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Abstract
Owing to increase in energy demands and depletion in fossil fuels, solar energy conversion is the reliable and sustainable 
one for future. Among the solar energy conversion techniques, dye-sensitized solar cells (DSSC) have received much 
attention due to their ease of fabrication, cost-effectiveness, reliable and high proficiency in converting solar energy. The 
commercialization of DSSC is still hindered by usage of expensive materials like platinum counter electrodes. Therefore, 
researchers are focusing on developing low-cost and earth abundant alternatives. The present work involves hydrother-
mal synthesis of molybdenum trioxide (MoO3) at various temperature ranges such as 400, 500, 600 and 700 °C and several 
other characterizations through various analytical techniques. On increasing the temperature range, the MoO3 forms 
nanorod like structure. The synthesized materials are employed as counter electrode in DSSC, showed enhanced power 
conversion efficiency (PCE) on increasing the calcination temperature range. The maximum PCE of 4.13% is obtained for 
MoO3 calcined at 600 °C, which is highly comparable with the high cost platinum CE based DSSC.

Keywords  Solar energy · Dye sensitized solar cells · Counter electrode · Molybdenum trioxide · Power conversion 
efficiency

1  Introduction

Increasing global energy demands urges to develop 
an efficient technology that harvest energy resources 
with minimal environmental impacts. For this, renew-
able energy sources such as wind, solar, geothermal, 
hydroelectricity are alternative strategies to overcome 
the issues. Among them, solar energy has many advan-
tages such as non-exhaust, earth abundant etc., [1–3]. 
To harvest the solar energy, solar cells have been devel-
oped, which converts solar energy into electrical energy 

directly. It involves the solar cells with first, second and 
third generation devices. Currently, third generation 
solar cells are the emerging field of research [4]. In that, 
dye sensitized solar cells (DSSCs) receive much atten-
tion due to their ease of fabrication and cheaper than 
other solar cells. Normally, DSSC consists of four com-
ponents namely sensitizer, photoanode, electrolyte and 
counter electrode. When light is illuminated, the dye 
molecules (sensitizer) get excited and injects the elec-
tron into the conduction band of the semiconductor 
photoanode. The electron from the conduction band 
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of semiconductor flows through the external circuit 
and reaches the counter electrode. Counter electrode 
transfers electrons from the external circuit to the elec-
trolyte, where the electrolyte helps the redox reaction 
in dye-sensitized solar cells [5–7]. Currently, researchers 
are focusing to commercialize the DSSC. However, it is 
still hindered by using platinum like counter electrode, 
because of their low abundance and high cost. Thus, 
fabrication of CEs with other low-cost materials may 
bring down the production cost of the DSSCs. So far, Pt-
nanocomposite, polymer based counter electrode and 
transition metal compounds including carbide, nitrides 
and oxides are explored as a potential candidate to sub-
stitute Pt due to their distinguishing features such as 
low cost, thermal stability, durability, high thermal and 
electrical conductivity and their catalytic behavior that 
resembles platinum [8–13]. On comparing with carbides 
and nitrides based counter electrodes, only fewer stud-
ies are reported for oxides based counter electrodes. In 
oxide based counter electrodes, various transition metal 
oxides are attempted to study as a counter electrode for 
DSSC [14–19]. Of these, molybdenum trioxide (MoO3) is 
one of the renowned oxide material, commonly used for 
versatile applications such as in energy storage, cataly-
sis, electrochromics, photochromics, thermochromics, 
display materials, sensors [20–26]. It also exhibits good 
electrocatalytic activity, hence it could be the poten-
tial candidate for CE in DSSC. In this work, MoO3 was 
prepared by hydrothermal method and is subjected to 
calcination at 400, 500, 600 and 700 °C. The prepared 
MoO3 were characterized by suitable physicochemi-
cal techniques. The calcinated MoO3 samples are used 
to fabricate CE for DSSC, of which, MoO3 obtained at 
600 °C shows PCE of about 4.13%.

2 � Materials and methods

2.1 � Chemicals and reagents

Ammonium molybdate tetra-hydrate ((NH4)6Mo7O24·4H2O) 
(Merck), ethylene glycol (Merck), ruthenizer 535-bis TBA 
(N719) (Solaronix), Iodolyte HI-30 (Solaronix), Titanium 
Tetrachloride (spectrochem) and fluorine doped tin oxide 
(FTO) transparent conducting electrode (7 Ω cm−1) (Hind 
High Vacuum, India) were purchased and used.

