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Abstract
Land surface temperature (LST) and its relationship with normalized difference vegetation index (NDVI) are significantly 
considered in environmental study. The aim of this study was to retrieve the LST of Raipur City of tropical India and to 
explore its seasonal relationships with NDVI. Landsat images of four specific seasons for three particular years with 
fourteen years time interval were analyzed. The result showed a gradual rising (3.63 °C during 1991–2004 and 1.54 °C 
during 2004–2018) of LST during the whole period of study. The mean LST value of three particular years was the low-
est (27.21 °C) on green vegetation and the highest (29.81 °C) on bare land and built-up areas. The spatial distribution of 
NDVI and LST reflects an inverse relationship. The best (− 0.63) and the least (− 0.17) correlation were noticed in the post-
monsoon and winter seasons, respectively, whereas a moderate (− 0.45) correlation were found both in the monsoon and 
pre-monsoon seasons. This LST-NDVI correlation was strong negative (− 0.51) on vegetation surface, moderate positive on 
water bodies (0.45), and weak positive on the built-up area and bare land (0.14). In summary, the LST is greatly controlled 
by surface characteristics. This study can be used as a reference for land use and environmental planning in a tropical city.
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1  Introduction

Urbanization accelerates the ecological stress by warming 
the local or global cities for a large extent [1–6]. Presently, 
many urban areas are suffering with a huge land conver-
sion and resultant new heat zones [7–9]. Remote sensing 
techniques are significantly effective in detecting the 
land use/land cover (LULC) change and its consequences 
[10]. Several satellite sensors are capable to identify these 
change zones by using their visible and near-infrared 
(VNIR) and shortwave infrared (SWIR) bands [11]. Apart 
from the conventional LULC classification algorithms, 
some spectral indices are used in detecting specific land 
features. Normalized difference vegetation index (NDVI) 
can be considered as the most applied spectral index in 
this scenario [12]. Recently, thermal infrared (TIR) bands 
are also used by generating some indices for different 

types of LULC extraction [13–15]. These remote sensing 
indices are used significantly in several application fields 
like rocks and mineral mapping, forest mapping, agricul-
tural monitoring, LULC mapping, hazard mapping, urban 
heat island mapping and monitoring, among others [14, 
16–19].

Land surface temperature (LST) retrieved from several 
remotely sensed data is widely used in the detection of 
urban heat island and ecological comfort zone [20–23]. 
LST can change significantly in a vast homogeneous land 
surface or even inside a relatively small heterogeneous 
urban area [14, 24, 25]. Different types of LULC response 
differently in TIR band and consequently LST largely var-
ies in an urban environment [26–44]. The LULC types are 
mainly changed by land conversion process [10]. Thus, 
time is an important factor in LST monitoring. These 
spatial and temporal data of LST is also varied with the 
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seasonal changes as sun elevation and sun azimuth are 
changed with seasons. Hence, the seasonal variation of 
LST is quite important in any LULC related study.

NDVI is a dominant factor in LST derivation processes 
and is used invariably in any LST related study [45–49]. 
NDVI is directly used in the determination of land surface 
emissivity and thus is a significant factor for LST estimation 
[50, 51]. It also determines the LULC categories by its opti-
mum threshold limits in different physical environment 
[14]. Being a vegetation index, NDVI depends largely on 
seasonal variation [12]. Hence, LST is also regulated by the 
change of seasons. Thus, seasonal evaluation of LST and 
NDVI is an important task in LST mapping and monitoring, 
especially in an urban landscape.

The relationship of LST with NDVI is quite interesting 
and it attracts the remote sensing scientists from several 
directions [52–55]. The nature and strength of this relation-
ship heavily depend on space and time. Generally, in the 
tropical environment the LST-NDVI relationship is negative 
[56–58]. The negativity of the relationship is determined 
by the changing type of LULC over time. Thus, spatial and 
temporal changes in this relationship are observed on dif-
ferent types of LULC. Apart from the spatial and temporal 
changes, seasonal variation of LST-NDVI relationship is a 
very important study in any mixed urban land surface.

