∑
i=1

�ig
((
wi ⋅ xk

)
+ bi

)
=� .t(x)

(3)H� = Y

(4)H =

⎡
⎢⎢⎣

g
�
w1 ⋅ x1 + b1

�
⋯ g

�
wM ⋅ x1 + bM

�
⋮ ⋯ ⋮

g
�
w1 ⋅ xS + b1

�
⋯ g

�
wM ⋅ xS + bM

�
⎤
⎥⎥⎦S×M

(5)𝛽 = H†Y

(6)� = HT
(
I

�
+ HHT

)−1

Y

(7)FH(x) =

(
HT

(
I

�
+ HHT

)−1

Y

)
t(x)

(8)ΩELM = HHT ∶ ΩELMi,j = t
(
xi
)
t
(
xj
)
= K

(
xi , xj

)
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where � is the kernel parameter. The KELM’s output func-
tion is then expressed in Eq. (10) as:

3.1.3 � Self‑adaptive differential evolution

Differential evolution (DE) developed by Storn and Price 
[41] is a powerful and efficient population-based stochas-
tic search technique for solving optimisation problem. 
However, according to Qin et al. [42], the DE will be suc-
cessful in its application provided it chooses the right trial 
vector generation strategies and their associated critical 
parameters. This can be done through a trial-and-error 
procedure which is computationally expensive. In address-
ing this limitation, Qin et al. [42] proposed the self-adap-
tive differential evolution (SaDE) algorithm. Here, both 
the trial vector generation strategies and their associated 
critical parameters are determined by a gradual self-adap-
tation by learning from previous experiences. These critical 
parameters include mutation scaling factor, F, crossover 
rate, CR and number of populations, NP. The SaDE algo-
rithm is made up of three steps, namely: mutation, crosso-
ver and selection.

3.1.3.1  Mutation  Considering an optimisation problem 
as given in Eq. (11).

where xk =
[
xk1, xk2, ..., xkP

]T
 , k = 1, 2,…, NP is a target vec-

tor of P decision variables. In the mutation step, mutant 
vector Vk [Eq. (12)] is generated in the current population 
by mutation strategy.

where t1, t2 and t3 are mutually exclusive integers ran-
domly selected in the range [1, NP] and t1 ≠ t2 ≠ t3.

3.1.3.2  Crossover  After the mutation, the crossover step 
takes place. Here, trial vector, Uk is produced between 
Vk and xk where the binomial crossover is undertaken as 
illustrated in Eq. (13).

(9)K
(
xi , xj

)
= exp

(
−𝜑

‖‖‖xi − xj
‖‖‖
2)

,𝜑 > 0

(10)FH(x) =

⎡
⎢⎢⎣

K
�
x, x1

�
⋮

K
�
x, xS

�
⎤
⎥⎥⎦

T�
I

�
+ ΩELM

�−1

Y

(11)Minimise f
(
xk
)
, xk ∈ RP

(12)Vk = xt1 + F
(
xt2 − xt3

)

(13)Ukl =

{
Vkl , if randreal (0, 1) < CR or l = lrand
xkl , otherwise

where randreal (0,1) is a real number generated randomly 
in the range [0, 1] and lrand is an integer chosen randomly 
in the range [1, P].

3.1.3.3  Selection  The selection step is applied finally to 
keep the population size constant during the entire evo-
lution process. The selection step is also used to deter-
mine whether the trial or the target vector survives to the 
subsequent generation in accordance to the one-to-one 
selection as expressed in Eq. (14).

where f(x) is the optimised objective function. It is worth 
noting that during, the evolution process, F and CR are 
tuned adaptively to improve DE for each individual as 
expressed in Eqs. (15) and (16), respectively.

where Fk,(Q+1) and CRk,(Q+1) are the mutation scaling fac-
tor and crossover rate for k individual with Q generation, 
respectively, rand1, rand2, rand3 and rand4 are selected 
randomly from the range [0,1], �1 and �2 are values used 
to control the generation of F and CR. They are both set 
to the value of 0.1. Fl and Fu are set to 0.1 and 0.9, respec-
tively, with the F and CR values initialised to 0.5 in the first 
generation.

3.1.4 � Self‑adaptive differential evolutionary extreme 
learning machine

The SaDE-ELM is a hybrid algorithm developed by the inte-
gration of the self-adaptive differential evolution (SaDE) 
algorithm proposed by Qin et al. [42] and the ELM for 
SLFNs. This was developed due to the possibility of the 
basic ELM not reaching optimal solution for SLNs, when 
used to randomly generate the network hidden node 
biases and input weights when computing the output 
weights β. Hence, for the SaDE-ELM algorithm, the SaDE 
optimises the SLFNs hidden node biases and input weights 
while the ELM derives the SLFNs output weights.

