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Abstract
Multi-layer laminar unsteady flows of immiscible fractional second grade fluids in a rectangular channel made by two 
parallel plates are studied. The fluid motion is produced by the motion of parallel walls in their plane and by the time-
dependent pressure gradient in the presence of the linear fluid–fluid interface conditions. The mathematical model is 
based on the generalized constitutive equations for the shear stress described by the time-fractional Caputo deriva-
tive. Integral transforms (finite Fourier sine transform and Laplace transform) have been used to obtain analytical and 
semi-analytical solutions for velocity, shear stress and the temperature fields. In the case of semi-analytical solutions, 
the Talbot’s algorithms are used for the inverse Laplace transform. The numerical calculations are carried out with the 
help of Mathcad software, and the results are illustrated graphically. It has been found that the memory effects have a 
significant influence on the motion of the fluids.

Keywords  n-layered immiscible fluids · Fractional second grade fluids · Analytical and semi analytical solutions · 
Integral transforms

Mathematics Subject Classification  76-XX · 76T30 · 76D50

Nomenclature
�i	� Density
�i	� Dynamic viscosity
�i	� Kynamic viscosity
u0	� Characteristic velocity
Gi	� Elastic modulus
�i	� Shear stress
ui(y, t)	� Velocity
P	� Pressure
h	� Distance between two plates
X̄ (y, 𝜉)	� Laplace transform of the function X (y, t)
E�i ,�i (⋅)	� Mittag–Leffler function
G�1,�2,�3

(t, �)	� G-Lorenzo Hartely function

1  Introduction

Flows of immiscible materials in the channel/pipe are com-
monly found in nature. The study of simultaneous flow of 
two or more immiscible fluids is significant due to its wide 
applications in science, medical, geophysics, industry, 
petroleum engineering and hydrogeology [1–4]. Various 
applications include oil recovery, blood flow through capil-
lary vessels, equipment cleaning, bio-films and mucus flow 
in living cells, removal of carbon dioxide from the atmos-
phere, groundwater management, crude oil flow through 
pipelines, bubble generation in microfluidics and bubble 
trains flow in various complex porous systems.

Several researchers have studied the stability/instabil-
ity of two-layer or multi-layer immiscible fluids flow [5–7]. 
The linear stability of the viscoelastic two-layered plane 
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Poiseuille and Couette flows have been first studied by 
Yih [8] with the help of long-wave approach. He observed 
that both density and viscosity stratification can cause 
interfacial Kelvin–Helmholtz instability. Herve Le Meur [9] 
has studied the uniqueness and the existence of the multi-
layered Poiseuille/ Couette fluid flow in pipes/channel and 
observed that interpolated Oldroyd derivative parameter 
and the viscosity ratios are significant for a unique solu-
tion. Kalogirou and Blyth [10] have considered the Cou-
ette–Poiseuille flow of the two-layered superposed fluids 
to discuss stability. The fluid at the lower layer is populated 
with surfactants and these surfactants get adsorbed on 
the interface. It has been observed that if the thickness 
ratio is much higher than the fluid viscosity ratio and if the 
surfactant is sufficiently soluble, the flow is stable.

In  [11], Kim et  al. have worked on the two-layered 
immiscible Couette flow with the help of a hybrid method. 
The flow is between two parallel planes in which the upper 
plane is moving while the lower plane is kept station-
ary. It has been found that the viscosity ratio has strong 
effects on the fluid velocity than the surface energy. Two 
layer simultaneous natural convectional flow in a verti-
cal semi-corrugated channel under the magnetic effects 
have been investigated by Abd Elmaboud [12]. The flow 
domain consists of two subdomains, the first one contains 
the magneto nanofluids, and the other contains a pure 
non-conducting viscous fluid. The results demonstrate 
that in the absence of heat soures nad with the rise in the 
nano-particle volume fraction, theremal transfer enhance-
ment has been observed in both sub-domains. Later, Abd 
Elmaboud et al. [13], have studied the electro-magnetic 
simultaneous two layers immiscible fluids flow over an 
inclined plate. The flow domain comprises two parts, one 
of which is made of porous matrix saturated in Newtonian 
fluid, and the other has clear fluid. The findings demon-
strate that the electrical field raises the velocity profile of 
both subdomains. Whereas the velocity decreases by ris-
ing the magnetic field owing to the Lorentz power. In [14], 
Khan et al have investigated the heat transfer and the fluid 
velocity of the two-layer immiscible fluid in the presence 
of pressure type die. The first layer is filled with the inelas-
tic fluid, namely, power-law fluid and the second layer is 
filled with the viscoelastic liquid (Phan-Thien–Tanner flu-
ids). It has been seen that the fluid velocity and the fluid 
temperature increase with the increase in the Deborah 
number.

Hisham et al. [15], for example, presented an analytical 
study of the two-layer flow of immiscible Maxwell fluids 
between two parallel moving plates in the presence of 
time-dependent pressure gradient. Analytical solutions 
for velocities and shear stresses are recovered with the 
help of integral transforms, Laplace and finite Fourier sine 
transform. It has been found that the increase in kinematic 

viscosity decreases the maximum value of the velocity. 
Later Rauf et al. [16], found the analytical and the semi-
analytical solutions for the velocity fields and the tempera-
ture fields for the simultaneous flow of n-immiscible frac-
tional Maxwell fluid in a rectangular channel bounded by 
the two parallel translating planes and in the presence of 
time-dependent pressure gradient. It has been observed 
that the thermal transport in the ordinary fluids is higher 
as compared with the fluids with the thermal memory, 
whereas the fractional parameters for the velocity fields 
act as accelerating factors of the fluids. Recently Rauf 
et al. [17], studied the simultaneous flow of n-immisci-
ble fractional Maxwell fluid in a cylindrical domain. The 
motion is caused by the translational motion of the cylin-
der and in the presence of the time-dependent pressure 
gradient in the direction of the flow. Analytical solutions 
for the velocities and the shear stresses are obtained with 
the help of the Laplace transform coupled with the finite 
Weber transform of order zero and the finite Hankel trans-
form of order zero. It has been seen that the fluid veloc-
ity decreases with the increase in the values of the fluids 
fractional parameters. Other interesting results relating to 
sigle layer fluid flow [18–21] and simultaneous flow two 
or more fluids can be seen in [7, 15, 22–26]. To the best 
of authors knowledge, the study of simultaneous flow of 
multi-layer immiscible second grade not exist in literature. 
In this paper, we have carried out this study.