2.2 � Synthesis of molybdenum trioxide (MoO3)

The MoO3 was prepared as follows (Scheme 1). Initially, 
18.5 g of ammonium molybdate tetra-hydrate was dis-
solved in 150 ml of ethylene glycol and then stirred for 
2 h at room temperature to form a homogeneous mixture. 
Then, the above mixture was transferred to autoclave and 
heated at 150 °C for 10 h. After allowing the mixture to 
cool naturally, the product was centrifuged, washed with 
distilled water four times, following which the orange 
color precipitate was obtained. Then the mixture was dried 
for 10 h at 80 °C. This dried product was subjected to calci-
nation at 400, 500, 600 and 700 °C. The resultant product 
was black in colour, labelled as 400-MoO3, 500-MoO3, 600-
MoO3 and 700-MoO3.

2.3 � Fabrication of dye sensitized solar cells

2.3.1 � Preparation of photoanode

The TiO2 colloidal paste was prepared and casted on 
the FTO electrode using doctor blade technique and 
calcinated at 500 °C. TiCl4 Treatment was made on TiO2 
coated film and sintered at 500  °C for 30  min. Then, 
TiO2 coated electrode was dipped into a 0.5 × 10–3 M 

Scheme 1.   Schematic representation of synthesis of MoO3 nanorods
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of photo-sensitizer (N719) containing acetonitrile and 
4-tert-butanol (1:1) volume ratio for 24  h. The N719 
attached TiO2 electrode was rinsed with absolute etha-
nol to remove the unadsorbed dye and dried in N2 flow 
for 30 min. Finally, the dye coated adsorbed photoanode 
was obtained.

2.3.2 � Preparation of counter electrodes

The 400-MoO3, 500-MoO3, 600-MoO3 and 700-MoO3 
modified CEs were fabricated by dispersing 50 mg of 
each material in ethanol and were sonicated until homo-
geneous colloidal suspensions is obtained. The resultant 
homogeneous colloidal suspensions were drop-casted 
on the FTO conducting surface and were dried at 120 °C 
for 24 h. Also, platinum coated FTO was prepared for the 
reference.

2.3.3 � Assembly of dye‑sensitized solar cells

The fabricated photoanode and CEs is dispensed with 
an aid of 100 μm thick surlyn spacer. Adequate amount 
of liquid electrolyte is applied over the dye sensitized 
TiO2 film. Over this film, 400-MoO3, 500-MoO3, 600-MoO3 
and 700-MoO3 platinum based CEs were placed. Finally, 
the DSSC was sandwiched using a clip. Before current 
density–voltage (J–V) measurement, the cell is masked 
using 5 mm × 5 mm non absorbing light black colour 
insulating tape.

2.3.4 � Characterization techniques

The crystalline property of MoO3 was analysed using 
a Rigaku powder X-ray diffractometer with Cu Kα 
(λ¼1.5406  A ̊) radiation over Bragg angle 2θ ranging 
within 10° to 80°. The morphological studies were car-
ried out by a FESEM (Field Emission Scanning Electron 
Microscopy) and HRTEM (High-Resolution Transmission 
Electron Microscopy) (Carl Zeiss SIGMA field). The pho-
tovoltaic performance of the DSSC was evaluated using 
a Xenon lamp with a light intensity of 100 Mw cm−2 and 
an integrated air mass (AM) 1.5 G filter (ScienceTech, 
Canada). The J–V curves were measured using a Keithley 
Model 2400 multisource meter. Cyclic voltammetry (CV) 
and Electrochemical Impedance Spectra (EIS) analysis 
were performed with a computer-controlled potentio-
stat equipped with a frequency response analyzer (VER-
SASTAT 3-200).

3 � Results and discussion

3.1 � XRD characterization of the synthesized 
materials

The crystalline properties of synthesized materials were 
studied by PXRD pattern and are shown in Fig. 1. One 
can observe that on increasing the annealing tempera-
ture from 400 to 700 °C, the crystallinity of the material 
gets increased. For 600-MoO3, the XRD pattern shows 
strong diffraction peaks at 2θ values of 13.25°, 23.75°, 
26.15°, 27.72°, 39.35°, 46.64°, and 58.05°, which corre-
spond to (001), (101), (002), (011), (112), (013) and (014) 
crystal planes of monoclinic MoO3 (JCPDS NO. 47-1320) 
and cell parameters, a = 3.954 Å, b = 3.687 Å, c = 7.095 Å 
and d = 103.75° [27]. A high intense characteristic peak is 
observed at 26.15° (Fig. 1c); confirming the (002) plane of 
monoclinic MoO3. This confirms a high crystalline behav-
ior of MoO3. In addition, the intensities of the 600-MoO3 
material is stronger at higher temperature, revealing 
that the 600-MoO3 possess high preferential orientation 
along with the [002] direction to the nanorod structure. 
When the temperature increased to 700 °C the crystal 
phase changes to α-MoO3 orthorhombic phase with 
a zone axis along the (010) direction. This implies that 
preferential growth occurred along the c-axis or (001) 
direction, implying that high degree of crystallinity.