With training data samples, an activation function g(⋅) 
and M hidden nodes, the SaDE-ELM algorithm can be sum-
marised as follows [44, 45].

3.1.4.1  Step 1 Initialisation  A group of population (NP) 
vectors �p,Q are initialised as the first-generation popula-

(14)xk =

{
Uk , if f

(
Uk

)
f
(
xk
)

xk , otherwise

(15)Fk,(Q+1) =

{
Fl + rand1Fu, if rand2 < 𝜐1
Fk,Q , otherwise

(16)CRk,(Q+1) =

{
rand3, if rand4 < 𝜐2
CRk,Q , otherwise
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tion using Eq.  (17). Here each NP vector includes all the 
network hidden node parameters.

where wi and bi(i = 1, 2, ...,M) are generated randomly, 
p = 1, 2, 3,… , NP and Q denotes the generation.

3.1.4.2  Step 2 Computations for  RMSE and  output 
weights  The root mean squared error (RMSE) and the net-
work output weight matrix with respect to each popula-
tion vector are computed using Eqs. (18) and  (19), respec-
tively.

where is H†

q,G
 the Moore–Penrose generalised inverse of 

Hq,G [Eq. (20)].

New the best population vector, �q,G+1 as expressed in 
Eq. (21), is computed using the value of the RMSE.

Here, � is the small positive pre-set tolerance rate. 
According to Ku and Xing [45], the NP vector having the 
best RMSE is stored as �best,1 and RMSE�best,1 , respectively, 
in the first generation. Moreover, every trial vectors up,Q+1 
created at the (Q + 1)th generation are evaluated accord-
ing to Eq. (17).

The framework of the SaDE-ELM model is given in Fig. 2.
The pseudocode of the SaDE-ELM algorithm is pre-

sented in Fig. 3.

3.1.5 � Backpropagation neural network

The backpropagation neural network is an ANN tech-
nique that has been used extensively for both regression 
and classification problems. It consists of three layers 

(17)�p,Q =
[
wT

1,(p,Q)
,⋯ ,wT

M,(p,Q)
, b1,(p,Q),⋯ , bM,(p,Q)

]

(18)

RMSEp,Q =

����∑S

k=1

���
∑M

i=1
�ig

�
wi,(p,Q), bi,(p,Q), xk

�
− yk

���
m × S

(19)�p,Q = H†

p,Q
Y

(20)

Hp,Q =

⎡⎢⎢⎣

g
�
w1,(p,Q), b1,(p,Q), x1

�
⋯ g

�
wM,(p,Q), bM,(p,Q), x1

�
⋮ ⋱ ⋮

g
�
w1,(p,Q), b1,(p,Q), xS

�
⋯ g

�
wM,(p,Q), bM,(p,Q), xS

�
⎤⎥⎥⎦

(21)

𝜃p,Q+1 =

⎧
⎪⎪⎨⎪⎪⎩

ur,G+1 if
�
RMSE𝜃p,Q − RMSEup,Q+1

�
> 𝜈 ⋅ RMSE𝜃p,Q

ur,G+1 if
���RMSE𝜃p,Q − RMSEup,Q+1

��� < 𝜈 ⋅ RMSE𝜃p,Q

and
���𝛽up,Q+1

��� <
���𝛽𝜃p,Q

���,
𝜃p,Q else.

interconnected in a feedforward manner. These layers 
are the input, hidden and output layers. The input layer 
receives inputs X1, X2,…, Xm from the surrounding environ-
ment and transmits them into the hidden layer via con-
necting weights, wij. The hidden layer contains neurons 
which are associated with a bias and a transfer function. 
Values known as bias bj are introduced in the transfer func-
tion to differentiate between different processing units. 
The bias is much like a weight, except that it has a constant 
input of 1. It is termed as the temperature of the neuron. 
The bias term is added to the weighted inputs, to result 
a net input, Netp [Eq. (22)], which are then transformed 
and processed by transfer function, fH in the hidden layer 
[Eq. (23)]. The processed inputs, Zj, are then sent to the 
output layer. In the output layer, Zj is weighted and a bias 
term, bk added to result in net input, Netk [Eq. (24)]. Netk 
is finally through the output layer transfer function, fO to 
produce the final predicted output ŷ as shown in Eq. (25) 
to be displayed as final predicted output result. A typical 
BPNN structure is shown in Fig. 4.

In the training process, during each iteration, the pre-
dicted output value is actual output value, ty. The error 
(Eq. (26)) between is backpropagated through the network 
by updating various connecting weights and bias of each 
neuron. This process is repeated for all input and output 
data pairs in the training datasets, until the network error 
converged to a minimum threshold defined by a corre-
sponding cost function, usually the mean squared error.

