Thermodynamic simulation in evaluating the role of minor oxides and mineralizers in Portland cement clinker phase formation

A. Tazuddin¹ · Hemantkumar Aiyer¹ · Amit Chatterjee¹

Received: 12 February 2020 / Accepted: 17 September 2020 / Published online: 26 September 2020 © Springer Nature Switzerland AG 2020

Abstract

The present investigation reveals the importance of the minor oxides and mineralizers on the formation of the critically important cement phases (i.e., C_3S , C_2S , C_3A and C_4AF) which demonstrate their fundamental role in the development of critical properties of cement. Thermodynamic investigation using CALculation of PHAse Diagram (CALPHAD) method was carried out to understand the effect of important minor oxides (i.e. SO_3 , Na_2O , K_2O , TiO_2 , MgO) and important mineralizers (i.e., CaF_2 , AIF_3 , MgSiF₆, Na_2SiF_6 , $CaCl_2$, ZnO, $CaSO_4$) on Portland cement during clinkerization. The result obtained via CALPHAD method was found to be in agreement with the data derived from XRD-Rietveld analysis. Phase evolution diagram has been simulated to study the complex thermochemical reactions and phase formation occurring during cement clinkerization. In addition to this, effect of individual minor oxides and mineralizers on phase evolution and clinkerization temperature was studied extensively to understand their effect on major phase formation.

Keywords CALPHAD · Cement · Minor oxide · Mineralizers · FactSage

1 Introduction

The phase evolution in Portland cement involves very complicated thermochemical reactions occurring during clinkerization which is energy intensive high temperature operation (1400–1450 °C). The raw materials used for Portland cement contains several minor oxides (i.e., MgO, Na₂O, TiO₂, ZnO, MnO, K₂O, P₂O₅) along with main oxide components such as CaO, Al₂O₃ SiO₂ and Fe₂O₃ (C, A, S and F); SO₃ is also infused from combustion fuel in cement during processing [1]. Mineralizers are sometimes added to raw mix in an effort to reduce the process temperature to achieve cost effective production [2–4]. These minor oxides and mineralizers have significant effect on phase formation.

The phases formed during clinkerization process are alite (C_3S), belite (C_2S), aluminate (C_3A) and ferrite based solid solution (C_4AF) via reaction among CaO, SiO₂, Fe₂O₃ and Al₂O₃ [5]. These phases are very much critical for the

development of strength of cement during hydration. C_3S and C_2S are responsible for the development of early and later strength, respectively, whereas C_3A has a very important role in controlling setting time. C_4AF plays the role of colourant in cement and flux for the reduction of process temperature. The chemical and mineralogical names along with the chemical formula and their range of occurrence in Portland cement are given in Table 1. The major phases formed during clinkerization is normally calculated by using well-known Bogue's equation (Eqs. 1–4) [5] to ensure the quality of final product.

$$C_{3}S = 4.0710 \times CaO - 7.6024 \times SiO_{2} - 1.4297$$
$$\times Fe_{2}O_{3} - 6.7187 \times Al_{2}O_{3} - 2.852 \times SO_{3}$$
(1)

$$C_2S = 2.867 \times SiO_2 - 0.7544 \times C_3S$$
 (2)

$$C_3 A = 2.6504 \times Al_2 O_3 - 1.6920 \times Fe_2 O_3$$
(3)

SN Applied Sciences (2020) 2:1737 | https://doi.org/10.1007/s42452-020-03548-7

[🖂] A. Tazuddin, tzddn97@gmail.com | ¹Aditya Birla Science and Technology Co. Pvt. Ltd., Navi Mumbai, India.

Mineral name	Alite	Belite	Aluminate	Ferrite	Lime
Chemical name	Tricalcium silicate	Dicalcium silicate	Tricalcium aluminate	Tetracalcium aluminoferrite	Calcium oxide
Chemical formula	Ca_3SiO_5	Ca ₂ SiO ₄	$Ca_3Al_2O_6$	Ca_2AIFeO_5	CaO
Oxide formula	3CaO·SiO ₂	2CaO·SiO ₂	3CaO·Al ₂ O ₃	4CaO·Al ₂ O ₃ ·Fe ₂ O ₃	CaO
Cement notation	C ₃ S	C ₂ S	C ₃ A	C₄AF	С
wt% in clinker	50-70	12–25	2–6	10–17	0–2

Table 1 Range of major phases seen in Portland cement clinker

$$C_4 AF = 3.0432 \times Fe_2 O_3 \tag{4}$$

It is very important to have control over processing to maintain all the phases in a defined range for achieving desirable properties in final product. The effect of all the major oxides on phase formation is very much critical. The authors have already shown the thermodynamic analysis of effect of major oxides on phase formation in a previous report [6]. The aim of the current work is to carry out a systematic thermodynamic study on the effect of minor oxides and mineralizers on phase formations.