Fig.1   XRD patterns of (a) 400-MoO3, (b) 500-MoO3, (c) 600-MoO3 
and (d) 700-MoO3
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3.2 � Morphological studies

The morphology of the synthesized MoO3 powders were 
examined with scanning electron microscopy (SEM). The 
SEM images of MoO3 powders are shown in Fig. 2a–h. 
From the SEM image all the four samples shows rod like 
structure. The crystallinity of the material increases with 
the annealing temperature as clearly perceived from the 
SEM images of 400-MoO3, 500-MoO3, 600-MoO3 and 700-
MoO3. For 400-MoO3, still unreacted MoO2 precursors are 
present and hence there is no formation of nanorod.

Moreover, as evidenced from SEM images of 400-MoO3, 
500-MoO3 samples consists of a greater number of aggre-
gations formed from MoO2 precursors. But for 500-MoO3, 

the formation of nanorods began, and it is achieved at 
600-MoO3. The formation of nanorods improves with 
the reaction temperature, especially in the sample calci-
nated at 600 °C, where a large number of nanorods can be 
observed. Further increasing the annealing temperature to 
700 °C a well crystalline microrod like structure occurred. 
The distribution density of the nanorods increases with the 
calcination temperature as well. For deeper understanding 
about the morphology of 600-MoO3, it is subjected to TEM 
analysis. Figure 3 shows (a) TEM image and (b) spot pat-
tern of 600-MoO3 respectively. From the TEM image of 600-
MoO3, the particle size of 600-MoO3 is found to be 200 nm. 
The ‘d’ value obtained from the spot pattern of 600-MoO3 is 
matched well with the ‘d’ value obtained from XRD.

Fig.2   SEM images of a, b 400-MoO3, c, d 500-MoO3, e, f 600-MoO3 and g, h 700-MoO3

Fig.3   TEM image of a 600-
MoO3 and b Spot pattern of 
600-MoO3
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3.3 � Photovoltaic performance of DSSC 
with different MoO3 materials

Under sun light illumination, a dye molecule sensitized 
from HOMO to LUMO energy level (1) and the excited 
electron injects into the conduction band of TiO2 (2), the 
dye molecule becomes oxidized. The injected electron is 
transported in between the TiO2 nanoparticles and then 
extracts through the FTO substrate (3) and external cir-
cuit (4), and reaches the counter electrode. The electrolyte 
contains I−/I3

− redox ion, this is used as mediator between 
TiO2 photoanode and counter electrode. The electrolyte is 
regenerating the oxidized dye molecule (5) and reduced 
by electron from counter electrode (6). The electron trans-
fer process is hindered by electron recombination. (a) The 
injected electrons are recombining between conduction 
band of TiO2 and sensitized hole (7). (b) Another recombi-
nation process occurs between conduction band of TiO2 
and oxidation of redox couple (8). This recombination 
process reduces the performance of DSSC devices [28–30] 
(Fig. 4).

The photovoltaic performances of the (a) 400-MoO3, 
(b) 500-MoO3, (c) 600-MoO3 (d) 700-MoO3 and (e) Plati-
num based DSSCs were investigated under a simulated 
solar irradiation of 100 mWcm−2 (AM 1.5 G) and their pho-
tocurrent density–photovoltage (J–V) curve is shown in 
Fig. 5. The corresponding photovoltaic parameters are 
listed in Table 1. Short-circuit photocurrent density (Jsc) 
obtained for (a) 400-MoO3, (b) 500-MoO3, (c) 600-MoO3 (d) 
700-MoO3 and (e) Platinum based DSSCs are 6.308, 6.876, 
9.448, 7.012 and 9.126 mA cm−2 respectively. Open-circuit 
photovoltage (Voc) obtained for (a) 400-MoO3, (b) 500-
MoO3, (c) 600-MoO3 (d) 700-MoO3 and (e) Platinum based 
DSSCs are 0.717, 0.726, 0.70, 0.68 and 0.72 V, respectively 
with the fill factor of 0.658, 0.622, 0.625, 0.579 and 0.658. 
The efficiency of (a) 400-MoO3, (b) 500-MoO3, (c) 600-MoO3 