Modeling of complex systems with the fractional order 
differential and integral operators have applications 
in many fields of science such as geophysics, biology, 
demography, bioengineering, physics and mathematics; 
see [27] and the references therein. There exist many frac-
tional differential operators in literature such as Caputo-
Fabrizio fractional derivative  [27], Riemann–Liouville 
fractional integral/derivative [28], Caputo fractional deriva-
tive [29], and Yang-Srivastava-Machado fractional deriva-
tive [30], are some of the examples of the fractional-order 
differential operators used in viscoelasticity, mass and heat 
transport processes. Hristov  [31] studied the transient 
space-fractional diffusion with power-law superdiffusiv-
ity modeled by the Riemann–Liouville fractional deriva-
tive. Ahmad et al.  [32] have applied the time-fractional 
Caputo–Fabrizio derivative to study the two-dimensional 
advective diffusion process with concentrated source and 
the short-range memory.

In this paper, we have studied the multi-layer flow of 
immiscible fractional second grade fluids between two 
parallel plates. We have considered an unsteady, incom-
pressible, and one dimensional fully developed flow which 
is generated by the movement of the boundary walls and 
the time-dependent pressure gradient in the presence of 
the generalized thermal flux within the fluid layers. Moreo-
ver, we have considered the linear interfacial fluid–fluid 
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condition between two consecutive layers. To find ana-
lytical solutions for velocities and shear stresses we have 
used finite Fourier sine transform in conjunction with the 
Laplace transformation. The main advantage of the ana-
lytic solution is that comparing an analytical solution with 
the numerical scheme is the best way to examine the accu-
racy. A semi-analytical solution for temperature fields is 
recovered with the help of Laplace transform and Tablot’s 
algorithms used for the numerical Laplace inversion.

2 � Mathematical modeling

The flow domain for the simultaneous n-layer 
flow of the fractional second grade fluids is 
D� =

{(
x�, y�, z�

)
, −∞ < x�, z� < ∞, 0 ≤ y� ≤ h

}
 with the 

boundary walls situated in planes y� = 0 and y� = h > 0 . 
Initially at time t� = 0  both boundary plates and the flu-
ids enclosed inside them are at rest. After this moment, 
the boundary plate at y� = 0 start translating towards 
the x′-axis with the velocity u�

10
= U0f1(t

�) , whereas the 
other plate at y� = h moves parallel to the x′-axis with the 
velocity u�

20
= U0g1(t

�) (Fig. 1), where U0 is the characteris-
tic velocity. We assumes that the functions f1(t�) g1(t�) are 
piece-wise continuous functions with f1(0) = g1(0) = 0 . We 
assume that the n-layer flow of fluids is immiscible, fully 
developed, unsteady and one dimensional. The motion of 
the fluids is caused by the motion of the boundary walls 
and the time-dependent pressure gradient in the direction 
of the flow. Under the given conditions, fluids velocities 
take the form �� i = (u�

i
(y�, t�), 0, 0) . Let h0 = 0 and hn = h . 

In the region y� ∈ [hi−1, hi],hi−1 < hi flows a second grade 
fluid with viscosity �i , the density �i , Gi , the elastic modu-
lus, velocity u�

i
(y�, t�) and the share stress ��

i
(y�, t�)  where 

i = 1, 2,… , n . We fix here the notations I1
n
∶= {1, 2,… , n} , 

I0
n−1

∶= {0, 1,… , n − 1} . The continuity equation is identi-
cally satisfied by all velocities ui(y�, t�) , i ∈ I1

n
 . The governing 

equations of motion along with initial, boundary and the 
fluid–fluid interfacial conditions are

•	 the system of linear momentum equations 

•	 the system of constitutive equations 

•	 the initial conditions 

•	 the boundary conditions 

•	 the fluid–fluid interface conditions 

(1)�i
�u�

i

�t�
=

���
i

�y�
−

�p�

�x�
, i ∈ I1

n
,

(2)��
i
=

(
�i + ��

i

�u� i
�t�

)
�u� i
�y�

, i ∈ I1
n
,

(3)u�
i

(
y�, 0

)
= 0, ��

i

(
y�, 0

)
= 0, i ∈ I1

n

at y� = 0, u�
1

(
0, t�

)
= U0f1

(
t�
)
,

(4)at y� = hn = h, u�
n

(
h, t�

)
= U0g1

(
t�
)
,

(5)
u�
i

(
hi , t

�
)
= u�

i+1

(
hi , t

�
)
, ��

i

(
hi , t

�
)
= ��

i+1

(
hi , t

�
)
, i ∈ I1

n−1

Fig. 1   Geometry of the prob-
lem



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1714 | https://doi.org/10.1007/s42452-020-03489-1

 Consider the following non-dimensional parameters 
into Eqs. (1)–(5), 

we get the following non-dimensional mathematical 
model for governing equations,

along with the dimensionless initial conditions, the bound-
ary conditions and the interface conditions

the interface conditions

2.1 � Fractional mathematical model for constitutive 
equations

Consider the following generalized constitutive math-
ematical relation,

where the Caputo derivative ��
t
 is defined as,  [17],

x =
x�

h
, y =

y�

h
, t =

�1t
�

h2
, ui =

u� i

U0

, �i =
h�� i
�1U0

,

�i =
�i

�i
, p =

hp�

�1U0

,

�i =
��

iU0

�1h
2
, ai =

�i
�1

, bi =
�i

�1

,

f (t) = f1

(
h2t

�1

)
, g(t) = g1

(
h2t

�1

)
,

di =
hi

h
, �i =

�i
�1
, i ∈ I1

n
,

(6)ai
�ui
�t

= −
�p

�x
+

��i
�y

, i ∈ I1
n
,

(7)�i =

(
bi + �i

�ui
�t

)
�ui
�y

, i ∈ I1
n
,

(8)ui(y, 0) = 0, �i(y, 0) = 0, i ∈ I1
n
,

(9)u1(0, t) = f (t), un(1, t) = g(t),

(10)ui
(
di , t

)
= ui+1

(
di , t

)
, �i

(
di , t

)
= �i+1

(
di , t

)
, i ∈ I1

n−1
.

