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Abstract
The multiscale simulation of heterogeneous materials is a popular and important subject in solid mechanics and materi-
als science due to the wide application of composite materials. However, the classical FE2 (finite element2 ) scheme can 
be costly, especially when the microproblem is nonlinear. In this paper, we consider the case when the microproblem 
is the phase field formulation for fracture. We adopt the locally linear embedding (LLE) manifold learning approach, a 
method for non-linear dimension reduction, to extract the manifold that contains a collection of phase-field-represented 
initial microcrack patterns in the representative volume element (RVE). Then the output data corresponding to any 
other microcrack pattern, e.g., the evolved phase field at a fixed load, can be accurately reconstructed using the learned 
manifold with minimum computation. The method has two features: a minimum number of parameters for the scheme, 
and an input-specific error bar. The latter feature enables an adaptive strategy for any new input on whether to use the 
proposed, less expensive reconstruction, or to use an accurate but costly high-fidelity computation instead.

Keywords  Multiscale simulation · Manifold learning · Locally linear embedding · Phase field for fracture

1  Introduction

Heterogeneous materials such as composites have been 
widely applied in various industries such as aircraft and 
automobile manufacturing. The multiscale simulation of 
heterogeneous materials is therefore a crucial task in com-
putational mechanics.

Such simulation is usually facilitated by the classical FE2 
scheme [1], as illustrated in Fig. 1. In a typical FE2 scheme, 
the finite element method is applied at the microscale 
and the macroscale concurrently, and hence the name. 
More precisely, at the macroscale, the entire composite 
part is discretized into continuum finite elements, each of 
which has several Gauss quadrature points for numerical 
integration. For each Gauss quadrature point, the effec-
tive constitutive behavior for the macroscale is obtained 

through a homogenization process via a finite element 
analysis at the microscale. The computational domain at 
the microscale is called a representatixve volume element 
(RVE). Take the mechanical simulation for a fiber-reinforced 
composite as an example, a typical RVE consists of a fiber 
and the surrounding matrix [2], possibly with defects such 
as cracks. Normally the desired effective responses include 
the stress tensor and the elasticity tensor, and the simplest 
way of homogenization is by volume averaging.

Among available numerical methods for the analy-
sis at the RVE with crack propagation, the phase field 
approach to fracture [3], also known as the regularized 
variational theory for fracture, shows clear advantages. 
This approach is built on Griffith’s theory for brittle 
fracture [4]. The key idea is to use a scalar field, called 
phase field, to represent the crack path, instead of 
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incorporating the explicit geometry of the crack path 
in the computational domain. The advantages include 
obviating the need for explicitly tracking the crack path 
geometry, and the ability to predict crack nucleation 
and bifurcation without extra criterion. The method 
has since been applied to fracture modeling in Euler-
Bernoulli beams [5], thin shells [6], composite materials 
[7, 8], cement-based materials [9], layered structures [10], 
and CO2 fracturing [11].

However, solving the equations arising from the phase 
field method for fracture can be costly. Since the strain 
energy functional to minimize in this approach is not con-
vex, the required number of iterations for convergence is 
not known a priori. The RVE analysis is, of course, no excep-
tion. Many efforts have been devoted to accelerating the 
phase field fracture solution procedure. Heister et al. [12] 
and Li et al. [13] constructed mesh adaptivity approaches 
for the problem. Ziaei-Rad and Shen [14] developed a 
massively parallel algorithm for the phase field approach 
with time adaptivity. Gerasimov and De Lorenzis [15] pro-
posed a line search procedure for the monolithic scheme 
to overcome the iterative convergence issues of non-
convex minimization. Wick [16, 17] developed modified 
Newton-Raphson schemes for fully monolithic quasi-static 
brittle phase field fracture propagation. Farrell and Maurini 
[18] reformulated the staggered algorithm of the phase 
field analysis as a nonlinear Gauss-Seidel iteration and 
employed over-relaxation to accelerate convergence. Wu 
et al. [19] developed a quasi-Newton monolithic method 
with the Brodyen–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm. Kopaničáková and Krause [20] proposed a trust 
region method with application to monolithic phase-field 
fracture models.

We aim to accelerate the multiscale simulation from 
another perspective. In fact, in many cases, the RVEs are 
similar within the same multiscale analysis. This similarity 
can be exploited to accelerate computation, for example, 
via manifold learning.