Fig.4   Schematic illustration of 
DSSC mechanism

Fig.5   Current density–voltage (J–V) curves obtained for (a) 400-
MoO3, (b) 500-MoO3, (c) 600-MoO3 (d) 700-MoO3 and (e) platinum 
based DSSCs sensitized with N719 dye under simulated AM 1.5 G 
solar irradiation of 100 mW cm−2

Table 1   Photovoltaic parameters derived for different MoO3 modi-
fied and Pt based CE in DSSCs

The DSSCs performance was evaluated under 100 mW cm–2 simu-
lated AM 1.5 G solar light irradiation. Jsc: Short-circuit current den-
sity; Voc: Open-circuit voltage; FF: Fill factor; η: Power conversion 
efficiency. Area of the cell was 0.25 cm2.

Counter electrode Jsc (mA cm−2) Voc (V) FF η (%)

400-MoO3 6.308 0.717 0.658 2.98
500-MoO3 6.876 0.726 0.622 3.1
600-MoO3 9.448 0.7 0.625 4.13
700-MoO3 7.012 0.68 0.579 2.76
Platinum 9.192 0.72 0.658 4.35
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(d) 700-MoO3 and (e) Platinum are 2.98, 3.1, 4.13, 2.76 and 
4.35% respectively. It can be clearly seen that the efficiency 
increased with increasing the calcination temperatures 
and their crystalline nature. On comparing the platinum 
based counter electrode 600-MoO3 based counter elec-
trode material, showed comparable efficiency. From this, 
the catalytic behavior of the 600-MoO3 is revealed. Hence, 
600-MoO3 could be the better alternative to the platinum 
counter electrode.

3.4 � Cyclic voltammetry analysis

Cyclic voltammetry (CV) is an important tool to investi-
gate the electrocatalytic behaviors of different electrodes 
toward the reduction of triiodide. The cyclic voltammetric 
(CV) technique was carried out in a three electrode sys-
tem namely, working, counter and reference electrodes. 
The FTO coated with 400-MoO3, 500-MoO3, 600-MoO3 
and platinum are employed as a working electrode and 
subjected to CV analysis at a scanning rate of 50 mV s−1

. 
The crucial operation of CE in DSSC is reducing the trii-
odide ions, therefore the reduction peak current density 
of left side peak is generally identified as the characteris-
tic of superior catalytic ability [26]. Figure 6 shows the CV 
curves of (a) 400-MoO3, (b) 500-MoO3, (c) 600-MoO3 and 
(d) Platinum based CEs. In this figure, the left side redox 
pair represents the electrocatalytic reduction of I3

− to 
I− that is I3

− + 2e− → 3I−, causes the cathodic current (IPc). 
The cathodic current density (IPc) of (a) 400-MoO3, (b) 500-
MoO3, (c) 600-MoO3 and (d) Platinum are 6.5897 × 10–4, 
4.7722 × 10–4, 11.4500 × 10–4 and 19.702 × 10–4 mAcm−2, 
respectively. Higher the IPc value, greater would be the 
catalytic activity [31].

It is clearly seen that, among the synthesized materi-
als, 600-MoO3 shows maximum current density than 400-
MoO3 and 500-MoO3. The peak-to-peak separation (EPP) 
got decreased on moving from 400-MoO3 and 500-MoO3, 
to 600-MoO3. Increased IPc value and decreased EPP value, 
reveals the better catalytic behaviour of 600-MoO3. Thus, 
on increasing the calcination temperature, the active sites 
of the material gets increased and hence results in better 
catalytic activity.

3.5 � Electrochemical impedance analysis

To investigate the charge-transfer characteristics of various 
CEs on the electrode/electrolyte interface, EIS analysis are 
performed on the symmetric cells consisting two identical 
electrodes. To carry out EIS experiments, symmetric cell 
was constructed with 400-MoO3, 500-MoO3, 600-MoO3 
and Platinum CEs. It is employed to analyse the interfa-
cial charge transfer process and electrocatalytic activity 
of DSSC. Figures 7 and 8 represents EIS studies of (a) 400-
MoO3, (b) 500-MoO3, (c) 600-MoO3 and (d) Platinum CEs by 
Nyquist and Bode plots and these parameters are shown 
in Table 2.