(11)�i = bi
�ui
�y

+ �i�
�i
t

�ui
�y

, �i ∈ (0, 1], i ∈ I1
n
,

(12)

�𝜎
t
�(y, t) =

1

Γ(1 − 𝜎) �
t

0

(t − 𝜚)−𝜎
𝜕�(y, 𝜚)

𝜕𝜚
d𝜚, 0 ≤ 𝜎 < 1

For the special case � = 1, �1
t
�(y, t) =

��(y,t)

�t
 . Let �(y, �) be 

the Laplace transform of the �(y, t) with �(y, 0) = 0 , then 
the Laplace transform of the Caputo derivative is defined 
by L{��

t
�(y, t)} = ���(y, �) , where 0 ≤ 𝜎 < 1  [33]. The 

Laplace transformation of the Caputo derivative It is sig-
nificant to remark that the generalized model (11) have the 
following equivalent formulae as

where �i(t, �i) =
1

�i
t�i−1E�i ,�i

(
−

bi

�i
t�i
)
, i ∈ I1

n
, is the velocity 

gradient non-locality kernel. Here in the flow direction the 
pressure gradient is the known function

where P(t) is the piece-wise continuous function over posi-
tive real line.

3 � Solution of the problem

We have used the Laplace transform coupled with the 
finite sine-Fourier transform [34] for the analytical solu-
tions of the Eqs. (6), (11) with conditions (8)–(10). With the 
application of the Laplace transform to Eqs. (6), (9)–(11) in 
the presence of the initial conditions (8), we obtain

where 𝜒̄(y, 𝜉) =
∞∫
0

𝜒(y, t) exp (−𝜉t)dt is the Laplace trans-

form of the function �(y, t) [34].

(13)
�ui(y, t)

�y
=�i(t, �i) ∗ �i(y, t)

(14)= ∫
t

0

�i(t − �, �i)�i(y, �)d�, i ∈ I1
n
,

(15)−
�p

�x
= P(t),

(16)ai𝜉ūi(y, 𝜉) = P̄(𝜉) +
𝜕𝜏i(y, 𝜉)

𝜕y
, i ∈ I1

n
,

(17)𝜏i(y, 𝜉) =
(
bi + 𝛼i𝜉

𝛾i
)𝜕ūi(y, 𝜉)

𝜕y
, i ∈ I1

n
,

(18)ū1(0, 𝜉) = f̄ (𝜉), ūn(1, 𝜉) = ḡ(𝜉)

(19)
ūj
(
dj , 𝜉

)
= ūj+1

(
dj , 𝜉

)
, 𝜏j

(
dj , 𝜉

)

= 𝜏j+1
(
dj , 𝜉

)
, j ∈ I1

n−1
.
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3.1 � Analytical solutions for velocities and shear 
stresses

By using Eqs. (16) and (17) we get the Laplace transformed 
n-layer velocities,

We will further apply the finite sine-Fourier transform to 
Eq. (20) for which the function 𝜒̄(y, 𝜉), y ∈

[
a, b

]
 , a < b , is 

defined as [35]

along with the inverse Fourier transform defined by

With the application of finite Fourier sine transformation 
(21) to Eq. (20) along with the boundary conditions (18) 
and interface fluid–fluid condition (19), the transformed 
velocities take the form

w h e r e  f o r  i = 1, ū1
(
d0, 𝜉

)
= f̄ (𝜉)  a n d  f o r 

i = n, ūn
(
dn, 𝜉

)
= ḡ(𝜉) . In order to apply the inverse Fou-

rier sine transform, we rewrite the Eq. (23) in the following 
suitable form

(20)ai𝜉ūi(y, 𝜉) = P̄(𝜉) +
(
bi + 𝛼i𝜉

𝛾i
)𝜕2ūi(y, 𝜉)

𝜕y2
, i ∈ I1

n
,

(21)
�𝜒m(𝜉) =

b

∫
a

𝜒̄(y, 𝜉) sin
(
𝜗m(y − a)

)
dy,

𝜗m =
m𝜋

b − a
,m = 1, 2, 3,… ,

(22)�(y, �) =
2

b − a
⋅

∞∑
m=1

�̃m(�)sin
(
�m(y − a)

)
.

̃̄uim(𝜉) =

[
1 − (−1)m

]

𝜗
(i)
m

P̄(𝜉)

ai𝜉 +
(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2

+
𝜗
(i)
m

(
bi + 𝛼i𝜉

𝛾i
)(
ūi
(
di−1, 𝜉

))

ai𝜉 +
(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2

−
𝜗
(i)
m

(
bi + 𝛼i𝜉

𝛾i
)
(−1)mūi

(
di , 𝜉

)

ai𝜉 +
(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2
,

(23)�(i)
m
=

m�

di − di−1
,m = 1, 2,… , i ∈ I1

n
,

Consider the auxiliary functions ℘1i(y) , ℘2i(y) and their 
inverse Fourier sine transforms ℘̃1im , ℘̃2im

The inverse Fourier sine transform of Eq. (24) takes the 
form

̃̄uim(𝜉) =
(−1)m+1ūi

(
di , 𝜉

)

𝜗
(i)
m

+
ūi
(
di−1, 𝜉

)

𝜗
(i)
m

+

[
1 − (−1)m

]

𝜗
(i)
m

P̄(𝜉)

ai𝜉 +
(
bi + 𝛼i𝜉

𝛾i
)(
𝜗i
m

)2

−
ai𝜉ūi

(
di−1, 𝜉

)

𝜗i
m

[
ai𝜉 +

(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2
]

+
ai𝜉(−1)

mūi
(
di , 𝜉

)

𝜗
(i)
m

[
ai𝜉 +

(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2
] ,

(24)�(i)
m
=

m�

di − di−1
,m = 1, 2,… , i ∈ I1

n
.

℘1i(y) =
di − y

di − di−1
, y ∈

[
di−1, di

]
, ℘̃1im =

1

𝜗
(i)
m

,

(25)℘2i(y) =
y − di−1

di − di−1
, y ∈

[
di−1, di

]
, ℘̃2im =

(−1)m+1

𝜗
(i)
m

m = 1, 2,… , i ∈ I1
n
, d0 = 0, dn = 1.

ūi(y, 𝜉) =℘1i(y)ūi
(
di−1, 𝜉

)
+℘2i(y)ūi

(
di , 𝜉

)

+
2

di − di−1

∞∑
m=1

sin
(
𝜗(i)
m

(
y − di−1

))

[
1 − (−1)m

]

𝜗
(i)
m

P̄(𝜉)

ai𝜉 +
(
bi + 𝛼i𝜉

𝛾i
)(
𝜗i
m

)2

−
2

di − di−1

∞∑
m=1

sin
(
𝜗(i)
m

(
y − di−1

))

ai𝜉ūi
(
di−1, 𝜉

)

𝜗i
m

[
ai𝜉 +

(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2
]

+
2

di − di−1

∞∑
m=1

sin
(
𝜗(i)
m

(
y − di−1

))

ai𝜉(−1)
mūi

(
di , 𝜉

)

𝜗
(i)
m

[
ai𝜉 +

(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2
] ,
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Now, from (17) and (26), we obtain

where

With the help of the interface liquid-liquid conditions (19) 
in Eqs. (27) and (28), we obtained the following algebraic 
system for the Laplace transformed velocities on the inter-
faces y = di , i = 1, 2,… , n − 1,

where

and

(26)�(i)
m
=

m�

di − di−1
,m = 1, 2,… , i ∈ I1

n
.