In the machine learning context, manifold learning is 
employed to extract the manifold that represents high-
dimensional data points and to perform data reconstruc-
tion with a minimum amount of computation. Manifold 
learning has been widely applied to multiscale analysis 
[21–24], see also the review by Matouš et  al. [25]. An 
instance of manifold learning techniques is locally linear 
embedding (LLE). Proposed by Roweis and Saul [26], LLE 
is an unsupervised learning algorithm that computes low-
dimensional, topology-preserving embeddings of high-
dimensional data points. As an instance of kernel principal 
component analysis (kernel PCA), LLE has many attractive 
properties. For example, the local geometry of high-
dimensional data is preserved in the low-dimensional 
manifold. LLE is particularly suitable for problems with a 
large amount of similar high-dimensional data.

However, LLE assumes that the data all reside on a sin-
gle continuous manifold [27], which poses certain restric-
tions on the application. For example, in image-based 
simulations [28], each RVE is represented as a vector con-
taining, e.g., pixel values. In this case, if the dimension of 
this vector varies between RVEs, the nonuniform data 
structure will make LLE training and interpolation impos-
sible. This is because the neighborhood finding and inter-
polation operations of the LLE algorithm requires that the 
linear combination of data points to be well defined.

Despite such restrictions, the advantages of LLE make 
it ideal for random RVE computation and computational 
homogenization [28–30] for multiscale analysis of hetero-
geneous materials.

Inspired by [28] for heat conduction problems, for the 
problem of multiscale fracture simulation at hand, we aim 
to learn a manifold that contains a collection of similar 
cracked RVEs, and to efficiently compute any desired out-
put dependent on such microstructure using LLE recon-
structions. Concretely speaking, the input is chosen as the 
phase field pattern at the beginning of a certain time step 
(termed “initial phase field” for short), and the output can 
be the phase field at the end of the time step—so as to 
make a closed loop for the analysis of the next step—or 
any other derived quantity from such phase field solution 
such as the homogenized stress. In the discrete picture, we 
construct a finite element mesh to describe the RVE, inter-
polate the phase field for the crack pattern using the finite 
element basis functions, and vectorize the description of 
the initial crack pattern of each RVE using the nodal values 
of the phase field. The desired output is the phase field 
solution corresponding to a certain boundary condition.

Compared with recent contributions on applying 
machine learning techniques, neural networks in particu-
lar, for constitutive modeling [31–36] and similar computa-
tions for RVEs [37–41], the adopted method possesses the 
following features.

Fig. 1   Flowchart illustrating the FE2 scheme
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First, the number of hyperparameters is minimal: only 
the size of the neighborhood and the number of reduced 
dimensions need to be input by the user. The selection 
of such hyperparameters is determined by a systematic 
cross-validation approach.

Second, there is no limit on the dimension of the 
desired output, as long as it is a continuous functional of 
the microstructure, while a typical neural network would 
have one set of thresholds and weights per scalar output.

Finally, for any new input, the uncertainty (“error bar”) 
for the reconstructed output can be obtained, as a strong 
correlation is observed between the reconstruction error 
and a parameter solely dependent on the input informa-
tion. In this case, the parameter is the distance from the 
new input to the learned data manifold. This last feature 
enables a criterion to be developed to assess the recon-
struction error a priori; in other words, a criterion to decide 
whether to use the reconstruction which is less expensive, 
or resort to the high-fidelity computation which is more 
accurate. This also serves as an indicator of whether the 
collection of inputs should be augmented with the new 
input in question, in a greedy sampling fashion, should 
some kind of adaptivity is to be implemented.

However, it is still worth noting that, just like many 
other machine learning techniques, the LLE approach 
requires enough data points to guarantee the accuracy of 
predictions. Hence the training set should be dense and 
large enough. Moreover, as inherited from the general 
LLE technique, the proposed approach requires the data 
structure to be homogeneous, making the distance func-
tion and linear combination between data points well-
defined. Finally, the output should continuously depend 
on the input data, which is also a necessary condition for 
a well-posed problem anyway.

The content of this paper is structured as follows. In 
Sect. 2, the FE2 scheme and phase field method are intro-
duced. In Sect. 3, the manifold learning and LLE techniques 
are explained in detail. In Sect. 4, numerical implementa-
tions and results are illustrated with error assessments. 
Finally, in Sect. 6, a summary of the proposed computa-
tional strategy is presented.

2 � The FE2 scheme applied to composite 
fracture

In this section, we introduce the FE2 scheme in the multi-
scale fracture simulation of a fiber-reinforced composite. 
The FE2 is a two-scale modeling scheme which applies FE 
discretizations at both macro and micro scales, the former 
taking input from the latter through the analysis of the 
RVE.