In the Nyquist plots, the intercept in the high frequency 
region on the X-axis determines the series resistance (Rs) of 
the device, which generates from contact resistance and 
sheet resistance. The first and second semicircle describes 
about the charge-transfer processes at the CE/electrolyte 
interface and TiO2/dye/electrolyte interface respectively, 
of the DSSC. The third curve represents the Warburg dif-
fusion process of I−/I3

− in the electrolyte [32, 33]. The RS 
(Series resistance) values obtained for 400-MoO3, 500-
MoO3, 600-MoO3 and platinum are 6.6074, 10.8767, 

Fig.6   Cyclic voltammograms obtained for (a) 400-MoO3, (b) 500-
MoO3, (c) 600-MoO3 and (d) Platinum based counter electrodes at a 
scanning rate of 50 mV s−1

Fig.7   Nyquist plot obtained for (a) 400-MoO3, (b) 500-MoO3, (c) 
600-MoO3 and (d) Platinum based counter electrodes of dye sensi-
tized solar cells
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7.6388 and 7.3930 Ω cm2 respectively. The smaller Rs val-
ues indicated the good bonding strength between FTO 
and coated counter electrode material. It is seen that, in 
Fig. 7 the charge transfer resistance (Rct1) values for 400-
MoO3, 500-MoO3 600-MoO3 and Platinum are 10.51, 17.46, 
11.2542 and 9.1961 Ω cm2 respectively.

As the other catalytic information of EIS measurement, 
Bode-phase plot can provide the electron lifetime (τ). 
The lower electron lifetime indicating that electrons from 
external circuit are quickly transferred to the electrolyte for 
regenerating I− ions, i.e. the electrode holds superior cata-
lytic ability. Figure 8 shows the Bode phase plots obtained 
for 400-MoO3, 500-MoO3, 600-MoO3 and Platinum CEs 
based DSSCs. The maximum frequency of the character-
istic frequency peak obtained from the bode phase plots 
for 400-MoO3, 500-MoO3, 600-MoO3 and Platinum are 

7943.282, 2511.886, 6309.573 and 12,589.25 Hz respec-
tively. The electron lifetime was calculated from the fol-
lowing equation.

where fmax is the maximum frequency of the character-
istic frequency peak from Bode phase plot [26].

Their corresponding calculated electron lifetime ( �n) 
are 20.042, 63.379, 25.232 and 12.646 µs. It can be seen 
that the 600-MoO3 based CE shows shorter lifetime due 
to the rapid electron transfer process thus cause the DSSC 
performs better.

4 � Conclusion

In this study, the MoO3 nanorods were prepared by sim-
ple hydrothermal method using ammonium molybdate as 
precursor. The prepared MoO3 nanorods were calcinated 
at 400, 500, 600 and 700 °C. The XRD results reveal the 
crystalline nature of MoO3 samples and crystal phase of 
MoO3 changes when exceeding the sintering tempera-
ture at 600 °C. The SEM and HRTEM studies confirm the 
nanorods morphology of MoO3. The prepared 600-MoO3 
used as counter electrode in DSSC and shows 4.35% 
power conversion efficiency which is more on compar-
ing with Pt based CE DSSCs (4.13%). The results reveal 
that calcination temperatures influence the photovoltaic 
parameters due to the formation of nanorod structure 
that alter the catalytic performance of 600-MoO3. Further 
EIS data supports the best counter electrode behaviour 
of 600-MoO3 due to less charge transfer resistance. Thus, 
the hydrothermally prepared MoO3 nanorods could be 
a cheap and efficient counter electrode material which 
is alternative to expensive Pt counter electrode based 
DSSCs.

τn =

1

2πfmax

Fig.8   Bode plots obtained for (a) 400-MoO3, (b) 500-MoO3, (c) 600-
MoO3 and (d) Platinum based counter electrodes of dye sensitized 
solar cells

Table 2   Electrochemical 
parameters obtained for 
different MoO3 modified and 
Pt based CE in DSSCs

The electrochemical impedance spectra (EIS) were recorded in the frequency range of 0.01  Hz to 
100 kHz. Rs: the sheet resistance of transparent conductive oxide (TCO) and Pt counter electrode and 
the resistance of the electrolyte; Rct1: Charge transfer resistance at counter electrode and electrolyte 
interface; cathodic current density (Ipc); peak-to-peak separation (Epp); �n: Electron life-time.

Counter electrode Rs (Ω cm2) Rct1 (Ω cm2) |Ipc| (mA cm−2) |EPP| (V) �n (µs)

400-MoO3 6.61 10.51 0.55 0.27 20.042
500-MoO3 10.88 17.46 0.47 0.18 63.379
600-MoO3 7.64 11.25 0.50 0.08 25.232
Platinum 7.39 9.20 0.45 0.44 12.646
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