(27)
𝜏i(y, 𝜉) =

(
bi + 𝛼i𝜉

𝛾i
)𝜕ūi(y, 𝜉)

𝜕y
= T̄i1(y, 𝜉)ūi

(
di , 𝜉

)

− T̄i2(y, 𝜉)ūi
(
di−1, 𝜉

)
+ T̄i3(y, 𝜉)P̄(𝜉),

(28)

T̄i1(y, 𝜉) =

�
bi + 𝛼i𝜉

𝛾i
�

di − di−1

⎛⎜⎜⎜⎝
1 + 2

∞�
m=1

ai(−1)
m𝜉 cos

�
𝜗
(i)
m

�
y − di−1

��
�
ai𝜉 +

�
bi + 𝛼i𝜉

𝛾i
��
𝜗i
m

�2�
⎞⎟⎟⎟⎠
,

T i2(y, 𝜉) =

�
bi + 𝛼i𝜉

𝛾i
�

di − di−1

⎛⎜⎜⎜⎝
1 + 2

∞�
m=1

ai𝜉 cos
�
𝜗
(i)
m

�
y − di−1

��
�
ai𝜉 +

�
bi + 𝛼i𝜉

𝛾i
��
𝜗i
m

�2�
⎞⎟⎟⎟⎠
,

T i3(y, 𝜉) =
2
�
bi + 𝛼i𝜉

𝛾i
�

di − di−1

⎛
⎜⎜⎜⎝

∞�
m=1

�
1 − (−1)m

�
cos

�
𝜗
(i)
m

�
y − di−1

��
�
ai𝜉 +

�
bi + 𝛼i𝜉

𝛾i
��
𝜗i
m

�2�
⎞
⎟⎟⎟⎠
, i ∈ I1

n
.

(29)

− �̄1,1(𝜉)ū1(d1, 𝜉) + �̄1,2(𝜉)ū2(d2, 𝜉) = b̄1(𝜉),

�̄i,i−1(𝜉)ūi−1(di−1, 𝜉) − �̄i,i(𝜉)ūi(di , 𝜉) + �̄i,i+1(𝜉)ūi+1(di+1, 𝜉)

= b̄i(𝜉), i ∈ J
(2)

n−2
,

�̄n−1,n−2(𝜉)ūn−2(dn−2, 𝜉) − �̄n−1,n−1(𝜉)ūn−1(dn−1, 𝜉) = b̄n−1(𝜉),

(30)

�̄1,1(𝜉) = T̄1,1(d1, 𝜉) + T̄1,2(d1, 𝜉), �̄1,2 = T̄1,2(d1, 𝜉),

�̄i,i−1(𝜉) = T̄i,2(di , 𝜉), �̄i,i = T̄i,1(di , 𝜉) + T̄i+1,2(di , 𝜉),

�̄i,i+1(𝜉) = T̄i+1,1(di , 𝜉), i ∈ J
(2)

n−1
,

(31)
b̄j(𝜉) = T̄j,3(dj , 𝜉) − T̄j+1,3(dj , 𝜉) − 𝛿j,n−1ḡ(𝜉) − 𝛿j,1 f̄ (𝜉), j ∈ J

(1)

n−1
,

�j,m−1 is Kronecker delta. The system (29) can be written in 
the following equivalent form

where

and

Finally, we obtain

Now, ūi(di , 𝜉), i ∈ J
(1)
n  are known functions, therefore the 

velocities ū1(y, 𝜉),⋯ , ūn(y, 𝜉) are known. To obtained the 
inverse Laplace transforms of the functions ūi(y, 𝜉), i ∈ I1

n

we consider the following auxiliary functions,

(32)M̄(𝜉)Ū(𝜉) = N̄(𝜉),

(33)

M̄(𝜉) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−f̄ (𝜉) �̄1,2(𝜉) 0 0 ⋯ 0

�̄2,1(𝜉) − �̄2,2(𝜉) �̄2,3(𝜉) 0 ⋯ 0

0 �̄3,2(𝜉) − �̄3,3(𝜉) �̄3,4(𝜉) ⋯

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋯ − �̄n−3,n−3(𝜉) �̄n−3,n−2(𝜉) 0

0 0 ⋯ �̄n−2,n−3(𝜉) − �̄n−2,n−2(𝜉) �̄n−2,n−1(𝜉)

0 0 ⋯ 0 �̄n−1,n−2(𝜉) − ḡ(𝜉)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(34)Ū(𝜉) =

⎡⎢⎢⎢⎣

ū1(d1, 𝜉)

ū2(d2, 𝜉)

⋮

ūn−1(dn−1, 𝜉)

⎤⎥⎥⎥⎦
,

(35)N̄(𝜉) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b̄1(𝜉)

b̄2(𝜉)

⋮

b̄n−1(𝜉)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)Ū(𝜉) = M̄−1(𝜉)N̄(𝜉).

(37)

H̄i0(m, 𝜉) =
1

ai𝜉 +
(
bi + 𝛼i𝜉

𝛾i
)(

𝜗
(i)
m

)2

=
𝜉−𝛾i

(
ai
)(

𝜉1−𝛾i +
𝛼i

(
𝜗
(i)
m

)2

ai

) ⋅
1

1 +
bi

(
𝜗
(i)
m

)2

𝜉−𝛾i

ai

(
𝜉1−𝛾i+

𝛼i

(
𝜗
(i)
m

)2

ai

)

=

∞∑
k=0

(−1)k
bk
i

(
𝜗
(i)
m

)2k

ak+1
i

𝜉−(k+1)𝛾i(
𝜉1−𝛾i +

𝛼i

(
𝜗
(i)
m

)2

ai

)k+1
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and

(38)

H̄i3(m, 𝜉) = 𝜉H̄i0(m, 𝜉)

=
𝜉−𝛾i+1

ai

(
𝜉1−𝛾i +

𝛼i(𝜃im)
2

ai

)

+

∞∑
k=0

(−1)k+1
(
bi
)k+1(

𝜃
(i)
m

)2k+2

ak+2
i

⋅
𝜉−(k+2)𝛾i+1(

𝜉1−𝛾i +
𝛼i

(
𝜃
(i)
m

)2

ai

)k+2

(39)