In our case, as shown in Fig. 2, the RVE is composed of 
a strong fiber in the center with a weaker matrix. We aim 
to perform the fracture simulation of the cracked RVE at 
the microscale. Once the local behavior is determined, the 
overall macroscopic response of the RVE can be obtained 
using any well-established homogenization theory and be 
used for the macroscopic simulation.

For simplicity, we only consider the microcrack evo-
lution in the matrix and ignore all other defects, such as 
cracks on the interface (debonding) and in the fiber, see 
Fig. 3.

Phase Field Approach for RVE Cracking Among many 
crack simulation methods, we adopt the phase field 
method to simulate the microcrack evolution in RVE. The 
phase field modeling of brittle fracture has shown its 
advantages on simulating complex fracture process, such 
as obviation of remeshing, see [3, 42, 43]. The phase field 
approach of fracture is based on the variational energy 
formulation proposed by [44], which can be considered 
as a generalization of Griffith’s theory [4].

As shown in Fig. 4b, the phase field method uses a dif-
fuse field d to represent the cracked microstructures where 
d = 0 represents the intact material and d = 1 the crack. 
Then equipped with a finite element mesh, cracked micro-
structures can be represented as a vector containing the 

Fig. 2   Modeling a macroscopic composite as a collection of RVEs

Fig. 3   The simplified RVE to be analyzed in this work. In this RVE 
there is a strong fiber inside a weaker matrix. The only allowed form 
of failure is matrix cracking
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nodal values of the phase field, and the distance of the 
cracked RVEs can be measured as the Euclidian norm of 
the difference of such vectors.

Compared with a geometric description of cracks 
(Fig. 4a) which may require a heterogeneous data struc-
ture (such as the coordinates of a possibly varying number 
of discrete points on the evolving crack), the phase field 
method is advantageous in terms of data structure for the 
manifold learning approach, as each cracked microstruc-
ture can be uniformly represented as a vector consisting 
of the nodes’ phase field values. This feature is favorable in 
the manifold learning process introduced in Sect. 3, as we 
can adopt a data structure for the inputs (and outputs) as 
vectors of the same length.

Figs. 4c and 5a show the pixel representations of micro-
cracks with the phase field approach. At first sight, there 
are at least two possible alternatives to translate a cracked 
microstructure into a numerical representation: (1) using 
the characteristic function of the cracks, i.e., 1 for the crack 
and 0 otherwise, as shown in Fig. 5b, (2) using the distance 
function to the cracks, as shown in Fig. 5c. Considering 
that we will need to quantify the “distance” of such micro-
structures, both alternatives present severe drawbacks: 
method (1) would not be able to tell the distance of non-
overlapping cracks, while method (2) would weight too 
much on the difference of crack pattern pairs in areas far 
away from the cracks.

The adopted variant of the phase field formulation is 
as follows. In a plane strain setting, let B = (−L, L)2 be 
the area initially occupied by the RVE. Within the RVE, let 
S ⊂⊂ B be the fiber, and Bs = B ⧵ S be the matrix, see 
Fig. 3. In the absence of body force and traction boundary 
condition, the phase field formulation for the RVE is [45]

(1)

Πl[u, d] =∫
Bs

�
[
�, d

]
dB + ∫S

�1(�)dB

+
gc

2 ∫
Bs

(
d2

l
+ l|∇d|2

)
dB,

where the arguments u ∈ H1(B,ℝ2) and d ∈ H1(Bs) are 
the displacement field and the phase field, respectively, 
and the strain tensor is defined as � = (∇u + ∇uT )∕2 . Here 
we set the convention for the phase field d as d = 1 rep-
resents the crack and d = 0 the intact material. Let (�,�) 
and (�1,�1) be the Lamé constants of the matrix and of the 
fiber, respectively, then the strain energy density for the 
fiber is given by

�1(�) =
�1

2
(tr �)2 + �1� ∶ �,

(a) (b) (c)

Fig. 4   Representations of a unit cracked microstructures: a discrete 
crack model; b phase field corresponding to a; c pixel representa-
tion of the phase field model with a structured quadrilateral mesh 
of with h∕l = 0.5

(a)

(b)

(c)

Fig. 5   Numerical representations of cracked microstructures with 
5 × 5 nodes: a phase field (chosen); b characteristic function (not 
recommended); c distance function (not recommended). We 
employ a since it is able to vectorize cracked microstructures, and 
the distance metric between crack patterns is well defined. b would 
not be able to tell the distance of non-overlapping cracks and c 
would weight too much on the difference of crack pattern pairs in 
areas far away from the cracks
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while that for the matrix also depends on d, for which we 
adopt the formulation proposed by Amor et al. [42]. This 
model splits the strain energy density �  into volumetric 
and deviatoric parts:

where 

w h e r e  K = � + 2�∕3  i s  t h e  b u l k  m o d u l u s , 
dev � ∶= � − (1∕3)( tr �)� , ⟨a⟩± ∶= (a ± �a�)∕2 and the deg-
radation function g(d) = (1 − d)2 + k , where k is a small 
positive number. The positive numbers gc and l are the 
energy release rate of crack propagation and the regulari-
zation length scale, respectively.