The minor oxides and mineralizers have been reported to have significant effects on cement properties [3, 7, 8]. The controlled presence of these constituents in raw materials is beneficial in aiding phase formation, reaction kinetics, refractory life, fuel efficiency and hydration during application [7, 9–11].

As cement clinkerization process requires to form sufficient ionic liquid (25–30%) for desirable phase formation, the temperature requirement is very high (1400–1450 °C) for pure system. This temperature is brought down with the addition of mineralizer (i.e., CaF₂, AlF₃, MgSiF₆, Na₂SiF₆, CaCl₂, ZnO, CaSO₄ etc.[12, 13]. Thus, the presence of mineralizer helps in achieving cost effectiveness of the process. Therefore, it is very important to study the interactions of these minor constituents with the major oxides during clinkerization process in order to understand their ultimate effect on phase formation.

A complete thermodynamic study is a prime requirement of this system to have a complete understanding on the phase formation. However, available binary or ternary phase diagrams are not enough to study such complex multicomponent systems (> 5 component) since it cannot consider the effect of the entire component together. Therefore, in the present study computational thermodynamics based CALPHAD (CALculation of PHAse Diagram) [14] method has been extensively used to study the phase evaluation at different thermodynamic conditions. Till date, there is no report available on such a study using CALPHAD.

CALPHAD is advanced computational mathematics based thermodynamic calculation method to calculate or predict phase equilibria [15, 16]. It uses available

SN Applied Sciences

experimental or theoretical thermodynamic data of lower order systems and extrapolates them to higher order systems using various well established Gibbs free energy models at a particular temperature (T) and pressure (P). Finally, Gibbs free energy minimization technique is applied to available phases to reveal the stable phases at a particular equilibrium condition (T and P) [16]. Nowadays many commercial and open source software such as, FactSage [17], Thermo-Calc [18] and MTDATA [19] are available to perform the calculation.

2 Methodology

In current investigation, all the thermodynamic calculations were carried out using FactSage 7.3 software with FToxid database [17]. To validate the FactSage data first, three different raw mixes were prepared by mixing and grinding of Limestone, Bauxite, Laterite and Lithomarge in proper proportions. Then, the raw mix was fired to produce clinker in a platinum crucible using Carbolite Down-Hearth Furnace at 1450 °C for 1 h followed by air guenching at 1300 °C. The clinkers were analyzed by Bruker S8-TIGER X-ray Fluorescence (XRF) to study the chemical composition. Finally, it was also analyzed by using Bruker's D8 advanced diffractometer (XRD) with $Cu - K_{\alpha}$ radiation having wavelength (λ) 0.154056 nm. Rietveld analysis was carried out using TOPAS XRD software [20]. The CALPHAD result was then compared with XRD data and Bogue's calculations [21].

To see the phase evolution, phase evaluation diagram was created using FactSage for the XRF composition in a temperature range 700–1500 °C using composition of Sample-3. The microstructure of the same clinker was also studied using Optical microscopy and BSE-SEM imaging with point EDS and EDS mapping.

To study the effect of individual minor oxides, a reference standard composition of C-A-S-F-M system was considered (given in Table 2) and minor oxides were added in the C-A-S-F-M system with various proportions to study their effect within a particular temperature range. All the minor oxides were varied within a range given in the Table 3. Similarly, the effects of important mineralizers

 Table 2
 Baseline raw mix composition of major oxides used to study effect of minor oxides and mineralizers

Oxides	CaO	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	MgO
Wt (%)	66.46	21.48	5.01	5.45	1.6

 Table 3
 Range of oxides considered to study the effect on phase formation

Oxides	MgO	SO3	Na ₂ O	K ₂ O	TiO ₂
Range calculated (wt%)	1–6	1–5	0–1	0–1	1–3

(CaF₂, AIF₃, MgSiF₆, Na₂SiF₆, CaCl₂, ZnO and CaSO₄) on phase formation and clinkerization temperature have been calculated using equilibrium module of FactSage software. Finally, OriginLab 2017 [22] software was used to draw all the plots using the data obtained by CALPHAD calculation.

3 Results and discussion

Table 4 shows the chemical analysis result of the prepared clinkers obtained by the XRF-chemical analysis. Table 5 displays the percentage of different phases in three clinker samples obtained by different methods such as, CALPHAD calculation, Bogue's calculation and XRD-Rietveld method. Fitting parameters of XRD-Rietveld analysis (R_{wp} and G_{of}) are also given in Table 5. To calculate the stable phases using CALPHAD, C₃S, C₂S, CaO and MgO was calculated at the quenching temperature (1300 °C) and C₃A and C₄AF was calculated at 700 °C since they are not stable at 1300 °C. All the solid solutions of CaO-Al₂O₃-Fe₂O₃ that are stable at 700 °C are considered as C₄AF. It can be observed that C₃S prediction in CALPHAD method is very close to the XRD-Rietveld data both for Sample-1, Sample-2 and Sample-3. Prediction of Bogue equation is also very close to the XRD result. For C₂S prediction, CALPHAD result showed good match with the XRD-Rietveld data for all three samples. But, C₂S predicted by Bogue's equation is 4–5% high compared to actual XRD-Rietveld data. C₃A predicted by CALPHAD is also very close to the XRD result but, C₃A predicted by Bogue's equation is much higher in Sample-2 and Sample-3 compared to the XRD result. C₄AF predicted by the CALPHAD is also very close to the XRD-Rietveld result but C₄AF predicted by the CALPHAD is 2–5% less compared to the XRD-Rietveld result. Above result shows that, CALPHAD prediction data is very close to the actual experimental data which is not always true for Bouge's equation since it does not consider the effects of all the oxides and temperature [5].