H̄i1(m, 𝜉) =
(
bi + 𝛼i𝜉

𝛾i
)
H̄i0(m, 𝜉)

=

∞∑
k=0

(−1)k
(
bi
)k+1(

𝜃
(i)
m

)2k

ak+1
i

⋅
𝜉−(k+1)𝛾i(

𝜉1−𝛾i +
𝛼i

(
𝜃
(i)
m

)2

ai

)k+1

+

∞∑
k=0

(−1)k
(
bi
)k+1(

𝜃
(i)
m

)2k(
𝛼i
)

ak+1
i

⋅
𝜉−k𝛾i(

𝜉1−𝛾i +
𝛼i

(
𝜃
(i)
m

)2

ai

)k+1

We know that,

and for 𝛼i , 𝛽i > 0,

where E�i ,�i(.) is the Mittag–Leffler function and G�1,�2,�3
(t, �) 

is the generalized G-Lorenzo–Hartley function [36]. The 
inverse Laplace transform of H̄i0(m, 𝜉) , H̄i1(m, 𝜉) , H̄i2(m, 𝜉) 
and H̄i3(m, 𝜉), takes the form

(40)

H̄i2(m, 𝜉) ∶= 𝜉H̄i1(m, 𝜉)

=
𝜉−𝛾i+1

ai

(
𝜉1−𝛾i +

𝛼i(𝜃im)
2

ai

)

+

∞∑
k=0

(−1)k+1
(
bi
)k+1(

𝜃
(i)
m

)2k+2

ak+2
i

⋅
𝜉−(k+2)𝛾i+1(

𝜉1−𝛾i +
𝛼i

(
𝜃
(i)
m

)2

ai

)k+2

+
𝛼i𝜉

ai

(
𝜉1−𝛾i +

𝛼i(𝜃im)
2

ai

)

+

∞∑
k=0

(−1)k+1
(
bi
)k+2(

𝜃
(i)
m

)2k+2(
𝛼i
)

ak+2
i

⋅
𝜉−((k+1)𝛾i−1)(

𝜉1−𝛾i +
𝛼i

(
𝜃
(i)
m

)2

ai

)k+2
.

(41)

G�1,�2,�3
(t, �) =L

−1

[
s�2

(s�1 − �)�3

]

=

∞∑
k=0

Γ(k + �3)�
kt(k+�3)�1−�2−1

k!Γ((k + �3)�1 − �2)Γ(�3)
,

��(s) > 0, ��(𝜎1𝜎3 − 𝜎2) > 0, | 𝜎
s𝜎1

| < 1,

(42)L
−1

[
s�i−�i

s�i − d

]
= t�i−1E�i ,�i (dt

�i ),

(43)
Hi0(m, t) =

∞∑
k=0

(−1)k
(
bi
)k(

�
(i)
m

)2k

(
ai
)k+1

⋅ G1−�i ,−(k+1)�i ,k+1

(
t,−�a−1

i

(
�i
m

)2)
,
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and

(44)

Hi3(m, t) =
�(t)

ai
−

�i

�
�
(i)
m

�2

ai
2

t1−�i E1−�i ,1−�i

⎛
⎜⎜⎜⎝

−�i

�
�
(i)
m

�2

ai
t

⎞
⎟⎟⎟⎠

+

∞�
k=0

(−1)k+1
�
bi
�k+1�

�
(i)
m

�2k+2

�
ai
�k+2

⋅ G1−�i ,−k�i ,k+1

�
t,−�a−1

i

�
�i
m

�2�
,

(45)

Hi1(m, t) =

∞∑
k=0

(−1)k
(
bi
)k+1(

�
(i)
m

)2k

(
ai
)k+1

⋅ G1−�i ,−(k+1)�i ,k+1

(
t,−�a−1

i

(
�i
m

)2)

+

∞∑
k=0

(−1)k
(
bi
)k+1(

�
(i)
m

)2k(
�i
)

(
ai
)k+1

⋅ G1−�i ,−k�i ,k+1

(
t,−�a−1

i

(
�i
m

)2)
where h1(t) ∗ h2(t) = ∫ 1

0
h1(t − �)h2(�)d� denotes the con-

volution product of the functions h1(t), h2(t) . Using Eqs. 
(26), (43) and (44), we obtain for velocities the following 
expressions:

The shear stresses system �i(y, �), i ∈ I1
n
, can be obtained by 

applying inverse Laplace transform to Eqs. (27), (28) and 
using Eqs. (45), (46), we get

where

(46)

Hi2(m, t) =
�(t)

ai
−

�i

�
�
(i)
m

�2

ai
2

t1−�i E1−�i ,1−�i

⎛
⎜⎜⎜⎝

−�i

�
�
(i)
m

�2

ai
t

⎞
⎟⎟⎟⎠

+

∞�
k=0

(−1)k+1
�
bi
�k+1�

�
(i)
m

�2k+2

�
ai
�k+2

⋅ G1−�i ,−(k+2)�i+1,k+2

�
t,−�a−1

i

�
�i
m

�2�

+
�i
ai
��(t) ∗ t1−�i E1−�i ,1−�i

⎛
⎜⎜⎜⎝

−�i

�
�
(i)
m

�2

ai
t

⎞
⎟⎟⎟⎠

+

∞�
k=0

(−1)k+1
�
bi
�k+1�

�
(i)
m

�2k+2�
�i
�

�
ai
�k+2

⋅ G1−�i ,−((k+1)�i−1),k+2

�
t,−�a−1

i

�
�i
m

�2�

(47)

ui(y, t) =℘1i(y)ui
(
di−1, t

)
+℘2i(y)ui

(
di , t

)

+
2

di − di−1

∞∑
m=1

sin
(
�(i)
m

(
y − di−1

))[1 − (−1)m
]

�
(i)
m

.Hi0(m, t) ∗ P(t)

−
2

di − di−1

∞∑
m=1

sin
(
�(i)
m

(
y − di−1

)) ai

�
(i)
m

Hi3(m, t) ∗ ui
(
di−1, t

)

+
2

di − di−1

∞∑
m=1

sin
(
�(i)
m

(
y − di−1

))

ai(−1)
m

�
(i)
m

Hi3(m, t) ∗ ui
(
di−1, t

)
,

�(i)
m
=

m�

di − di−1
,m = 1, 2,… , i ∈ I1

n
.