3.1.6 � Radial basis function neural network

The RBFNN is another feed forward network made up of 
three layers namely: the input, a single hidden and output 
layer fully interconnected as shown in Fig. 5. Unlike the 
BPNN, the RBFNN can have only a single hidden layer. The 
input layer transmits inputs Xj =

(
X1, X2, X3, ..., Xm

)
 from the 

external environment which are sent into the hidden layer 

(22)Netj =

m∑
i=1

(
Xiwij + bj

)

(23)Zj = fH
(
Netj

)

(24)Netk =

m∑
i=1

(
Ojwjk + bk

)

(25)ŷ = fO
(
Netk

)

(26)ek = tk − ŷ
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Fig. 2   Framework of the proposed SaDE-ELM model
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Fig. 3   Pseudocode of the 
SaDE-ELM algorithm

Fig. 4   BPNN architecture
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without any weights being connected to them. The hidden 
layer contains neurons consisting of a radial basis function 
which serves as the transfer function. In the hidden layer, 
a Euclidean norm, ‖‖ , is computed by each neuron. The 
Euclidean norm is the distance between the input to the 
network and the position of that neuron called centre, ci. 
The output, neti, from the hidden layer is obtained when 
the computed centre is inserted into the radial basis func-
tion as shown in Eq. (27). This study made use of the Gauss-
ian radial basis activation function with a width parameter, 
�i.

The output, neti from the hidden layer, is weighted 
using weights, wik and summed. This is then inserted into 
the linear transfer function in the output layer where a bias 
term, b0 , is added to result in the final output, ŷk as shown 
in Eq. (28).

3.1.7 � Generalised regression neural network

The GRNN is a single-pass learning algorithm which unlike 
the BPNN does not require iterative training. It consists of 
the four layers, namely the input, pattern, summation and 

(27)neti = exp

⎛⎜⎜⎜⎝
−

���Xj − ci
���
2

2�2
i

⎞⎟⎟⎟⎠

(28)ŷk = b0 +

r∑
i=1

wikneti

output layers which are interconnected in a feed forward 
manner as shown in Fig. 6. The information from the external 
environment is received by the input layer and sent to the 
pattern layer, where the Euclidean distances between stored 
pattern units and each input are computed. The computed 
Euclidean distances are then sent into a radial basis activa-
tion function. The resulting output is sent to the summation 
layer which consists of the D-summation neuron and S-sum-
mation neuron. The D-summation neuron and S-summation 
neuron compute the sum of the unweighted and weighted 
outputs from the pattern neurons, respectively. In the out-
put layer, the output of the S-summation neuron is divided 
by the output of the D-summation neuron, to produce the 
final output, Ŷ(x) as shown in Eq. (29).

Here k(x, xi) is the kernel of the radial basis function and wi 
is the activation weight for the pattern layer neurons.

For the study, a Gaussian activation function with a kernel, 
k(x, xi) and width parameter, σ defined in Eq. (30) was used.

(29)Ŷ(x) =

∑n

i=1
wik

�
x, xi

�
∑n

i=1
k
�
x, xi

�

(30)k
�
x, xi

�
= e

−‖x−xi‖2
2�2

Fig. 5   RBFNN architecture
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3.2 � Model development procedures

3.2.1 � Input parameter selection and data partitioning

In this study, a total of 210 blasting datasets were col-
lected from the study mine and prepared for the model-
ling of various approaches. In the modelling stage, the 
entire 210 blasting data points were partitioned into 
two sets using the holdout cross-validation partitioning 
technique [46]. In this technique, the whole datasets 
were partitioned into two distinct sets: training and test-
ing. Here, the training set was used in constructing the 
models, whereas the testing set was used as a measure 
to independently assess the predictive performance of 
the developed models. In that regard, 130 data points 
out of the entire 210 were used as the training sets and 
the remaining 80 served as the test set. The training and 
test sets represent 62 and 38%, respectively. The reason 
for selection being, to produce good predictions results, 
artificial intelligent techniques requires enough training 
data. However, if the training data are more than enough, 
it will cause overfitting whereby the model cannot gen-
eralise well with unseen data. It is very important to 
know that there is no universally accepted ratio for split-
ting the data. Thus, this partitioning was done randomly 
with no underlining data splitting formula. Furthermore, 
to avoid overfitting and underfitting, the training set was 
purposely selected to represent the entire characteristic 
of the whole data in the study area. Likewise, the test-
ing set chosen is evenly distributed across the area of 
study. The input parameters used in the modelling were 
distance from the monitoring station to the blasting 
point (m), powder factor (kg/m3), hole depth (m), maxi-
mum instantaneous charge (kg) and number of blast 