From the above discussion, it can be concluded that the CALPHAD can precisely predict the cement phases at a given condition. In addition, CALPHAD method has a spin off benefit of calculating phase at any equilibrium conditions (temperature, pressure) [15]. So, CALPHAD can be used to study the phase evolution with increasing temperature and to understand the role of different important minor oxides in phase formation.

Table 4 Chemical analysis (XRF) of clinker synthesized	Oxides	CaO	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	MgO	K ₂ O	Na ₂ O	SO ₃
in lab	Sample 1	65.87	22.12	4.70	5.86	0.77	0.24	0.1	0.31
	Sample 2	66.56	22.21	4.03	5.22	0.34	0.22	0.16	1.20
	Sample 3	62.1	20.7	4.10	5.02	5.73	0.87	0.17	1.3

 Table 5
 Phase analysis result of clinker samples obtained by different method

Temperature	Method	C ₃ S (wt%)	C ₂ S (wt%)	C ₃ A (wt%)	C ₄ AF (wt%)	MgO (wt%)	CaO (wt%)	R _{wp}	G_{of}
Sample-1	CALPHAD	55.79	20.17	5.21	16.91	0.16	0	_	-
	Bogue	53.02	23.42	7.58	14.30	-	-	-	-
	Rietveld	54.5	19.7	8.4	16.2	0	1.2	7.25	7.85
Sample-2	CALPHAD	59.85	17.23	4.79	16.21	0	0	-	-
	Bogue	57.86	20.03	7.02	12.26	_	_	-	-
	Rietveld	61.1	16.8	4.6	17.7	0	0	8.31	8.69
Sample-3	CALPHAD	56.99	14.35	2.25	18.68	5.12	0	-	-
	Bogue	52.14	20.01	6.37	12.48	_	_	-	-
	Rietveld	55.9	15.7	1.0	17.7	6.3	0.6	7.40	8.06

Figure 1 displays the temperature vs phase fraction diagram generated by CALPHAD method in the temperature range of 700–1500 °C for the composition of Sample-3 given in Table 2. Figure 1 shows during clinkerization temperature (1400–1450 °C), the stable phases are C_3S , C_2S , unreacted MgO and ionic liquid. During cooling, ionic liquid reduces while C_2S and C_3S phase increases till 1300 °C. Below 1300 °C, C_3S is not stable and it dissociates into C_2S and CaO as shown in Fig. 1. Below 1280–1290°C, ionic liquid phase separation occurs and another solid solution phase i.e. C_4AF starts forming. Below 1050–1100 °C, C_3A crystallizes out from remaining ionic liquid and finally remaining liquid solidifies during cooling depending on the quenching rate.

This diagram is very important to understand the phase formation route during heating in C–A–S–F–M system. It also shows that the quenching is necessary to get C_3S phase after cooling as C_3S phase is stable above 1300 °C. This graph can also be useful in determining the maximum burning zone temperate of the rotary kiln to operate the

Fig. 1 Temperature vs. phase evolution diagram for Sample-3

same safely within a maximum allowed ionic liquid percentage. For an instance, if the permissible limit of ionic liquid in a rotary kiln is 28 wt%, the maximum furnace temperature should not exceed 1430 °C for the given raw mix composition of Sample-3 as suggested by the Fig. 1. Similarly, maximum permissible calciner temperature can be determined from this graph to avoid ionic liquid phase formation in the calciner.

The Optical microscopy image of the above clinker (sample-3) along with the XRD patter is also shown in Fig. 2. It shows that the microstructure constitutes of three major phases, C_3S phase with hexagonal grain, C_2S phase with rounded grain and bright C_4AF matrix. The result of XRD analysis is already shown in Table 5. To identify the phases in microstructure, EDS mapping and Point EDS was carried out. Elemental distribution in the microstate along with BSE image is shown in Fig. 3. It shows that, bright matrix regions are rich in Al and Fe which indicates that it is C_4AF . Periclase are present as MgO cluster which appears to be dark in SEM image. Major regions are populated with Ca and Si which indicates C_3S and C_2S consist of major proportions. Average compositions of different phase obtained by EDS point analysis are also given in Table 6.