The strong form of the governing equations, except the 
displacement boundary condition at �B , read 

where n denotes the outward unit normal vector of �S or 
�B.

The general quasi-static calculation for each load step 
of the microcrack evolution is shown in Fig. 6: the inputs 
are the crack configuration (represented by a phase field) 
at time t and the boundary conditions for u and d at the 
next time step t + Δt , and the output is the updated phase 
field at t + Δt . Here t represents a time-like variable to indi-
cate the process of load increment, and likewise t + Δt.

� (�, d) = g(d)�+(�) + �−(�),

(2a)�+(�) =
K

2
⟨tr �⟩2

+
+ �‖dev �‖2,

(2b)�−(�) =
K

2
⟨tr �⟩2

−
,

(2c)�(�, d) = g(d)
�
K⟨tr �⟩+� + 2� dev �

�
+ K⟨tr �⟩−�,

(3a)div � = �, inBs ∪ S,

(3b)� =
��

��
, inBs,

(3c)� =
��1

��
, in S,

(3d)
��

�d
+ gc

(
d

l
− lΔd

)
= 0, inBs,

(3e)� ⋅ n||Bs
= � ⋅ n||S on �S

(3f )u||Bs
= u||S on �S

(3g)∇d ⋅ n = 0 on �Bs,

For simplicity, we fix the following boundary condi-
tions on �B and focus on the effect of the crack path at t 
on its updated counterpart at t + Δt . Let � ∈ ℝ

2×2 be the 
imposed macroscopic strain tensor, then the boundary 
conditions are set to be

3 � Manifold learning details

The FE2 scheme introduced in Sect. 2 requires an unpre-
dictable number of iterations for convergence due to the 
non-convexity of the functional Πl . In order to reduce com-
putational cost, we adopt the so-called manifold learning 
method. The manifold learning scheme uses techniques 
traditionally designed for machine learning purposes to 
extract the manifold that represents high-dimensional 
data points and perform reconstruction with minimum 
amount of computation [28, 30]. The main idea is to 
generate enough inputs and pre-compute their outputs 
offline, in this case the phase fields at t and t + Δt , respec-
tively, then provides the desired output for any input by 
reconstruction.

In this section, we will elaborate on the manifold learn-
ing approach and the LLE technique [26], specialized 
to the problem stated in Sect. 2. In particular, as we fix 
the load shown in Fig. 6b, the only input to consider is 
the initial crack path (i.e. the initial phase field) (Fig. 6a), 
and the output is the evolved phase field (Fig. 6c) upon 
equilibrium.

3.1 � Locally linear embedding

Locally linear embedding (LLE), proposed by Roweis and 
Saul [26], is an unsupervised learning algorithm that com-
putes low-dimensional, topology-preserving embeddings 
of high-dimensional data points. LLE is an instance of 
kernel principal component analysis (kernel PCA), which 

(3h)u = � ⋅ x , on �B.

(a) (b) (c)

Fig. 6   a RVE with micro cracks; b the boundary conditions of RVE; c 
RVE with evolved micro cracks
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handles nonlinear dimensionality reduction [46]. As illus-
trated in Fig. 7, LLE maps high-dimensional data into a 
single global coordinate system of lower dimensionality.

In this paper, we use LLE to accelerate the computation 
of the phase field. The main idea is that from the offline 

calculation of enough cracked microstructures, we will be 
able to reconstruct crack evolution due to various initial 
crack patterns with minimal computation online.

The specific process of LLE is as follows. Suppose that 
there are N input data points X i ∈ ℝ

D where i = 1,… ,N , 
each X i containing the phase field values representing a 
specific cracked microstructure. According to [26], under 
the assumption that all inputs are on the same manifold, 
we can linearly reconstruct each data point X i by its k1 
( ≪ N ) nearest neighbors, say

where Wij are the weights to be determined and Si rep-
resents the set of the k1 nearest neighbors of X i in the l2

-norm.
To compute these weights Wij , we minimize the cost 

function which measures the reconstruction errors:

The minimization of F(W) is subjected to two constraints: 
(i) each data point X i is reconstructed only from its neigh-
bors: Wij = 0 if X j ∉ Si . (ii) the rows of the weight matrix 
sum to 1: 

∑
j∈Si

Wij = 1 , i = 1,… ,N . An important feature 
is, for any data point, the weights are invariant to rotation, 
rescaling and translation of that data point with respect 
to its neighbors [26].