holes. For the empirical approaches, distance from the 
monitoring station to the blasting point (m) and maxi-
mum instantaneous charge (kg) were considered as the 
input parameters. These input parameters were selected 
because they have been found in the literature to be the 
controllable parameters that influence the intensity of 
blast-induced ground vibration [12, 20]. The peak parti-
cle velocity (PPV) values were used as the output param-
eter for all the approaches evaluated in this study. The 
obvious blast parameters of burden, spacing and stem-
ming height were not included in the modelling process 
because they had constant numeric values throughout 
the datasets. Moreover, the essence was to avoid the 
inclusion of redundant input parameters. The powder 
factor, hole depth, maximum instantaneous charge and 
number of blast holes data points were obtained from 
the daily blast design plan. The distance from the moni-
toring station to the blasting point was obtained using 
Global Positioning System (GPS) coordinates between 
the two points. Finally, the PPV values were monitored 
and recorded using a 3000 EZ Plus Portable seismograph 
which was securely positioned near the closest house 
in the community near the mine pit. This closest com-
munity from the pit can vary between 573 and 1500 m 
depending on the location of the blast. It is worth men-
tioning that PPV values were able to be recorded for 
wide distances of 1500 m. However, these collected PPVs 
can be felt, but they have lower intensity as compared 
to those collected from a shorter distance as presented 
in Table 1. The geophone of the seismograph was firmly 
spiked on a flat terrain with the arrow on the geophone 
pointing to direction of the blast. However, the direc-
tion of the arrow changes depending on the location of 
the blast. It is worth mentioning that prior to blasting all 

Fig. 6   GRNN architecture
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operations in and around the pit are halted. Equipment 
working in the pit is packed at a safe distance from the 
blasting area. This ensures that the PPV values recorded 
are due to only the blasting. Furthermore, any form of 
vibration caused by movement around the seismograph 
is avoided during the monitoring of the blast-induced 
ground vibration. This was done to ensure accurate PPV 
readings. It is worth mentioning that, before recordings 
are done, the seismograph is calibrated. In the calibra-
tion process, the seismograph is first set to a continuous 

recording mode. Thereafter, the seismograph is set to 
record the ambient vibrations levels, i.e. vibrations from 
the surroundings. These recorded ambient vibrations 
levels are then set as below detection levels to avoid the 
reading of the surrounding vibrations during the moni-
toring and recording a blast. The statistical description 
of the data for the output and input parameters used 
in this study is presented in Table 2. Furthermore, the 
correlation coefficient matrix between various input and 
output parameters is presented in Table 3.

Table 1   Sample of collected 
dataset

Number of 
blast holes

Maximum instanta-
neous charge (kg)

Distance (m) Hole depth (m) Powder factor 
(kg/m3)

Vibration 
(mm/s)

89 86 852 10.99 0.75 0.76
103 96 617 10.65 0.74 1.00
53 83 1500 10.56 0.64 0.32
140 76 708 10.62 0.58 1.20
244 91 707 10.19 0.73 1.14
135 83 1200 9.86 0.53 0.51
171 88 614 10.43 0.69 1.39
143 69 1500 8.15 0.69 0.22
206 100 648 10.68 0.76 1.42
145 76 1400 8.57 0.73 0.32
226 100 897 10.4 0.78 1.18
97 89 1200 11 0.66 0.57
282 96 701 10.51 0.74 1.59
111 112 866 10.99 0.97 1.02

Table 2   Statistical description 
of the input and output 
parameters

Parameters Abbreviation Unit Min Max Mean Std dev

Distance from monitoring station 
to blasting point

D M 573 1500 915.01 234.62

Powder factor PF kg/m3 0.1 0.97 0.69 0.15
Number of blast holes NH – 19 355 122.5 52.37
Hole depth HD m 3.73 12.58 10.45 1.14
Maximum instantaneous charge MIC kg 11.6 123.49 90.08 19.54
Peak particle velocity PPV mm/s 0.13 1.65 0.79 0.32

Table 3   Correlation coefficient matrix between input parameters and measured PPV

Number of 
blast holes

Maximum instanta-
neous charge (kg)

Distance from 
blasting point 
(m)

Hole depth (m) Powder fac-
tor (kg/m3)

PPV (mm/s)

Number of blast holes 1
Maximum instantaneous charge (kg) 0.0585 1
Distance from blasting point (m) − 0.1161 − 0.1862 1
Hole Depth (m) − 0.0528 0.5527 − 0.1431 1
Powder factor (kg/m3) 0.1206 0.7954 − 0.1639 0.2460 1
PPV (mm/s) 0.4715 0.4700 − 0.6957 0.2985 0.5153 1
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3.2.2 � Data normalisation

In order to avoid input data with high range of values from 
influencing the prediction results so as to avoid overfit-
ting, the respective input parameter (Table 1) data sets 
were scaled into the range [− 1, 1] using Eq. (31) [47] as 
pre-processing step before the development of various 
computational intelligent models.

where Bi is the normalised data, Ai represents the observed 
blast data, Amin and Amax denote the minimum values and 
maximum of the actual blast data with Bmax and Bmin values 
set at 1 and − 1, respectively.