Figure 4 shows the effect of SO₃ on the major phase formation of C–A–S–F–M system. SO₃ increases the C₂S and decreases C₃S above 1300 °C as shown in Figs. 4a, b. But, above 1450 °C, C₂S decreases suddenly as it dissolves into the ionic liquid. The reduction of C₂S above 1450 °C directly depends on the SO₃ content in the composition as shown in the Fig. 4. With increasing SO₃ in the composition, the rate of dissolution increases and the C₂S decreases rapidly. A minute presence of SO₃ (~ 0.5%) can reduce the ionic liquid formation temperature by ~ 20 °C. At lower temperature, SO₃ does not have much effect on ionic liquid formation. However, at very higher temperature (\geq 1450 °C) SO₃ significantly increases the ionic liquid content by assisting the dissolution of C₂S into the ionic

Fig. 2 a Optical microscopy image and b XRD-Rietveld analysis image of Clinker Sample-3

Fig. 3 BSE-SEM images, EDS-mapping and Elemental distribution map of Clinker Sample-3

Table 6Average compositionof different phases obtained byEDS point analysis

Wt%	CaO	AI_2O_3	Fe ₂ O ₃	MgO	SiO ₂	SO3	K ₂ O	Na ₂ O
C₃S	70.95	0.94	0.81	3.14	23.91	0.11	0.15	0.00
C ₂ S	66.51	1.17	0.53	0.54	29.71	0.85	0.17	0.52
C ₄ AF	64.35	13.12	12.46	4.20	5.67	0.20	0.00	0.00

Fig. 4 Effect of SO₃ on phase formation in C–A–S–F–M system in temperature range of 1100 °C to 1500 °C; **a** effect on C₂S, **b** effect on C₃S and **c** effect on liquid phase

liquid as shown in Fig. 4c. So, if SO_3 is high (> 1.5 wt%) in the raw mix, the maximum kiln temperature should be less than 1450 °C to avoid the excess liquid formation in the kiln in order to avoid uncontrolled liquid formation in kiln. To understand the influence of SO₃ in increasing C₂S and lowering C_3S , the effect of SO_3 on $CaO-SiO_2$ binary diagram was simulated which is illustrated in Fig. 5. It shows the overlapping of two CaO–SiO₂ binary phase diagrams, one is without SO_3 (black) and other one is with 2% SO_3 (red). Figure 5b is the magnified view of the area of interest of Fig. 5a to present the effect of adding 2% SO₃ on C₃S and C₂S formation in the temperature range 1000–1800 °C. As it demonstrated, with the addition of SO₃, the equilibrium line PQ shifts to right P'Q'. Now the effect of shifting the line can be understood better by applying the Liver's rule in the phase diagram. When, $CaO/(CaO + SiO_2) = 0.7$, applying Liver's rule, the wt. percent of C₃S and C₂S without using SO₃ is represented by $\frac{OR}{RS}$ and $\frac{OS}{RS}$ respectively. For the addition of 2% SO₃, the percentages of C₃S and C₂S are $\frac{O'R}{R'S'}$ and $\frac{O'S}{R'S'}$ respectively. The addition of 2% SO₃ respectively. resulted decreases of C₃S and increase of C₂S since, $\frac{O'R'}{R'S'}$ < $\frac{OR}{RS}$ and $\frac{O'S'}{R'S'} > \frac{OS}{RS}$. The effect of SO₃ on C₃S and C₂S obtained by CALPHAD agrees with the finding of W. Gutt et al. [23] and Horkoss et al. [24] as they also have reported that SO₃ increases C₂S and decreases C₃S in the clinker. Li et al. [25] has also reported similar observation on C_3S and C_2S .

Figure 6 displays the effect of Na₂O on phase evolution of C–A–S–F–M system. It also has a negative effect on decreasing C₂S above 1290 °C. With increasing Na₂O, C₃S increases linearly as shown in Fig. 6b. But, at higher temperature (> 1450 °C), C₃S dissolves to form ionic liquid and C₃S decreases. The dissolution temperature and amount of dissolution also depends on Na₂O content in the ionic liquid as shown in Fig. 6b. With increasing Na₂O, the dissolution temperature of C₃S decreases. The rate of dissolution also increases with increasing Na₂O in cement raw mix. The proportion of ionic liquid phase which forms at low temperature, increases with increasing the proportion of Na₂O. Above 1450 °C, ionic liquid content suddenly increases due to dissolution of C₃S as described earlier. Figure 7a, b shows the effect of increasing Na₂O on CaO–SiO₂ binary phase diagram. Black and red colour curve represent binary diagram without Na₂O and with 0.5% Na₂O. Applying Liver rule, it can be seen that, with addition of 0.5% Na₂O, C₃S increases and C₂S decreases as, $\frac{O'R'}{R'S'} > \frac{OR}{RS}$ and $\frac{O'S'}{R'S'} < \frac{OS}{RS}$. The CALPHAD results also matches with the experimental results as, it been proved earlier by experimental investigations that Na₂O increases C₃S and decreases C₂S [26–28].