Now we suppose that all data points are mapped into a 
lower dimensional embedding space (manifold) of dimen-
sion L  , L ≪ D  . The reconstruction weights Wij remain 
unchanged in such transformation. Therefore, each high 
dimensional data point X i is mapped to a low dimensional 
vector Y i representing coordinates on the manifold. We 
compute Y ∶= {Y i} by minimizing the embedding cost 
function

During this minimization, the weights Wij are fixed. To fully 
determine {Y i} , certain constraints have to be imposed so 
that the solution is unique [26]. The resulting constrained 
minimization problem can be solved via an N × N eigen-
value problem.

3.2 � Training and output reconstruction

As previously discussed, the offline procedure of this mani-
fold learning scheme consists of two stages: (1) dataset 
generation with the phase field analysis for the RVE, (2) 

(4)X i =
∑

j∈Si

WijX j ,

(5)F(W) =

N∑

i=1

‖‖‖‖‖‖
X i −

∑

j∈Si

WijX j

‖‖‖‖‖‖

2

.

(6)G(Y) =

N∑

i=1

‖‖‖‖‖‖
Y i −

∑

j∈Si

WmiY j

‖‖‖‖‖‖

2

.

(a)

(b)

(c)

Fig. 7   The illustration of locally linear embedding. a A two-dimen-
sional manifold; b the three-dimensional data points sampled from 
a, colored according to the z-coordinates; c the data points after 
dimensionality reduction by LLE



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1682 | https://doi.org/10.1007/s42452-020-03468-6	 Research Article

data manifold construction with LLE. Then for any given 
phase field under the same load, the online reconstruc-
tion procedure readily delivers the phase field evolution.

To generate the training data, we subject a series of 
RVEs with an initial crack at various locations to the uni-
lateral tension test. The configuration and mesh with an 
initial phase field are shown in Fig. 8. The mesh shown in 
Fig. 8b contains D  nodes, so every input data point X i as 
well as the corresponding output data point Z i is a column 
vector with D  phase field values.

Here we made some simplifications for the micro crack 
simulation so that we can better illustrate the main idea: 
(1) as mentioned in Sect. 2, the load is a unilateral ten-
sion with given displacement as shown in (3h), where the 
macroscopic strain is � = 𝜀22e2 ⊗ e2 ; (2) we only consider 
cracks in the matrix and ignore those on the interface and 
in the fiber; (3) the initial crack consists of two edges and 
three connected nodes, but nodes belonging to the same 
element are forbidden to be chosen.

With the phase field values d = 1 imposed at the three 
nodes mentioned in (3) above and with an all-zero dis-
placement field u ≡ 0 , we minimize (1) to get an “equili-
brated” phase field as a typical input X i . The totality of such 
inputs is termed the training set. The process of construc-
tion of the data manifold with the training set is illustrated 
in Fig. 9.

For each input X i in the training set, we generate the 
high-fidelity solution of the evolved phase field through 
a finite element program, and the result is denoted Z i . 
Notice that only input data are used during the LLE con-
struction, while the output data 

{
Z i

}
 are only used for 

reconstruction. The output data are not limited to be the 
phase field solution at the given load, nor need it have the 
same dimension as the input data points.

Once we obtain the data manifold, we reconstruct the 
output, marked by Z∗

i
 , for every new input X∗

i
 not in the 

training set through the following process: 

1.	 We find k2 ( ≪ N , which can be the same as k1 , see 
Sect. 4 for more details) nearest neighbors of X∗

i
 in X  

and the corresponding weights in the high dimen-
sional space ℝD  , then we map X∗

i
 to the low dimen-

sional manifold Y∗
i
∈ ℝ

L .
2.	 We find the k2 nearest neighbors of Y∗

i
 in Y  , called S∗

i
 , 

and their weights Wij in the low dimensional mani-
fold. Note that these neighbors may not correspond 
to those in the previous step.

3.	 Locally linear reconstruct the output with weights 
and its k2 nearest neighbors in high dimensional data 
space: 

4 � Numerical implementation and validation

In this section, we detail the numerical implementation 
along with a validation check for the computational 
strategy.