3.2.3 � Model building

In this study, the proposed SaDE-ELM approach is compared 
with two variations in the ELM approach (basic ELM and 
KELM), three standard computational intelligent approaches 
(BPNN, RBFNN, GRNN) and five empirical models (USBM, 
Indian Standard, Ambraseys–Hendron, Langefors–Kihlstrom 
and CMRI). Due to the use of SaDE algorithm, the develop-
ment of the optimum SaDE-ELM hybrid model is dependent 
on the population size (NP), the crossover rate (CR), mutation 
scaling factor (F) as well as the number of hidden neurons of 
the ELM. Therefore, in this study NP was selected from the 
range of [10, 130] with a step size of 10. Mean squared error 
(MSE) was used as a fitness function to be minimised. The 
optimisation process was repeated 1000 times to find the 
optimal MSE value. According to Qin et al. [42], the proper 
selection of CR can result in a successful optimisation perfor-
mance while a wrong choice can worsen the performance 
of the SaDE-ELM. Hence, the CR and F parameters were 
selected according to their universally accepted ranges of 
0 ≤ CR ≤ 1 and 0 ≤ F ≤ 2 , respectively [44]. The number of 
hidden neurons for the SaDE-ELM was determined through 
an experimental process. Moreover, since the SaDE is a 
stochastic algorithm, it produces a different performance 
results for each run. This makes the results very unstable 
and not dependable, which is a limitation of most compu-
tational intelligent approaches [48]. Hence, in the develop-
ment of the SaDE_ELM as well as the other computational 
intelligent models, a random seed value was introduced 
to keep the results constant and stable irrespective of the 
number of runs. In the development of the basic ELM model, 
the adjustable parameters were the number of hidden layer 
neurons and the activation function in the hidden layer [49]. 
For the activation function, the sigmoid and sine were exper-
imented on the data to select the one that produced the 

(31)Bi = Bmin +

(
Ai − Amin

)
×
(
Amax − Bmin

)
(
Amax − Amin

)

best prediction results. The optimal number of hidden layer 
neurons was also determined by a sequential experimental 
process. The development of the KELM model depends on 
the regularisation coefficient, the type of kernel function 
used and its kernel parameter. The popularly used RBF kernel 
[Eq. (9)] was used while the regularisation coefficient [Eq. (6)] 
and the kernel parameter [Eq. (9)] of the RBF kernel were 
determined through a sequential experimental process. In 
the case of BPNN, critical parameters considered include: 
the type of training algorithm, the number of hidden lay-
ers with their respective neuron numbers and the activation 
functions for both the hidden layer(s) and the output layer. 
This study applied three training algorithms, namely Scaled 
Conjugate Gradient [50], Bayesian Regularisation [51] and 
Levenberg–Marquardt [52]. Furthermore, one hidden layer 
BPNN was used because it has been found to universally 
approximate any given function [53]. Moreover, a BPNN with 
two and three hidden layers was also developed to ascer-
tain the role of the hidden layer, in BPNN development. The 
hyperbolic tangent transfer function [54] was used for the 
hidden layer while the linear transfer function [55] was used 
for the output layer. For the RBFNN, the critical parameters 
(maximum number of neurons and smooth parameter of 
the RBF) that require adjustments in the model building 
phase were determined through a systematic experimental 
process. With regard to GRNN, the only critical parameter 
to be fine-tuned which is the smoothing parameter of RBF 
was determined through a sequential experimental pro-
cess. For each computational intelligent approach, their 
corresponding optimal models were selected based on the 
mean squared error (MSE) and correlation coefficient (R) 
criteria. Here, the model that generalises on the test data 
to produce the lowest MSE and highest R is categorised as 
the optimum model. For the empirical models, their respec-
tive site-specific constants (k, β, n) were determined through 
regression analysis.

3.3 � Model selection and performance indicators

The models’ performance assessment was carried out based 
on the testing data prediction results. To do that, mean 
squared errors (MSE), Nash–Sutcliffe Efficiency Index (NSEI) 
[56] and correlation coefficient (R) were applied. These are 
expressed mathematically in Eqs. (32) to (34). Afterward, the 
Bayesian Information Criterion (BIC) [57] (Eq. (35)) which is 
a model selection technique was used to choose the best 
performing model.

(32)MSE =
1

n

n∑
k=1

(
ak − pk

)2
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where n is the test data size, p is the mean of the predicted 
values, pk are the predicted values, a is the mean of the 
actual values, ak are the actual values and α is the number 
of parameters estimated by each model. Here, the param-
eters represent the number of input parameters used in 
the development of each model.