Several studies are available on the seasonal analysis 
of LST-NDVI relationship. Many tropical cities are a part of 
these studies. Many valuable research articles found on 
LST-NDVI relationships in the Chinese landscape [59–67]. 
Some studies were also performed in Indian urban land-
scape [35, 36, 68–71].These studies found that LST builds 
a negative relationship with NDVI and this negativity can 
change with season. Wet season reflects a stronger nega-
tive correlation than dry season as the moisture content 
is more in the wet season [72]. This relationship can also 
change with the change of land surface types. Vegetation 
surface builds a strong correlation and the strength is 
reduced on bare land surface, built-up surface, and water 
surface.

The present study calculates the LST and NDVI from 
Landsat datasets of four different seasons (winter, pre-
monsoon, monsoon, and post-monsoon) in Raipur City 
of India using a total of 12 Landsat satellite images for 
1991, 2004, and 2018. Meanwhile, the LULC map has been 
obtained by suitable threshold values of NDVI. The main 
aims of the study were (1) to analyze the seasonal varia-
tion of spatial distribution pattern of the LST in the study 
area, (2) to determine the seasonal variation of LST-NDVI 
relationship for whole of the city, and (3) to explore the 
seasonal variation of LST-NDVI relationship on different 
LULC types.

2 � Study area and data

Figure 1 shows the study area (Raipur City of India) of the 
present research work including the false colour com-
posite (FCC) image of and digital elevation model (DEM) 
image. Raipur is one of the fastest-growing smart cities in 
India. The latitudinal and longitudinal extent of the city 
is from 21°11′22″ N to 21°20′02″ N and from 81°32′20″ E 
to 81°41′50″ E. The total area of the city is approximately 
164.23 km2. The only big river is Mahanadi which flows 
along the eastern boundary of Raipur. The southern part of 
the city is covered by dense forests. Geologically the city is 
very stable. According to India Meteorological Department 
(IMD) (https​://mausa​m.imd.gov.in) [75], the study area is 
under a tropical wet and dry climate with four typical sea-
sons (pre-monsoon, monsoon, post-monsoon, and win-
ter). May is the hottest month followed by April, June, and 
March. July is the rainiest month followed by August, June, 
and September. October and November are the post-mon-
soon months experience a pleasant weather condition. 
December (the coldest month), January, and February are 
the winter months. The pre-monsoon and winter months 
(including November) remain dry compared to the mon-
soon and post-monsoon months.

Four Landsat 8 Operational Land Imager (OLI) and Ther-
mal Infrared Sensors (TIRS) data of 2018; four Landsat 5 
Thematic Mapper (TM) data of 2004; and four Landsat 5 
TM data of 1991 have been freely downloaded from the 
United States Geological Survey (USGS) (https​://earth​
explo​rer.usgs.gov) Data Centre (Table 1). Landsat 8 TIRS 
dataset has two TIR bands (bands 10 and 11) in which 
band 11 has uncertainty in calibration. Thus, only TIR 
band 10 (100 m resolution) has been recommended for 
the present study. The TIR band 10 has been resampled to 
30 m × 30 m pixel size with cubic convolution method by 
the USGS. Landsat 5 TM data has only one TIR band (band 
6) of 120 m resolution which has also been resampled to 
30 m × 30 m pixel size with cubic convolution method by 
the USGS. The spatial resolution of visible to near infrared 
(VNIR) bands of the two types of Landsat datasets is 30 m.

3 � Methodology

3.1 � Retrieving LST from Landsat data

In this study, the mono-window algorithm was applied 
to retrieve LST from multi-temporal Landsat satellite sen-
sors [1, 76–79] where three necessary parameters are 
ground emissivity, atmospheric transmittance, and effec-
tive mean atmospheric temperature. At first, the original 
TIR bands (100 m resolution for Landsat 8 OLI/TIRS data, 

https://mausam.imd.gov.in
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120 m resolution for Landsat 5 TM data) were resampled 
into 30 m by USGS data centre for further application.