4.1 � Data generation

In our high-fidelity finite element analysis, the material 
constants are chosen according to Table 1. The RVE size 
L = 500 mm and the macroscopic strain � = 𝜀22e2 ⊗ e2 
where �22 = 1.4 × 10−4 . The regularized length scale 
parameter l is chosen such that h ≤ l∕2 , where h is the 
mesh size. We randomly generated 496 initial phase fields 

Z
∗
i
=
∑

j∈S∗
i

WijZ j .

Fig. 8   a Setup of the boundary value problem for the RVE; b mesh 
and a typical initial phase field

Fig. 9   The process of manifold learning using LLE

Table 1   Material parameters used in the high-fidelity finite element 
simulations

� (GPa) � (GPa) �1 (GPa) �1 (GPa) gc (mJ/mm)
2 l (mm)

121.15 80.77 105.58 172.27 2.7 40
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as detailed in Sect. 3.2, which correspond to 464 data 
points for training (manifold learning) and 32 points for 
testing.

4.2 � Parameter selection by cross validation

Once the data points are generated, parameter selection 
is conducted for the manifold learning and reconstruction. 
Recall the LLE manifold is defined by two hyperparameters 
k1 and L  , while the reconstruction process is defined by 
one hyperparameter k2 . Hence, the complete manifold 
model for the problem requires three hyperparameters 
( k1, k2,L ).

The adopted parameter selection method is called cross 
validation (CV). Through CV we will select the best com-
bination of hyperparameters which leads to a balance of 
cost and accuracy. The CV process is proceeded as follows. 
Out of the whole dataset, we randomly select and split 
N = 490 data points to be n = 10 equal-sized mutually 
disjoint subsets, X (1),...,X (n) , then we choose n − 1 subsets 

as the training set to generate the manifold, and use the 
remaining one for validation, say the jth subset X (j) . Let 
Z
(j) = {Z

(j)

i
} denote the corresponding output phase field 

data for the validation set, and Z∗(j) = {Z
∗(j)

i
} the LLE recon-

struction. Then the final CV error R reads

This procedure is illustrated in Fig. 10.
The procedure to select hyperparameters consists of 

two stages: (1) the dimension reduction process involving 
k1 , and (2) the reconstruction process involving k2 . Iterating 
through combinations of (L, k1, k2) with a fixed k2 value, an 
error matrix is deduced with columns denoting values of 
k1∕k2 , and rows denoting values of L  as shown in Table 2. 
We find that k1 = k2 will yield a low CV error, which is rea-
sonable, as the case k1 > k2 will lead to information loss in 
the reconstruction process, and k1 < k2 will add noise to 
the reconstruction process.

Then we fix k1 = k2 and perform more CV to obtain 
Table 3, from which we determine that k1 = k2 = 20 gives 
a relatively low CV error for each L .

Then, we plot the CV error as a function of L  in Fig. 11. 
This figure indicates that an increase in L  will reduce 
the average error, as expected. However, using a larger 
L  increases the training time. Therefore, we follow the 
standard way to make the trade-off, i.e., to get the critical 
turning point at approximately the elbow, where L = 80 . 
When L  is beyond this value, the error decreases at a 
very slow rate, while the training efficiency continually 
decreases.

In conclusion, the chosen hyperparameters are 
(k1, k2,L) = (20, 20, 80).

R =
1

n

n�

j=1

�

i

‖Z∗(j)

i
− Z

(j)

i
‖l2

‖Z (j)

i
‖l2

.

Fig. 10   The process of cross validation

Table 2   CV error with different 
combinations of k

1
∕k

2
 and L  , 

with k
2
= 20

k1∕k2�L 20 40 60 80 100 120

1/4 0.4798 0.4042 0.3769 0.3599 0.3529 0.3442
1/2 0.4021 0.3645 0.3467 0.3338 0.3261 0.3222
1 0.3754 0.3472 0.3260 0.3114 0.3059 0.3036
2 0.3768 0.3472 0.3254 0.3103 0.3024 0.3007
4 0.3774 0.3457 0.3241 0.3096 0.3026 0.3001

Table 3   CV error with different 
combinations of k

1
(= k

2
) and 

L

k1∖L 20 40 60 80 100 120

5 0.6293 0.4905 0.4452 0.4229 0.4015 0.3850
10 0.4109 0.3665 0.3461 0.3343 0.3275 0.3281
15 0.3715 0.3432 0.3244 0.3147 0.3082 0.3061
20 0.3754 0.3472 0.3260 0.3114 0.3059 0.3036
25 0.3914 0.3582 0.3323 0.3148 0.3070 0.3036
30 0.4073 0.3694 0.3383 0.3175 0.3081 0.3046
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4.3 � Reconstruction error analysis for the phase field

In this subsection, the output is the evolved phase field 
Z
∗
i
=
{
dj
}
i
 , where j = 1, 2,… ,D  . Therefore, the output 

Z
∗
i
 and input X i have the same dimension. A histogram 

showing the reconstruction errors is given in Fig. 12, 
where we use the normalized l2-norm to represent the 
error magnitude in the output phase field, i.e.,

From this figure it can be seen that the LLE reconstruction 
error for the phase field is acceptable.