(33)NSEI = 1 −

∑n

k=1

�
ak − pk

�2
∑n

k=1

�
ak − a

�2

(34)R =

∑n

k=1

�
ak − a

��
pk − p

�
�∑n

k=1

�
ak − a

�2
×

�∑n

k=1

�
pk − p

�2

(35)BIC = n ln

(
1

n

n∑
k=1

(
ak − pk

)2
)

+ � ln (n)

4 � Results and discussion

4.1 � Developed models

4.1.1 � Computational intelligent approaches

Based on the experimental results, the best SaDE-ELM 
model had CF, F, NP and hidden neuron values of 1, 0.5, 
70 and 7, respectively. The performance of the opti-
misation process is illustrated in Fig. 7. Table 4 shows 
the performance of the SaDE-ELM model with differ-
ent values for the control parameters. The best KELM 
model was found to have a regularisation coefficient 
and kernel parameter values of 496 and 363, respec-
tively. The best performing ELM model had a structure 
of [5–11–1] corresponding to five input parameters, one 
hidden layer of eleven neurons and one output with a 

Fig. 7   Performance of the 
SaDE-ELM model on each itera-
tion and number of popula-
tions
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Table 4   Performance of the 
SaDE-ELM model with different 
control parameters values

Control parameters Training Testing

F CR NP NHN R MSE R MSE

0.1 0.1 80 9 0.90465 0.02185 0.85994 0.02061
0.1 0.2 70 14 0.91148 0.02036 0.86194 0.02043
0.3 0.6 50 19 0.91267 0.02010 0.85306 0.02155
0.3 0.7 100 10 0.90095 0.02266 0.86402 0.02000
0.8 0.5 110 4 0.906536 0.02144 0.856542 0.021193
0.1 0.1 130 5 0.896449 0.023633 0.854909 0.021342
1 0.5 70 7 0.88667 0.02573 0.87113 0.01942
1.5 0.8 130 11 0.90622 0.021509 0.862647 0.020544
1.7 0.9 90 18 0.91215 0.02021 0.85834 0.02099
2 1 120 20 0.912319 0.020175 0.855264 0.021261
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sigmoid activation function. The best performing BPNN 
model was based on the Levenberg–Marquardt training 
algorithm with structure of [5–1–1] meaning five input 
parameters, one hidden layer (Table 5) of 1 neuron with 
the hyperbolic tangent transfer function for its hidden 
layer and the linear transfer function for its output layer. 
From Table 5, BPNN models with 2 and 3 hidden layers 
were not better than that with only one hidden layer as 
iterated by Hornik et al. [53]. The best RBFNN model had 
a structure of [5–9–1] also corresponding to five input 
parameters, one hidden layer of nine neurons and one 
output with the RBF having a smooth parameter value 
of 1.7. The best GRNN model was found to have a RBF 
smooth parameter of 0.40. The optimal training and test-
ing results and control parameters for various computa-
tional intelligent approaches are shown in Table 6.

4.1.2 � Empirical approaches

The developed empirical models are presented in Table 7. 
The training and testing results as well as the site-specific 
constants (k and β) for various empirical models are pre-
sented in Table 8.

4.2 � Assessment of model performance

Using various performance indicators as outlined in Eqs. 
(32) to (34) on the test datasets, the predictive abilities of 
various developed models were assessed. The obtained 
assessment test results are presented in Table 9.

It is known that an excellent performing model must 
have MSE value closest to 0 as well as R and NSEI values 
closest to 1. Therefore, on the basis of the testing results, 
Table 9 and Fig. 8 show that the proposed SaDE-ELM 
model had the least MSE. This means that the proposed 
SaDE-ELM has better generalisation ability than the 
other investigated models as confirmed by Huang et al. 
[43]. This outstanding performance of the SaDE-ELM 
model can be attributed to the self-adaptive differential 
evolution property of the model which was used to opti-
mise the hidden node biases and input weights of the 
basic ELM [42]. Comparatively, it can also be observed 
that the basic ELM, BPNN and KELM models were able 
to predict blast-induced ground vibration accurately 
than the RBFNN, GRNN and the conventional methods 
(Table 9). The overall analysis (Table 9) shows that all the 
computational intelligent models presented in this study 
outperformed the empirical approaches. This can also be 
confirmed by visual observation of Fig. 8.

With reference to Table 9, it can be gathered that the 
proposed SaDE-ELM model had the highest R value of 
0.8711 signifying the presence of a very strong correlation 
between SaDE-ELM predicted PPV values and the actual 
values. The interpretation is that the SaDE-ELM could pre-
dict to an approximate accuracy of 87%. On the contrary, 
the ELM, KELM, BPNN and RBFNN models produced a 
prediction accuracy of approximately 85%. The rest of the 
methods performed poorly in that regard (Table 9). This is 
established in Fig. 9 where a diagrammatic representation 
of the R values is presented.