The TIR pixel values are firstly converted into radiance 
from digital number (DN) values. Radiance for TIR band 
of Landsat 5 TM data is obtained using Eq. (1) (USGS):

where L� is Top of Atmosphere (TOA) spectral radiance 
(Wm−2 sr−1 mm−1), QCAL is the quantized calibrated pixel 
value in DN, LMIN� (Wm−2 sr−1 mm−1) is the spectral radi-
ance scaled to QCALMIN , LMAX� (Wm−2 sr−1 mm−1) is the 

(1)

L� =

[

LMAX� − LMIN�

QCALMAX − QCALMIN

]

∗
[

QCAL − QCALMIN

]

+ LMIN�

Fig. 1   Location of the study area: a India b Chhattisgarh c FCC image of Raipur City d DEM image of Raipur City (Source: https​://earth​explo​
rer.usgs.gov [73] and http://www.surve​yofin​dia.gov.in [74]) 

Table 1   Specification of 
Landsat data sets (Source: 
USGS)

Season Date of acquisition Path-row Resolution of VNIR 
bands (m)

Resolution of 
TIR bands (m)

Pre-monsoon 18-Mar-1991 142–045 30 120
22-Apr-2004 142–045 30 120
28-Mar-2018 142–045 30 100

Monsoon 26-Sep-1991 142–045 30 120
09-Jun-2004 142–045 30 120
16-Jun-2018 142–045 30 100

Post-monsoon 12-Oct-1991 142–045 30 120
15-Oct-2004 142–045 30 120
22-Oct-2018 142–045 30 100

Winter 14-Feb-1991 142–045 30 120
02-Dec-2004 142–045 30 120
08-Feb-2018 142–045 30 100

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
http://www.surveyofindia.gov.in
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spectral radiance scaled to QCALMAX , QCALMIN is the mini-
mum quantized calibrated pixel value in DN and QCALMAX 
is the maximum quantized calibrated pixel value in DN. 
LMIN� , LMAX� , QCALMIN , and QCALMAX  values are obtained 
from the metadata file of Landsat TM data. Radiance for 
Landsat 8 TIR band is obtained from Eq. (2) [80]:

where L� is the TOA spectral radiance (Wm−2 sr−1 mm−1), ML 
is the band-specific multiplicative rescaling factor from the 
metadata, AL is the band-specific additive rescaling factor 
from the metadata, QCAL is the quantized and calibrated 
standard product pixel values (DN). All of these variables 
can be retrieved from the metadata file of Landsat 8 data.

For Landsat 5 data, the reflectance value is obtained 
from radiances using Eq. (3) (USGS):

where �� is unitless planetary reflectance, L� is the TOA 
spectral radiance (Wm−2 sr−1 µm−1), d is Earth-Sun dis-
tance in astronomical units, ESUN� is the mean solar exo-
atmospheric spectral irradiances (Wm−2 µm−1) and �s is the 
solar zenith angle in degrees. ESUN� values for each band 
of Landsat 5 can be obtained from the handbooks of the 
related mission. �s and d values can be attained from the 
metadata file.

For Landsat 8 data, reflectance conversion can be 
applied to DN values directly as in Eq. (4) [80]:

where M� is the band-specific multiplicative rescaling fac-
tor from the metadata, A� is the band-specific additive res-
caling factor from the metadata, QCAL is the quantized and 
calibrated standard product pixel values (DN) and �SE is the 
local sun elevation angle from metadata file.

Equation (5) is used to convert the spectral radiance 
to at-sensor brightness temperature [81, 14]:

where Tb is the brightness temperature in Kelvin (K), L� 
is the spectral radiance in Wm−2 sr−1 mm−1; K2 and K1 are 
calibration constants. For Landsat 8 data, K1 is 774.89, K2 is 
1321.08 (Wm−2 sr−1 mm−1). For Landsat 5 data, K1 is 607.76, 
K2 is 1260.56 (Wm−2 sr−1 mm−1).

The land surface emissivity � , is estimated using the 
NDVI Thresholds Method [51, 82].

(2)L� = ML ⋅ QCAL + AL

(3)�� =
� ⋅ L� ⋅ d

2

ESUN� ⋅ cos �s

(4)�� =
M� ⋅ QCAL + A�

sin �SE

(5)Tb =
K2

ln
(

K1

L�
+ 1

)

In NDVI Threshold Method, there are three following 
equations:

a.	 NDV I < 0.2 for bare soil;
b.	 NDV I > 0.5 for vegetation;
c.	 0.2 <= NDV I <= 0.5 for mixed land with bare soil and 

vegetation.

In the last case, � is estimated from Eq. (6):

where � is land surface emissivity, �v is vegetation emis-
sivity, �s is soil emissivity, Fv is fractional vegetation, d� is 
the effect of the geometrical distribution of the natural 
surfaces and internal reflections that can be expressed by 
Eq. (7):

where �v is vegetation emissivity, �s is soil emissivity, Fv is 
fractional vegetation, F is a shape factor whose mean is 
0.55, the value of d� may be 2% for mixed land surfaces 
[51].