Figure 8a-c describes the influence of K_2O in phase formation of Portland cement. With increasing K₂O in C-A-S-F-M system, it has a significant effect in decreasing C₂S and increase of ionic liquid as shown in the Fig. 8a and c. Minute addition (0.05 wt%) of K₂O reduces the ionic liquid formation temperature by 10 – 15 °C. K₂O also has a marginal effect in increasing C₃S. The root cause of increasing C_3S and decreasing C_2S can be seen form the binary diagram of CaO–SiO₂ as shown in Fig. 9a and b Black and red line represents without addition of K₂O and red line represents with addition of 0.5% K₂O. As the Fig. 9b shows the effect of K₂O on CaO–SiO₂ binary phase diagram is very much similar to the effect of Na₂O. It also increases C₃S and decreases C₂S as $\frac{O'R'}{R'S'} > \frac{OR}{RS}$ and $\frac{O'S}{R'S'} < \frac{OS}{RS}$. Although the effect of K₂O on increasing C₃S and decreasing C₂S is not as strong as Na₂O as, the shift of PQ line to P'Q' is less in case of 0.5% K₂O addition as compared with 0.5% Na₂O addition.

Figure 10 depicts the effect of increasing MgO on the formation of C_3S , C_2S and ionic liquid phase. MgO has a nominal effect on decreasing C_2S and increasing C_3S .

Fig. 5 a Effect of addition of 2 wt. % SO₃ on the CaO–SiO₂ phase diagram. b Magnified view of effect of SO₃ addition

Fig. 6 Effect of Na₂O on phase formation in C–A–S–F–M system in temperature range of 1100 °C to 1500 °C; **a** effect on C₂S, **b** effect on C₃S and **c** effect on liquid phase

Fig. 7 a Effect of addition of 0.5wt% Na₂O on the CaO–SiO₂ system, b magnified view of fig. a

Addition of MgO up to 1 wt% in raw mix can increase C_3S content by ~ 2 wt%. It reduces the ionic liquid formation temperature by 20 °C but, it does not have significant role in increasing ionic liquid below 1400 °C. Although, it can assist in increasing ionic liquid above 1400 °C. Figure 10d shows, higher amount of MgO (> 1 wt%) leads to the

formation of periclase (free MgO) which is partially dissolves with increasing temperature. If MgO is more than 1.5 wt %, it can't dissolve completely into the ionic liquid phase even at 1400 °C as a result, free MgO may be present as a form of periclase with other phases in the clinker. Free MgO and CaO are not desirable in the final product as it

Fig. 8 Effect of K_2O on phase formation in C–A–S–F–M system in temperature range of 1100 °C to 1500 °C; **a** effect on C_2S , **b** effect on C_3S and **c** effect on liquid phase

Fig. 9 a Effect of K₂O on CaO–SiO₂ phase diagram, b magnified view of fig. a

causes expansion during hydration and generates crack after setting of cement.

Figure 11 depicts the effect of TiO_2 on various phase formation. It significantly increases C_2S and decreases C_3S

above 1290 °C. At lower temperature, it does not have any effect on the formation of ionic liquid. But, above 1350–1370 °C, it significantly increases ionic liquid with increasing TiO₂ as shown in Fig. 11c. Figure 12a, b show

Fig. 10 Effect of MgO on phase formation in C–A–S–F–M system in temperature range of 1100 °C to 1500 °C; **a** effect on C_2S , **b** effect on C_3S , **c** effect on liquid phase and **d** effect on Free MgO formation

the effect of TiO₂ on CaO–SiO₂ binary phase diagram. It shows that at 2 wt% TiO₂, C₃S decreases and C₂S increases as $\frac{O'R'}{R'S'} < \frac{OR}{RS}$ and $\frac{O'S'}{R'S'} > \frac{OS}{RS}$. The amount of TiO₂ in raw mix is also very critical as it has substantial effect on all the important phase formation. Although it helps in clinkerization by the formation of ionic liquid phase but, excess amount of TiO₂ in raw mix can be detrimental as it leads to the lowering C₃S and also causing coating formation in the kiln because of excessive ionic liquid formation at high temperature. The result of CALPHAD found to be in line with the observations of many researchers as they also have reported that TiO₂ increases the burnability of raw mix by increasing the ionic liquid phase and as a result the free lime decreases [28].