(48)
�i(y, t) =Ti1(y, t) ∗ ui

(
di , t

)
− Ti2(y, t) ∗ ui

(
di−1, t

)
+ Ti3(y, t) ∗ P(t),
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 The considered model of multi-layer flow of second 
grade fluids is more general and several special cases can 
be deduced from it. In order to certify the correctness of 
results that have been here obtained, as well as to get 
some physical insight of them, we consider a particular 
case whose solution is well known in the existing literature 
or can be easily determined. For the special case when 
�i → 0 in Eqs. (47) and (48), we obtain analytical solutions 
of velocities for the n-immiscible Newtonian fluids. These 
velocities (47) of n-immiscible fluids match with the results 
obtained in ([16]; Eq. (72) with �i → 0).

3.2 � Semi‑analytical solution for velocity and shear 
stress

In this subsection, we obtained a new solution for the 
velocities and shear stresses corresponding to the gov-
erning equations given by Eqs. (16)–(19) by applying 
the Laplace transform in conjunction with the classical 
method for the ordinary differential equations. The gen-
eral solution for the Eq. (20) provides a system of the 
Laplace transformed velocities as

where

Now with Eqs. (17) and (50), the Laplace transformed form 
of the shear stresses �i(y, t), i ∈ I1

n
, can be written as

Ti1(y, t) =

[
1

di − di−1

(
�i t

�i−1E�i ,�i

(
−bi�

−1
i
t�i
))

+2

∞∑
m=1

ai(−1)
mHi2(m, t) cos

(
�(i)
m

(
y − di−1

))]
,

Ti2(y, t) =

[
1

di − di−1

(
�i t

�i−1E�i ,�i

(
−bi�

−1
i
t�i
))

+2

∞∑
m=1

aiHi2(m, t) cos
(
�(i)
m

(
y − di−1

))]
,

(49)Ti3(y, t) =
2

di − di−1

∞∑
m=1

[
1 − (−1)m

]
Hi1(m, t) cos

(
�(i)
m

(
y − di−1

))
, i ∈ I1

n
.

(50)ūi(y, 𝜉) = Ai(𝜉)e
−y

√
mi (𝜉) + Bi(𝜉)e

y
√
mi (𝜉) +

P̄(𝜉)

ai𝜉
,

mi(�) =
ai�(

bi + �i�
�i
) , i ∈ I1

n
.

Using the boundary conditions (18) and the interface con-
ditions (19), we have

where the C1(�) is given by

and the columns D1(�) and E1(�) are

here

(51)

𝜏i(y, 𝜉) =
�
bi + 𝛼i𝜉

𝛾i
�𝜕ūi(y, 𝜉)

𝜕y

=
�
bi + 𝛼i𝜉

𝛾i
��
−
√
mi(𝜉)Ai(𝜉)e

−y
√
mi (𝜉)

+
√
mi(𝜉)Bi(𝜉)e

y
√
mi (𝜉)

�

(52)C1(�)D1(�) = E1(�),

C1(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0 1 0 0 ⋯ 0

�1 −�1 0 ⋯ 0
1

�1
−

1

�1
0 ⋯ 0

0 �2 −�2 ⋯ 0 0
1

�2
−

1

�2
⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ �n−1 −�n−1 0 0 0
1

�n−1
−

1

�n−1

�1 −�1 0 ⋯ 0 �1 −�1 0 ⋯ 0

0 �2 −�2 ⋯ 0 0 �2 −�2 ⋯ 0

⋮ ⋮ ⋱ ⋯ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ �n−1 −�n−1 0 0 0 �n−1 −�n−1
0 0 ⋯ 0 �n 0 0 0 0 �n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D1(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1(�)

A2(�)

⋮

An(�)

B1(�)

B2(�)

⋮

Bn(�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E1(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0(�)

P1(�)

⋮

Pn−1(�)

0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The system (52) can be written in equivalent form as,

Where

Where �ij is the Kronecker tensor. Matrices W1, X1, Y1, Z1 are 
invertible triangular matrices, therefore Eqs. (47) can be 
written as

Suppose that matrix S1 = X−1
1
W1 − Z−1

1
Y1 is invertible, we 

have

�j =e
−dj

√
mj (𝜉), �j = e

−dj

√
mj+1(𝜉),

�j = −

�
mj(𝜉)e

−dj

√
mj (𝜉),

�j = −

�
bj+1 + 𝛼j+1𝜉

𝛾j+1

bj + 𝛼j𝜉
𝛾j

��
mj+1(𝜉)e

−dj

√
mj+1(𝜉),

�j = −

�
mj(𝜉)e

dj

√
mj (𝜉),

�j =

�
bj+1 + 𝛼j+1𝜉

𝛾j+1

bj + 𝛼j𝜉
𝛾j

��
mj+1(𝜉)e

dj

√
mj+1(𝜉),

P0(𝜉) =f̄ (𝜉) −
P̄(𝜉)

a1𝜉
,

Pj(𝜉) =

�
1

aj+1
−

1

aj

�
P̄(𝜉)

𝜉
, j = 1, 2,… , n − 1

(53)
W1(�)A(�) + X1(�)B(�) =L3(�),

Y1(�)A(�) + Z1(�)B(�) =L4(�),

W1 =
�
W �

ij

�
i,j∈I0

n−1

⋮ X1 =
�
X �

ij

�
i,j∈I0

n−1

W1
0j
= �0,j , j ∈ I0

n−1
⋮ X1

0j
= �0,j , j ∈ I0

n−1

W �
ij
= �i�i,j+1 − �i�i+1,j+1, ⋮ X1

ij
=

1

�i
�i,j+1 −

1

�i
�i+1,j+1,

i ∈ I1
n−1

, j ∈ I0
n−1

, ⋮ i ∈ I1
n−1

, j ∈ I0
n−1

,

Y1 =
�
Y �

ij

�
i,j∈I0

n−1

⋮ Z1 =
�
Z �

ij

�
i,j∈I0

n−1

Y �
ij
= �i+1�i+1,j+1 − �i+1�i+2,j+1, ⋮ Z �

ij
= �i+1�i+1,j+1 − �i+1�i+2,j+1,

i ∈ I0
n−2

, j ∈ I0
n−1

, ⋮ i ∈ I0
n−2

, j ∈ I0
n−1

,

Y �

(n−1)j
= �n�n−1,j,j ∈ I0

n−1
⋮ Z �

(n−1)j
= �n�n−1,j,j ∈ I0

n−1
,

L3 =

⎛⎜⎜⎜⎝

P0(�)

P1(�)

⋮

Pn−1(�)

⎞⎟⎟⎟⎠
, L4 =

⎛⎜⎜⎜⎝

0

0

⋮

0

⎞⎟⎟⎟⎠
n×1

,

A =

⎛
⎜⎜⎜⎝

A1(�)

A2(�)

⋮

An(�)

⎞
⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎝

B1(�)

B2(�)

⋮

Bn(�)

⎞
⎟⎟⎟⎠

(54)

(
X−1
1
W1 − Z−1

1
Y1
)
A =X−1

1
L3

B = − Z−1
1
Y1A

where

And the matrix S1 =
(
S1
ij

)
i,j∈I0

n−1

 is defined by the 

elements

The Laplace transforms given by Eqs. (50), (51) and (55) 
involve intricate functions, which makes it difficult to apply 
analytical methods to compute the inverse Laplace trans-
forms of these relations.