To examine the deciding factor of such error, we plot 
the normalized error in l2-norm of the 32 test points ver-
sus their distance to the manifold in Fig. 13. Here the 
distance of X∗

i
 to the manifold is given by

(7)
‖Z∗

i
− Z i‖l2

‖Z i‖l2
.

A positive relationship between the reconstruction error 
and this distance is observed, without outliers. Thus we 
can safely say that if a test data point is close enough to 
the manifold, the reconstruction error of its microcrack 
propagation result will be small, guaranteeing the valid-
ity of this LLE manifold learning method.

4.4 � Reconstruction error analysis 
for the homogenized stress

In this subsection, the output is the homogenized stress 
Z
∗
i
= � i , where � i =

{
�x , �y , �z , �xy

}
i
 , where for the plane 

strain case, �z = �(�x + �y) for the matrix and likewise 
for the fiber. As Fig. 1 shows, the homogenized stress is 
obtained from the RVE through the volume average,

Then the normalized reconstruction error in l2-norm (7) 
becomes

The normalized reconstruction error of the homogenized 
stress is shown in Fig. 14. It shows that the normalized 
reconstruction error is smaller than 0.05, which is very 
small. Figure 15 shows that the reconstruction error is 
bounded by a factor times the distance to the manifold, 
indicating a similar conclusion, i.e., an a priori error esti-
mate can be obtained.

‖‖‖‖‖‖
X
∗
i
−
∑

j∈S∗
i

WijX j

‖‖‖‖‖‖l2
.

� =
1

|B| ∫�B

� dB.

(8)
‖�∗

i
− � i‖l2

‖� i‖l2
.

Fig. 11   CV error versus L

Fig. 12   Normalized l2 reconstruction error of the evolved phase 
field, i.e., ‖Z∗

i
− Z i‖l2∕‖Z i‖l2 , of the 32 test data points

Fig. 13   Normalized l2 error of the evolved phase field versus  the 
distance to the manifold. The l2 errors have a positive correlation 
with the distance to the manifold
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From Figs. 13 and 15, the positive relationship between 
the reconstruction error and the distance to the manifold 
can serve as an input-specific error bar, which will be elab-
orated in Sect. 5.

5 � Results and discussion

In this section, we present the manifold learning results 
and discuss the features, applications and future directions 
of the proposed approach.

5.1 � 2D visualizations of results

To remove the data bias, we generate a new set of 496 
data points, which shares no data points with the set 
used in the parameter selection process (cross valida-
tion) in Sect.  4.2. With the selected hyperparameters 
(k1, k2,L) = (20, 20, 80) , we build the model using 464 data 

points for training, and use the remaining 32 data points 
for testing. To visualize the manifold built by the training 
data, and together showing the test data, we perform an 
LLE reduction again for the 80-dimensional manifold to 2 
dimensions, as in Fig. 16. It can be observed that the test 
data points are not far from the manifold trained from the 
training data.

Next we extract and visualize the nearest neighbors of 
a certain data point, as shown in Fig. 17a, b.

In Fig. 17a, we observe that the nearest neighbors in the 
training set are close to the chosen test data point (Point 
No. 11). In Fig. 17b, however, the nearest neighbors of the 
chosen test data point (Point No. 13) appear scattering 
around. This phenomenon is still acceptable since the dis-
tances between points in the remaining 78 dimensions are 
not seen in the figures.

We next visualize the cracked microstructures in Fig. 18, 
where we can observe a pattern that similar microstruc-
ture will cluster in a continuous mode, showing the dimen-
sion reduction is reasonable.

5.2 � Input‑specific error bar

As is shown in Figs. 13 and 15, a positive relationship 
between the reconstruction error and the distance to the 
manifold is observed. Through this strong correlation, we 
can pre-determine whether a new input data point X∗

i
 is 

suitable for the manifold learning approach: if X∗
i
 is close 

enough to the manifold, the reconstruction of the phase 
field at the given load will be accurate; otherwise, if it is 
far away from the manifold, we should either not use the 
manifold reconstruction for this particular input, or aug-
ment the training set with X∗

i
 . This property can also be 

exploited to aid an adaptivity procedure to augment the 
training set on the fly: if the distance from a certain new 
input X∗

i
 to its manifold projection is too high, then we can 

Fig. 14   Normalized l2 reconstruction error of the homogenized 
stress, i.e., ‖�∗

i
− � i‖l2∕‖� i‖l2 , of the 32 test data points

Fig. 15   Normalized l2 error of the homogenized stress versus  the 
distance to the manifold. The l2 errors are bounded by a factor 
times the distance to the manifold

Fig. 16   2D visualization of the 80D manifold
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add it (and its output from high-fidelity computation) to 
the training set.