Figure 13 shows the effect of all the minor oxides on phase formation at 1450 °C. SO₃ increases ionic liquid phase up to 1% at 1450 °C as shown here in Fig. 12a. C_2S increases linearly with increasing SO₃ when it is more than 1% whereas, C_3S decreases linearly with increasing SO₃. Ionic liquid increases with increasing Na₂O. But, the rate of increase of ionic liquid, decreases after 0.4% addition of Na₂O. C₂S decreases with increasing Na₂O up to 0.3% then it saturates as shown in Fig. 13b. But, C_3S increases with increasing Na₂O up to 0.4% and it reduces with increasing Na₂O. Similarly, with increasing K₂O, ionic liquid increases and C₂S decreases with a different pattern but, C₃S increases with increasing K₂O as shown in Fig. 13c. That is why alkalies (Na₂O and K₂O) play a critical role in deciding the strength of Portland cement. This effect is more prominent for Na2O as it is more effective in increasing C₃S and decreasing C₂S as shown in Fig. 13b, c. Addition of 1 wt% of MgO, can increase the ionic liquid content by 1%, increases C₃S content by 3 wt% and decreases C₂S by 3%. Beyond that, it does not have much effect on phase evolution at 1400 °C. TiO₂ has a major role in increasing ionic liquid and C₂S at 1450 °C as shown in Fig. 13e. But, it has a negative role in decreasing C₃S at this temperature.

Fig. 11 Effect of TiO₂ on phase formation in C–A–S–F–M system

Fig. 12 a Effect of addition of 2wt% TiO₂ on CaO–SiO₂ system and b magnified view of fig. a shows the effect on C₃S and C₂S formation

Figure 14 shows the effect of addition of different mineralizers on ionic liquid formation of C–A–S–F–M system. It shows that the weight percent of ionic liquid increases with increasing doses of different mineralizer. AIF_3 has the maximum effect on increasing ionic

liquid compared to other mineralizers whereas, ZnO and CaSO₄ have very marginal effect in increasing ionic liquid. Up to 0.5 wt%, both MgSiF₆ and Na₂SiF₆ have similar effect. But, MgSiF₆ is more effective compared to Na₂SiF₆ when their proportion is more than 5 wt%.

Fig. 13 Effect plot of a SO₃, b Na₂O, c K₂O, d MgO and e TiO₂ on phase formation of C–A–S–F–M system at 1450 °C

Fig. 14 Effect of mineralizer on the formation of liquid phase at 1400 $^\circ \! C$

After Na₂SiF₆, CaF₂ is more effective in increasing ionic liquid compared to CaCl₂. The order of the mineralizers based on the ability of assisting ionic liquid formation is: AIF₃ > MgSiF₆ > Na₂SiF₆ > CaF₂ > CaCl₂ > CaSO₄ > ZnO. This plot is very useful to compare the effectiveness of different mineralizers and to decide the required dosages of a mineralizer.

Figure 15a, b depicts the effect of increasing mineralizers on the formation of C_3S and C_2S . Thus far, it has been observed that mineralizers also have serious impact on C_3S and C_2S formation while increasing ionic liquid. AlF₃, MgSiF₆ and Na₂SiF₆ have prominent effect in decreasing C_3S whereas, CaF₂ and CaCl₂ have moderate effect as shown in Fig. 15a. Although, in case of ZnO and CaSO₄, increases C_3S marginally. Figure 15b displays, AlF₃, MgSiF₆ and Na₂SiF₆ have significant effect in increasing C_2S . Addition of AlF₃, MgSiF₆ and Na₂SiF₆ by 0.5 wt% can be

Fig. 15 Effect of mineralizers on formation of **a** C₃S and **b** C₂S at 1400 °C

effective in increasing C_2S by ~ 2 wt%. Above 0.5 wt%, it reduces C_2S in the system. $CaSO_4$ and $CaCl_2$ have negligible effect in decreasing C_2S . CaF_2 has comparatively higher effect on decreasing C_2S when it is more than 0.5 wt%.

From the above results, it can be observed that, fluorides are more effective in increasing the ionic liquid phase, decreasing C₃S and increasing C₂S compared to other types of mineralizers. If only fluorides are considered, the order of the effectiveness of fluorides also depends on the total fluorine content in the system. The wt% fluorine in MgSiF₆ and AlF₃ are maximum, 68.51 wt% and 67.85 wt% respectively. But, added advantage of 'Al' which is present in AIF₃ makes it marginally more effective compared to MgSiF₆ Na₂SiF₆ is also very effective mineralizer containing 60.61 wt% of fluorine. Finally, CaF₂ is the least influential fluoride mineralizer among them having very low fluoride content (48.66 wt%). With increasing ionic liguid, the solubility of Ca^{2+} in the ionic liquid also increases. So, the available free calcium decreases in the system and reacts with C₂S to form C₃S. As a result, the C₃S decreases with increasing ionic liquid and C₂S increases. The variation of C_3S and C_2S is related to the ionic liquid formation.