The fractional vegetation Fv , of each pixel, is determined 
from the NDVI using Eq. (8) [50]:

where NDVImin = 0.2 and NDVImax = 0.5.
Finally, the land surface emissivity � can be expressed by 

Eq. (9):

where � is land surface emissivity, Fv  is fractional 
vegetation.

Water vapour content is estimated by Eq. (10) [29, 83]:

where w is the water vapour content (g/cm2), T0 is the 
near-surface air temperature in Kelvin (K), RH is the relative 
humidity (%). These parameters of atmospheric profile are 
the average values of 14 stations around Raipur which are 
obtained from the Meteorological Centre, Raipur (http://
www.imdra​ipur.gov.in) [84] and the Regional Meteorologi-
cal Centre, Nagpur (http://www.imdna​gpur.gov.in [85]). 
Atmospheric transmittance is determined for Raipur City 
using Eq. (11) [76, 86]:

where � is the total atmospheric transmittance, � is the 
land surface emissivity.

(6)� = �vFv + �s(1 − Fv) + d�

(7)d� = (1 − �s)(1 − Fv)F�v

(8)Fv =

(

NDVI − NDVImin

NDVImax − NDVImin

)2

(9)� = 0.004 ∗ Fv + 0.986

(10)

w = 0.0981 ∗

[

10 ∗ 0.6108 ∗ exp

(

17.27 ∗ (T0 − 273.15)

237.3 + (T0 − 273.15)

)

∗ RH

]

+ 0.1697

(11)� = 1.031412 − 0.11536w

http://www.imdraipur.gov.in
http://www.imdraipur.gov.in
http://www.imdnagpur.gov.in
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Raipur City is located in the tropical region. Thus, 
Eq. (12) is applied to compute the effective mean atmos-
pheric transmittance of Raipur [76, 86]:

LST is retrieved from Landsat 5 TM and Landsat 8 OLI/
TIRS satellite data by using Eqs. (13–15) [76]:

where � is the land surface emissivity, � is the total atmos-
pheric transmittance, C and D are internal parameters 
based on atmospheric transmittance and land surface 
emissivity, Tb is the at-sensor brightness temperature, Ta 
is the mean atmospheric temperature, T0 is the near-sur-
face air temperature, Ts is the land surface temperature, 
a = −67.355351 , b = 0.458606.

3.2 � Extraction of different types of LULC by using 
the threshold limits of NDVI

NDVI can extract different types of LULC by using the opti-
mum threshold values [14, 87–89]. This threshold values 
can differ with respect to the differences in physical envi-
ronment. The NDVI threshold limits were applied on the 
post-monsoon images to extract the different LULC types 
accurately. Table 2 presents the suitable threshold limits of 
NDVI used for extracting the vegetation (> 0.2), water bod-
ies (< 0), built-up area/bare land (0–0.2) in the study area.

4 � Results and discussion

4.1 � Accuracy assessment for LULC classification

The maximum likelihood classification method was 
applied to validate NDVI threshold based LULC classifica-
tion. The overall accuracy values of the LULC classifica-
tion were 95.00%, 85.00%, and 87.50% in 1991, 2004, and 
2018, respectively. The kappa coefficients for the LULC 

(12)Ta = 17.9769 + 0.91715T0

(13)

Ts =

[

a(1 − C − D) + (b(1 − C − D) + C + D)Tb − DTa

]

C

(14)C = ��

(15)D = (1 − �)[1 + (1 − �)�]

classification were 0.91, 0.76, and 0.78 in 1991, 2004, and 
2018, respectively. The kappa coefficient value of > 0.75 
reflects the compatibility of the classification method 
[90]. In the present study, the average overall accuracy and 
average kappa coefficient were 89.17% and 0.82, respec-
tively. Thus, the NDVI threshold method based LULC clas-
sification was significantly validated.