Table 5   Performance of the BPNN model with different numbers of 
hidden layer(s)

Number of hidden 
layer(s)

Training Testing

R MSE R MSE

1 0.909 0.0209 0.8537 0.0217
2 0.910 0.0207 0.8525 0.0219
3 0.910 0.0206 0.8520 0.0220

Table 6   Optimal training, 
testing results and control 
parameters for various models

*NB: NHN means number of hidden layer neurons

Model Control parameters Training Testing

F CR NP λ φ σ NHN R MSE R MSE

SaDE-ELM 1 0.5 70 – – – 7 0.88667 0.02573 0.87113 0.01942
ELM – – – – – – 11 0.9073 0.02127 0.85345 0.02166
KELM – – – 496 363 – – 0.90693 0.02137 0.85302 0.0217
BPNN – – – – – – 1 0.909 0.0209 0.8537 0.0217
RBFNN – – – – – 1.7 11 0.91043 0.02059 0.84764 0.02227
GRNN – – – – – 0.4 – 0.90977 0.02303 0.80121 0.03006

Table 7   Formulated equation of the empirical models

Empirical model Equations

Indian standard
PPV = 0.7676

[
MIC

/
D
2∕3

]0.938
USBM

PPV = 300.7
[
D
/
(MIC)1∕2

]−1.319
CMRI

PPV = 88.084
[
D
/
(MIC)1∕2

]−1
− 0.1463

Ambrasey–Hendron
PPV = 1724.4

[
D
/
(MIC)1∕3

]−1.464
Langefors–Kihlstrom

PPV = 61.406
[
(MIC)1∕2

/
D3∕4

]1.5475
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Table 8   Training and testing 
results and site-specific 
constants for the empirical 
models

Model Site-specific constants Training Testing

k Β n R MSE R MSE

USBM 300.7 1.319 – 0.800875 0.044163 0.76220 0.056136
Indian standard 0.7676 0.938 – 0.747262 0.057503 0.75545 0.034190
Ambrasey–Hendron 1724.4 1.464 – 0.790506 0.046945 0.74659 0.065865
Langefors–Kihlstrom 61.406 1.5475 – 0.801623 0.04397 0.78330 0.045617
CMRI 88.084 – − 0.1463 0.80666 0.042031 0.76922 0.051331

Table 9   Model performance assessment results based on testing 
datasets

Model Performance indicators

MSE R NSEI

SaDE-ELM 0.01942 0.8711 0.7537
ELM 0.02166 0.8535 0.7254
KELM 0.02170 0.8530 0.7249
BPNN 0.02170 0.8537 0.7249
RBFNN 0.02227 0.8476 0.7183
GRNN 0.03006 0.8012 0.6188
USBM 0.05614 0.7622 0.2883
Indian standard 0.03419 0.7555 0.5665
Ambrasey–Hendron 0.06587 0.7466 0.1649
Langefors–Kihlstrom 0.04562 0.7833 0.4216
CMRI 0.05133 0.7692 0.3492

Using the NSEI indicator (Table 9), among the meth-
ods applied, it is observed that the proposed SaDE-ELM 
model had the highest NSEI value of 0.7537 which was 
the closest to 1. The NSEI quantitative results are graphi-
cally illustrated in Fig. 10. From the results, it can be stated 
that the SaDE-ELM could serve as a better fit in modelling 
blast-induced ground vibration than the other models pre-
sented in this study.

Figures 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 show the 
predicted and measured PPV on 1:1 slope line with respect 
to their various coefficient of determination (R2). It can be 
seen from these figures that the SaDE-ELM as compared to 
the other approaches had the highest correlation between 
the predicted and measured PPV.

4.3 � Selection of best model

The computed BIC (Eq. (35)) values for each model devel-
oped are presented in Table 10. The BIC selects the best 
performing model by considering the model with the 
lowest BIC value. Therefore, referring from Table 10, the 
proposed SaDE-ELM model had the lowest BIC value of 
− 293.40. This further confirms the computational supe-
riority of SaDE-ELM over the candidate models investi-
gated. This is additionally viewed in Fig. 22. Therefore, 

this study selected the SaDE-ELM model for on-site 
prediction and control management of blast-induced 
ground vibration.

5 � Sensitivity analysis

In order to ascertain the sensitivity of input parameters 
considered in this study on blast-induced ground vibra-
tion (PPV), the cosine amplitude method [58] was used. 
Using this method, each input parameter and the out-
put parameter were expressed in a common X-region as 
shown in Eq. (36).

where each element xi is a single column matrix of length 
p which is equivalent to the total number of datasets as 
shown in Eq. (37).

The sensitivity of each input parameter xi on the PPV 
xj was then computed using Eq. (38).