Figure 16 shows the effect of all the mineralizers on the reduction of clinkerization temperature. Here, clinkerization temperature is assumed to be the temperature at which 25 wt% ionic liquid forms. It shows, by the addition of 0.5 wt% and 1 wt% of AIF₃, clinkerization temperature can be reduced by ~ 150 °C and ~ 250 °C respectively. Both Na₂SiF₆ and MgSiF₆, can reduce clinkerization temperature by ~ 100 °C and ~ 200 °C by the addition of 0.5 wt% and 1 wt% respectively. CaF₂ has comparatively higher effect in reducing clinkerization temperature compared to CaCl₂ whereas, CaSO₄ and ZnO has the least effect. So, fluorides are the most effective mineralizer, followed by

Fig. 16 Effect of mineralizer on clinkerization temperature

chlorides and sulphates to reduce clinkerization temperature. To compare the effects of different mineralizers, linear regression model (Y = A + BX, where A and B are the constant) was developed. Table 7 summarizes the result of the regression analysis. The coefficient of X or the slope of the curve, represents the effectiveness of the mineralizer. AlF₃ is the most effective mineralizer as it has lowest value (- 247) of the coefficient and ZnO is the least effective mineralizer having highest value of coefficient of X (- 43). The clinkerization temperature can be calculated easily by using these equations within the range of 0 to 1 wt%.

Although AlF₃ is one of the most effective mineralizer however, it is very expensive. But, it is possible to combine a proportion of currently practiced mineralizer (such as CaF₂) with AlF₃ to enhance the overall performance of the mineralizer. Figure 17 shows the result of combined effect of different mineralizers in reducing clinkerization temperature. It shows that both CaF₂ and CaCl₂ is highly

Table 7 Effect of mineralizer on clinkerization temperature

Mineralizer (Y)	Regression e (Y = A + B.X)	R ² -adj	
	A	В	
CaF ₂	1396	- 145	100
AIF ₃	1386.2	-247	98.5
MgSiF ₆	1396	-207	100
Na_2SiF_6	1395	- 193	100
CaCl ₂	1395	-121	100
ZnO	1395	-43	100
CaSO ₄	1395	- 57	99

Fig. 17 Combined effect of mineralizers on reduction of clinkerization temperature

effective in reducing clinkerization temperature with addition of AlF₃ up to 0.6%. Above 0.6%, AlF₃ is not much effective in reducing clinkerization temperature. But, CaF₂ can reduce the clinkerization temperature linearly by replacing CaCl₂ up to 1 wt% although the effect is quite minimal compared to AlF₃ as shown in Fig. 17.

4 Summary and conclusions

The influence of important minor oxides and mineralizers on Portland cement phase formation has been investigated in detail through current CALPHAD study. It was also found that many of our findings through CALPHAD simulation were in line with the observations reported by many researchers as mentioned earlier. Through this study, the usefulness of available CALPHAD software i.e., FactSage to analyze the cement clinker has been demonstrated as it has the spin off benefit of considering minor constituents and process conditions (T, P) in the calculation to predict the clinker phases more accurately.

This study demonstrates how different minor oxides and mineralizers play vital role in influencing the cement phase formation. Increasing SO₃ and TiO₂, C₂S increases and C₃S decreases in the clinker. On the other hand, presence of alkalies (Na₂O and K₂O) increase C₃S and decrease C₂S. Although all the minor oxides assist formation of ionic liquid. Most of the minor oxides also critically assist in increasing the burnability of raw mix and thereby benefits in fuel saving. So, the presence of alkalis (Na₂O and K₂O) are desirable up to a certain limit in order to help clinkerization process as they assist in ionic liquid formation. MgO is one of the most common oxide present in clinker as up to 2 wt%, it helps in clinkerization process by decreasing ionic liquid formation temperature and by increasing C₃S content [2]. Excess MgO in the clinker remains unreacted and causes expansion problem during hydration. Hence, the use of MgO is restricted to a maximum limit of 6 wt% to suppress the detrimental effect [5].

The effect of selected mineralizers has also been studied using CALPHAD. Fluoride mineralizers are found to be superior in terms of reducing clinkerization temperature. Among all the fluorides, AIF₃ is the most effective mineralizer compared to other fluorides. The order of the effectiveness in reducing clinkerization temperature of the mineralizers are: AIF₃ > MgSiF₆ > Na₂SiF₆ > CaF₂ > CaCl₂ > CaSO₄ > ZnO. It was also observed, most of the mineralizers reduce C₃S and increase C₂S while increasing ionic liquid. So, deciding the dosage of mineralizer is very critical as it has a direct impact on the final properties of cement.

This study also establishes that CALPHAD based phase equilibria calculation approach is a highly effective tool and valuable addition in the understanding and analysis of minor oxides and mineralizers in C–A–S–F–M system.

Acknowledgement The authors are sincerely grateful to the analytical team of ABSTCPL for helping in XRD and XRF experiments.

Compliance with ethical standards

Conflict of interest No potential conflict of interest was reported by the authors.