5.3 � On the number of sampling microstructures

In this subsection, we compare reconstruction errors by 
manifolds learned from different training sets. The output 
to compare is the evolved phase field, and the only vari-
able is the number of the sampling microstructures in the 
training set.

In Fig. 19 we compare the reconstruction errors from 
100, 200, 300, 400, 464, 496 sampling microstructures. As 
expected, the results are more accurate with more sam-
pling microstructures in the training set. Also, errors from 
464 and 496 microstructures are both small and the results 
are nearly the same. Hence, 496 sampling microstructures 
is sufficient for the types of crack paths considered.

5.4 � On the computational costs

As expected, the manifold learning method and the high-
fidelity finite element method have a dramatic difference 

in computational costs. On a regular laptop using MATLAB, 
in particular, the high-fidelity program spend 5 ± 1 min to 
finish one single case while the manifold approach only 
needs less than 1 second.

5.5 � Applications and future directions

A number of generalizations can be made for the pro-
posed approach. For example, the proposed approach 
can be generalized to cases with more complicated RVEs 
such as those with elastoplastic constitutive behavior. Dif-
ferent boundary conditions can be performed, and vari-
ous outputs can be obtained. In fact, the output can be 
of a high dimension, as long as there exists a continuous 
dependence of the output on the input, which is anyway 
a prerequisite of a well-posed problem.

Generalizations to different crack types, i.e., debonding 
and cracking in the fibers are possible. In the proposed 
manifold learning approach, such generalizations can be 
realized by modifications on initial input data and bound-
ary conditions. For example, research on combining the 
phase field method and the cohesive model is proposed in 
[47, 48]. Moreover, through the adaptive algorithm intro-
duced in Sect. 5.2, efficient multiscale fracture simulation 
is possible.

In summary, the applicability of this approach is 
promising.

6 � Conclusions

We have proposed a manifold learning approach to 
accelerate phase field fracture simulations in the RVE in 
the context of the FE2 scheme. Considering a group of 
RVEs with the same microstructure except for the microc-
racks, we use the phase field approach to represent such 
microcracks.

We then make use of the LLE technique to construct 
a data manifold that contains a collection of similar 
cracked microstructures (RVEs). This LLE manifold can be 
used to efficiently and accurately predict the phase field 
output as a function of the initial phase field, provided 
that all the analysis is done at the same load applied to 
the RVE. Among various machine learning approaches, 
manifold learning has been widely applied to multiscale 
analysis [21–24]. As an instance of manifold learning 
approach, LLE is particularly suitable for problems with 
a large amount of similar high-dimensional data, such as 
heat conduction problems [28]. This new computational 
approach enjoys the following features. In the proposed 
approach, only three hyperparameters need to be deter-
mined to learn the manifold. And once the data mani-
fold is constructed, minimum computation is required 

(a)

(b)

Fig. 17   a Nearest 20 neighbor points of test point No. 11; b Nearest 
20 neighbor points of test point No. 13
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to reconstruct the phase field output. Moreover, there 
exists an indicator which can pre-estimate the recon-
struction error and pre-determine whether an input 
data is suitable to perform the reconstruction. We would 
like to emphasize that this feature is very desirable, 
since compared with more popular machine-learning 

techniques such as neural networks—in many of those 
techniques, it is difficult to predict whether an inter-
polation is accurate or not without knowing the exact 
solution.

A number of generalizations can be made for the 
proposed approach, e.g., to three dimensions, and to 
the types of RVEs, boundary conditions, and outputs. In 
fact, the output can be of a high dimension, as long as 
there exists a continuous dependence of the output on 
the input, which is anyway a prerequisite of a well-posed 
problem. The applicability of this approach is promising. 
The adaptive algorithm makes efficient multiscale fracture 
simulation possible.
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Fig. 18   Crack microstructures mapped into the manifold described by the first two coordinates of LLE. Representative microstructures are 
shown next to the square points. The solid line shows a continuous mode change of microstructures

Fig. 19   Normalized l2 reconstruction error of the evolved phase 
field versus the number of sampling microstructures
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