Here we have used two precision numerical proce-
dures for the Laplace inversion of Eqs. (50),(51) and (55), 
specifically the fixed Talbot procedure and the improved 
Talbot procedure [37, 38].

Consider a function g(y, t) with the Laplace transform 
Ḡ(y, s) . Talbot algorithm [37] approximates the function 
g(y, t) from a given function Ḡ(y, s) as

where

(55)
A =S−1

1
X−1
1
L3,

B = − Z−1
1
Y1S

−1
1
X−1
1
L3,

W−1
1

=

(
w1

ij

)
i, j ∈ I0

n−1
,

(56)w1
0j
= �0j,j ∈ I0

n−1
,w1

i0
=

i∏
r=1

�r

�r
, i ∈ I1

n−1
,

w1
ij
= −

i�
s=1

�s

�s

j−1�
r=0

�r

�r+1

n−1�
k=0

�i,j+k,i, j ∈ I1
n−1

;

X−1
1

=

�
x1
ij

�
i, j ∈ I0

n−1
,

x1
0j
=�0j,j ∈ I0

n−1
, x1

i0
=

i�
r=1

�r

�r
, i ∈ I1

n−1
,

x1
ij
= −

i�
s=1

�s

�s

j−1�
r=0

�r+1

�r

n−1�
k=0

�i,j+k,i, j ∈ I1
n−1

;

Z−1
1

=

�
z1
ij

�
i,j∈I0

n−1
,

with,

z1
ij
=

�
i∏

s=0

�s

�s

∏
r=0

�s

�r+1

�
∑n−1

k=0
�i−k,j , �0 = �0 = �n = 1, i, j ∈ I0

n−1
.

S1
ij
=

n−1∑
k=0

(
x1
ik
W1

kj
− z1

ik
Y1
kj

)
.

(57)

g(y, t) ≅
r

M

{
exp(rt)

2
Ḡ(y, r)

+

M−1∑
k=1

Re
[
exp(tz(Ωk))Ḡ(y, z(Ωk))

(
1 + i𝜁(Ωk)

)]}
,



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1714 | https://doi.org/10.1007/s42452-020-03489-1	 Research Article

The improved Talbot algorithm is applied to approximate 
the function g(y, t) as

where,

(58)
r =

2M

5t
, z(Ω) = rΩ(cotΩ + i), Ω ∈ (−�,�),

�(Ω) =Ω + (ΩcotΩ − 1)cotΩ, Ωk =
k�

M
.

(59)g(y, t) ≅

M∑
k=1

Ḡ(y, z1(𝜎k))
(
𝜈 + i𝜁 1(𝜎k)

)exp(tz1(𝜎k))
t

,

Here the parameters M, �, �, �, � are quantified by the 
handler.

The results obtained by Luo et al. [39], are the special 
case n = 2 , of our more general semi-analytical solutions 
(50)–(51).

(60)

z1(Ω) =
M

t
[�iΩ + �Ω cot(�Ω) − Ω], Ω ∈ [−�,�],

�1(Ω) =��Ω + �(�Ωcot(�Ω) − 1)cot(�Ω), �k =
(2k − 1)�

M
− �.

Fig. 2   Variation of the damping kernels �i(t, �i) , i = 1, 2, 3 , with the fractional parameters �i , i = 1, 2, 3
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4 � Numerical results and discussions

The unsteady, laminar flow of multi-layer fractional 
n-immiscible second-grade fluids between two parallel 
plates have been investigated. The flow of the fluids is 
caused by the time-dependent pressure gradient along 
the axis of the flow and by the movement of the channel 
walls in their planes with the time-dependent velocities, 
and in the presence of the fluid–fluid interfacial conditions.

A generalized mathematical model based on the frac-
tional differential constitutive equation with time-frac-
tional Caputo derivative has been developed and studied. 
On the solid boundaries, the no-slip condition is consid-
ered, while at the fluid–fluid interfaces, the velocity and 
shear stress are considered continuous.

Semi-analytical solutions of the problem with initial, 
boundary and interface conditions have been deter-
mined by employing the Laplace transform coupled with 
the Talbot algorithms for the numerical inverse Laplace 
transforms. Using the Laplace transform and the finite 
sine-Fourier transform, the analytical solutions of the same 
problem have been determined.

In the present study, we considered the particular 
case of three layers of immiscible fluids when the veloc-
ity of the bottom plate is u1(0, t) = f (t) = 0.5H(t) the 
velocity of the upper plate is u3(0, t) = g(t) = 0.4H(t) . 

H(t) =

{
0, t ≤ 0

1, t > 0
=

1

2
sign(t)(1 + sign(t)) is the unit step 

Fig. 3   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.05,�2 = 0.3,�3 = 0.5 , �1 = 0.2, �2 = 0.3, �3 = 0.6 and for dif-
ferent values of �1

Fig. 4   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.05,�2 = 0.3,�3 = 0.5 , �1 = 0.2, �2 = 0.3, �3 = 0.6 and for dif-
ferent values of �2

Fig. 5   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.05,�2 = 0.3,�3 = 0.5 , �1 = 0.2, �2 = 0.3, �3 = 0.6 and for dif-
ferent values of �3
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Heaviside function, and the pressure gradient is 
P(t) = 1 + sin(t) . The flows regions are determined by 
d0 = 0, d1 = 0.3, d2 = 0.7, d3 = 1.

With the help of Math-cad software, numerical results 
have been obtained and graphically presented for the 
velocity of the fluids. Some aspects of the fluid motion 
are presented in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10 that 
are sketched for the following values of the densities of 

fluids �1 = 1000, �2 = 1300, �3 = 1500 (other parameters 
are given in the figures’ labels).