References:

- 1. Hewlett PC (2003) Lea's chemistry of cement and concrete. Butterworth-Heinemann, Oxford
- Ghosh SN (1983) Advances in cement technology. Elsevier, Amsterdam
- 3. Bapat JD (2012) Mineral admixtures in cement and concrete. CRC Press, Boca Raton
- De Schepper M, Van den Heede P, Arvaniti EC, et al (2017) Sulfates in completely recyclable concrete and the effect of CaSO₄ on the clinker mineralogy. In: Construction and building materials, pp 300–306

- 5. Herfort D, Moir GK, Johansen V et al (2010) The chemistry of Portland cement clinker. Reinhold Publishing Corporation, New York
- 6. Tazuddin A, Aiyer HN, Chatterjee A (2018) Phase equilibria studies of CaO–SiO₂–Al₂O₃–Fe₂O₃–MgO system using CALPHAD. Calphad Comput Coupl Phase Diagrams Thermochem 60:116–125. https://doi.org/10.1016/j.calphad.2017.12.003
- Barros AM, Espinosa DCR, Tenório JAS (2004) Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement. Cem Concr Res 34:1795–1801. https:// doi.org/10.1016/j.cemconres.2004.01.016
- De Noirfontaine MN, Tusseau-Nenez S, Girod-Labianca C, Pontikis V (2012) CALPHAD formalism for Portland clinker: thermodynamic models and databases. J Mater Sci 47:1471–1479. https ://doi.org/10.1007/s10853-011-5932-7
- 9. Brown WE, Chow LC (2004) Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
- 10. Chatterjee TK (1983) Burnability and clinkerization of cement raw mixes. Adv Cem Technol. https://doi.org/10.1016/b978-0-08-028670-9.50009-0
- 11. Kacimi L, Simon-Masseron A, Ghomari A, Derriche Z (2006) Influence of NaF, KF and CaF2 addition on the clinker burning temperature and its properties. Comptes Rendus Chim 9:154–163. https://doi.org/10.1016/j.crci.2005.10.001
- 12. Mehrotra S, Tehri S (1993) Effectiveness of different mineralizers in cement manufacture. Indian J Technol 31:535–538
- Altun IA (1999) Effect of CaF₂ and MgO on sintering of cement clinker. Cem Concr Res 29:1847–1850. https://doi.org/10.1016/ S0008-8846(99)00151-9
- 14. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, Cambridge
- Tazuddin A, Gurao NP, Biswas K (2017) In the quest of single phase multi-component multiprincipal high entropy alloys. J Alloys Compd 697:434–442. https://doi.org/10.1016/j.jallc om.2016.11.383
- Fabrichnaya OB, Saxena SK, Richet P, Westrum EF (2004) Calculation of phase diagrams. Curr Opin Solid State Mater Sci 1:137–171. https://doi.org/10.1007/978-3-662-10504-7_5
- 17. Bale CW, Bélisle E, Chartrand P et al (2016) FactSage thermochemical software and databases, 2010–2016. Calphad Comput

Coupl Phase Diagrams Thermochem 54:35–53. https://doi.org/10.1016/j.calphad.2016.05.002

- Andersson JO, Helander T, Höglund L et al (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad Comput Coupl Phase Diagrams Thermochem 26:273–312. https ://doi.org/10.1016/S0364-5916(02)00037-8
- Davies RH, Dinsdale AT, Gisby JA et al (2002) MTDATA Thermodynamic and phase equilibrium software from the national physical laboratory. Calphad Comput Coupl Phase Diagrams Thermochem 26:229–271. https://doi.org/10.1016/S0364 -5916(02)00036-6
- 20. Coelho AA (2005) Topas: general profile and structure analysis software for powder diffraction data. Bruker AXS
- 21. Taylor HFW (1997) Cement chemistry. Cem Chem. https://doi. org/10.1680/cc.25929
- 22. Deschenes LA (2000) Origin 6.0: Scientific Data Analysis and Graphing Software Origin Lab Corporation (formerly Microcal Software, Inc.). Web site: www.originlab.com. Commercial price: \$595. Academic price: \$446. J Am Chem Soc 122:9567–9568
- 23. Gutt W, Smith MA (1968) Studies of the role of calcium sulphate in the manufacture of Portland cement clinker
- 24. Horkoss S, Lteif R, Rizk T (2010) Calculation of the percentage in high sulfur clinker. Int J Anal Chem 2010:1–5. https://doi. org/10.1155/2010/102146
- 25. Li X, Xu W, Wang S et al (2014) Effect of SO₃ and MgO on Portland cement clinker: formation of clinker phases and alite polymorphism. Constr Build Mater 58:182–192. https://doi.org/10.1016/j. conbuildmat.2014.02.029
- 26. Gotti E, Marchi M, Costa U (2007) Influence of alkalis and sulphates on the mineralogical composition of clinker. In: 12th International Congress on the Chemistry of Cement
- 27. Pacheco-Torgal F, Jalali S, Labrincha J, John VM (2013) Eco-efficient concrete. Elsevier, Amsterdam
- Ma X, Chen H, Wang P (2009) Effect of TiO₂ on the formation of clinker with high C 3S. J Wuhan Univ Technol Mater Sci Ed 24:830–833. https://doi.org/10.1007/s11595-009-5830-x

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.