The computed sensitivity index for each of the input 
parameters is presented in Table 11 and is graphically illus-
trated in Fig. 23. With reference to Table 11 and Fig. 23, 
it can be noticed that the most influential parameter on 
the PPV was the powder factor and thus had the highest 
sensitivity index of 0.9452. This was closely followed by 
the maximum instantaneous charge, hole depth, num-
ber of blast holes, and the distance from the monitoring 
point and the blast face in decreasing order of influence. 
It is well established in the literature that distance from 
the monitoring point to the blast face is a very sensitive 
parameter to PPV estimation. However, in this study, it can 
be observed that it was the least sensitive to PPV estima-
tion among various input parameters considered. This is 

(36)X =
{
x1, x2, x3,… xn

}

(37)xi =
{
xi1, xi2, xi3,… xip

}

(38)sij =
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due to the wide range of distance values (573 to 1500 m) 
recorded for the study.

6 � Conclusions

In this study, the self-adaptive differential evolutionary 
extreme learning machine (SaDE-ELM) has been proposed as 
a novel approach for the prediction of blast-induced ground 
vibration. To comprehensively assess the performance of the 
SaDE-ELM, the basic ELM, KELM, three benchmark compu-
tational intelligent approaches (BPNN, RBFNN and GRNN) 
and five empirical approaches (Langefors–Kihlstrom, CMRI, 
Ambrasey–Hendron, Indian Standard and USBM) were 
applied. The obtained comparison results based on various 
performance indicators showed that the proposed SaDE-
ELM approach was superior and more accurate in predicting 

blast-induced ground vibration than the other competing 
models. This was evident in the SaDE-ELM achieving the low-
est MSE value 0.01942 and the highest NSEI and R values 
of 0.7537 and 0.8711, respectively. The other artificial intel-
ligent approaches of ELM, KELM, BPNN, RBFNN and GRNN 
had MSE, R and NSEI in the ranges of (0.02166–0.03006), 
(0.8012–0.8537) and (0.6188–0.7254), respectively. The 
empirical approaches performed poorly relative to the 
artificial intelligence approaches by having had MSE, R and 
NSEI in the ranges of (0.03419–0.06587), (0.7466–0.7833) and 
(0.1649–0.5665), respectively. Furthermore, the computed 
BIC values for various methods showed that the SaDE-ELM 
approach had the lowest value of − 293.40 and thus was 
selected for the prediction of blast-induced ground vibra-
tion in this study. With the method demonstrating good pre-
diction accuracy, it was concluded that the proposed SaDE-
ELM model has high potential to be used by the mining and 

Fig. 8   Mean squared error 
testing results for various 
approaches
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Fig. 9   Correlation coefficient 
values for various approaches
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Fig. 10   Nash–sutcliffe effi-
ciency index values for various 
approaches
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Fig. 11   Correlation of predicted and measured PPV for the SaDE-
ELM model

Fig. 12   Correlation of predicted and measured PPV for the KELM 
model

Fig. 13   Correlation of predicted and measured PPV for the ELM 
model

Fig. 14   Correlation of predicted and measured PPV for the BPNN 
model

Fig. 15   Correlation of predicted and measured PPV for the GRNN 
model

Fig. 16   Correlation of predicted and measured PPV for the RBFNN 
model
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Fig. 17   Correlation of predicted and measured PPV for the USBM 
model

Fig. 18   Correlation of predicted and measured PPV for the Ambra-
sey–Hendron Model

Fig. 19   Correlation of predicted and measured PPV for the Indian 
standard model

Fig. 20   Correlation of predicted and measured PPV for the Lange-
fors–Kihlstrom Model

Fig. 21   Correlation of predicted and measured PPV for the CMRI 
model

Table 10   BIC values for various models

Model BIC values

SaDE-ELM − 293.40
ELM − 284.69
BPNN − 284.54
KELM − 284.52
RBFNN − 282.47
Indian standard − 261.30
GRNN − 258.44
Langefors–Kihlstrom − 238.23
CMRI − 228.79
USBM − 221.63
Ambrasey–Hendron − 208.85
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civil engineering industry for accurate and effective on-site 
prediction of blast-induced ground vibration. The empiri-
cal models performed poorly relative to the computational 
intelligent approaches. Sensitivity analysis conducted on the 
input parameters showed that powder factor and maximum 
instantaneous charge were the most influential parameters 
on the levels of blast-induced ground vibration. For future 
studies, the BPNN, GRNN and RBFNN can be optimised by 
the SaDE algorithm to ascertain the superiority of the result-
ing hybrid model.

Fig. 22   Bayesian information 
criterion values for various 
approaches
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Table 11   Sensitivity index for various input parameters

Input parameter Sensitivity index

Powder factor 0.9452
Maximum instantaneous charge 0.9416
Hole depth 0.9315
Number of blast holes 0.9209
Distance from monitoring station to blasting 

point
0.8301
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