To emphasize the influence of the memory on the 
fluid motion, let’s refer to the constitutive Eq. (11) that 
c a n  b e  w r i t t e n  i n  t h e  e q u i v a l e n t  f o r m 
�u(y,t)

�y
=

1

�i
∫ t

0
E�i ,�i

(
−

bi

�i
(t − s)�i

)
�i(y, s)ds . This relationship 

shows that the shear rate is strongly influenced by the 

Fig. 6   Profile of veloci-
ties ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.8, �2 = 0.7, �3 = 0.4 , 
�1 = 0.2, �2 = 0.3, �3 = 0.6 and 
for different values of �1

Fig. 7   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.8, �2 = 0.7, �3 = 0.4 , �1 = 0.2, �2 = 0.3, �3 = 0.6 and for differ-
ent values of �2

Fig. 8   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.8, �2 = 0.7, �3 = 0.4 , �1 = 0.2, �2 = 0.3, �3 = 0.6 and for differ-
ent values of �3
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memory kernel present in the mathematical model, 
namely, by the weight function E�i ,�i

(
−

bi

�i
t�i
)

 . The profiles 

of kernels corresponding to three fluids considered in 
the present study are given in Fig. 2, for different values 
of the time t, t ∈ {0.05, 0.1, 0.2, 0.4, 0.5, 0.8, 1} . Note 
that, in the case of the ordinary fluids (�i = 1) fluids 
defined by the constitutive equation with the derivative 
of integer order, the dumping kernel is the exponential 
function exp

(
−bi t

�i

)
 has a profile different from the pro-

files shown in Fig. 2. It is observed from Fig. 2 that for 
small values of time t, the damping fractional kernel 
increases to a maximum value and then decreases to a 
minimum value. For time values t greater than or equal 
to 0.4, the kernel values are ascending by the fractional 
parameter. On the other hand, for positive values of the 
argument, the exponential function exp

(
−bi t

�i

)
 is 

decreasing.This discussion highlights that there are 
essential differences between memory effects for the 
fractional and ordinary fluids.The different behavior of 
the dumping kernel for the shear rate in the case of the 
fractional model, respectively for the ordinary model, it 
is visible to the profiles of the velocities of fluids pre-
sented in Figs. 3, 4, 5, 6, 7, 8, 9, 10 and 11.

Figure 2 has been plotted to study the influence of the 
memory of the fluid in the first layer on the fluids in layers 
two and three which are considered with constant frac-
tional parameters. It is seen in Fig. 2 that for increasing the 

Fig. 9   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.8, �2 = 0.7, �3 = 0.4 , �1 = 0.05,�2 = 0.3,�3 = 0.5 and for dif-
ferent values of �1

Fig. 10   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.8, �2 = 0.7, �3 = 0.4 , �1 = 0.05,�2 = 0.3,�3 = 0.5 and for dif-
ferent values of �2

Fig. 11   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.8, �2 = 0.7, �3 = 0.4 , �1 = 0.05,�2 = 0.3,�3 = 0.5 and for dif-
ferent values of �3
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values of the fractional parameter in the first fluid layer, 
its velocity decreases. Obviously, the motion of the first 
layer influences the second and third layers through the 
interface interactions.

Figures 3, 4 and 5 present the influence of the varia-
tion of the fractional parameters in layers two and three. 
We must point out that in these cases the effect on the 
velocity of the fluid in the first layer is null. This was to be 
expected because there are no changing parameters in 
the first layer, so the speed on the interface between the 
first layer and the second layer will be the same due to the 
imposed continuity conditions.

The influence of the dynamic viscosity of the fluids 
on their velocity is analyzed in Figs. 6, 7 and 8. Taking 
into account the mathematical model, the influence of 
the dynamic viscosity occurs through the parameters bi.

The variation of these parameters changes the ker-
nel’s profile of the fractional/integer derivative, so the 
shape of the velocity field. As expected and as shown in 
Fig. 6, the fluid with the lowest viscosity has the highest 
velocity because, in this case, the viscous forces have 
lower values.

The influence of the material coefficients specific of the 
second-grade fluids, namely �i , on the fluid motion, was 
investigated in Figs. 9, 10 and 11. Like the dynamic viscos-
ity, the material coefficients �i are in the expression of the 
fractional derivative kernels, so they participate signifi-
cantly in the memory process.

In Fig. 12 is presented the profile of velocities ui(y, t) , 
i=1,2,3, for different values of the time t. It can be 
observed from Fig. 12 that at a very short time the pro-
file for velocities ui(y, t), i = 1, 2, 3, are similar to the initial 
condition, that is zero everywhere.

In order to verify the accuracy of numerical results, we 
used the analytical solution of velocity given by Eq. (47) 
and the semi-analytical solution given by Eq. (50) for fol-
lowing values of parameters: �1 = 0.05,�2 = 0.3,�3 = 0.95 , 
�1 = 0.2, �2 = 0.4, �3 = 0.6 , �1 = 0.8 , �2 = 0.7 , �3 = 0.4 and 
t = 3 . Numerical results are given in Fig. 13. There is a good 
agreement between the results obtained with the two 
formulas.

5 � Conclusion

The simultaneous flow of generalized n-immiscible sec-
ond grade fluids with the Caputo time-fractional deriva-
tive have been studied between two parallel plates. The 
unsteady, laminar simultaneous n-fluids flow is caused by 
the motion of the side walls with time dependent veloci-
ties, and by the time dependent pressure gradient in flow 
direction.

On the solid boundaries, the no-slip condition is 
considered, while at the fluid–fluid interface y = di , the 
velocity and shear stress are considered continuous. 
Semi-analytical solutions of the problem with initial, 
boundary and interface conditions have been deter-
mined by employing the Laplace transform coupled 
with the Talbot algorithms for the numerical inverse 
Laplace transforms. Using the Laplace transform and the 
finite sine-Fourier transform, the analytical solutions of 
the same problem have been determined. It has been 
found that the memory effects are significant in the fluid 
motion. Furthermore, the fluid with the lowest viscosity 
has the highest velocity, as expected.

Fig. 12   Profile of velocities ui(y, t) , i = 1, 2, 3 , at 
�1 = 0.05,�2 = 0.3,�3 = 0.4 , �1 = 0.2, �2 = 0.4, �3 = 0.6 , �1 = 0.8 , 
�2 = 0.7 , �3 = 0.4 and for different values of t 

Fig. 13   Comparison between results obtained with analytical and 
semi-analytical solutions for velocities ui(y, t) , i = 1, 2, 3
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Appendix

Applying the Laplace transform to Eq. (11), we can write

we can rewrite Eq. (61) in equivalent form as

Applying the inverse Laplace transform to Eq. (62) gives 
the velocity gradient in the form of convolution as

with �i(t, �i) =
1

�i
t�i−1E�i ,�i

(
−

bi

�i
t�i
)
.
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