4.2 � Extraction of LULC types using NDVI

Figure 2 shows the FCC images and LULC maps of the 
post-monsoon Landsat images of 1991, 2004, and 2018. 
Generally, the post-monsoon images reduce the level of 
air pollution due to the presence of high moisture content 
in the air and these images also enhance the greenness of 
an area. Thus, the post-monsoon images are generally con-
sidered for the generation of LULC maps. LULC maps were 
generated using the threshold limits of NDVI for different 
types of LULC by using ArcGIS software (https​://www.esri.
com/) [91]. In 1991, built-up area and bare land are mainly 
found in the northwest and middle portions of the city. 
Land conversion accelerates the decrease of vegetal cov-
ered area especially during 2004-2018. The major segment 
of vegetation is mainly found in the east and southwest 
parts of the city.

4.3 � Characteristics of the spatial distribution of LST 
and NDVI

Table  3 shows the LST and NDVI values for different 
multi-date satellite data. The pre-monsoon image 
(Fig. 3) has the maximum values of mean LST (29.50 °C 
in 1991, 36.80 °C in 2004, and 37.90 °C in 2018) followed 
by monsoon (Fig. 4) image (25.74 °C in 1991, 29.23 °C in 
2004, and 31.08 °C in 2018), post-monsoon (Fig. 5) image 
(24.99 °C in 1991, 27.56 °C in 2004, and 29.01 °C in 2018), 
and winter (Fig. 6) image (23.99 °C in 1991, 25.17 °C in 
2004, and 26.91 °C in 2018). The mean LST of the city is 
increased by 8.40 °C in the pre-monsoon season, 5.34 °C 
in the monsoon season, 4.02 °C in the post-monsoon 
season, and 2.92  °C in the winter season during the 
whole time span (1991–2018). In the case of NDVI, the 
maximum value is decreased gradually with time (Figs. 3, 
4, 5 and 6). Seasonally, the highest values of NDVI are 
observed in the post-monsoon images followed by the 

Table 2   NDVI used for extracting different types of LULC [14]

Acronym Description Formulation References Threshold limits of NDVI for extracting different LULC 
types

Vegetation Water bodies Built-up area and bare land

NDVI Normalized difference vegetation index NIR−Red

NIR+Red
[87] > 0.2 < 0 [0–0.2]

https://www.esri.com/
https://www.esri.com/
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monsoon, pre-monsoon, and winter images. The fig-
ures show that the proportion of vegetation is gradually 
reduced with time and NDVI is inversely related to LST.

4.4 � Relationship between LST and LULC

The LST of the study area is significantly dependent upon 
the LULC types. Actually, this NDVI-threshold based emis-
sivity method is not suitable for LST extraction of water 

Fig. 2   FCC satellite images of post-monsoon season: a 14-OCT-1991 b 15-OCT-2004 c 22-OCT-2018; LULC maps in post-monsoon season: d 
12-OCT-1991 e 15-OCT-2004 f 22-OCT-2018

Table 3   Temporal and seasonal variation of LST, NDVI, and LST-NDVI relationship (1991–2018)

Season Date of acquisition LST (oC) NDVI Correlation coeffi-
cient for LST-NDVI

Min. Max. Mean Std. Min. Max. Mean Std.

Pre-monsoon 18-MAR-1991 22.81 34.46 29.50 1.27 − 0.31 0.57 0.09 0.07 − 0.40
22-APR-2004 26.67 41.83 36.80 1.94 − 0.32 0.59 0.07 0.08 − 0.51
28-MAR-2018 27.78 44.28 37.90 2.25 − 0.16 0.50 0.10 0.06 − 0.45

Monsoon 26-SEP-1991 22.38 30.83 25.74 1.41 − 0.22 0.61 0.29 0.10 − 0.48
09-JUN-2004 22.81 33.26 29.23 1.58 − 0.32 0.60 0.06 0.08 − 0.41
16-JUN-2018 25.49 34.98 31.08 1.13 − 0.15 0.48 0.17 0.07 − 0.47

Post-monsoon 12-OCT-1991 21.06 30.83 24.99 1.86 − 0.27 0.64 0.32 0.11 − 0.63
15-OCT-2004 23.25 34.06 27.56 1.75 − 0.41 0.70 0.31 0.15 − 0.63
22-OCT-2018 24.86 35.52 29.01 1.36 − 0.14 0.48 0.18 0.08 − 0.63

Winter 14-FEB-1991 14.71 30.01 23.99 2.21 − 0.35 0.64 0.12 0.08 − 0.12
02-DEC-2004 19.73 31.64 25.17 1.34 − 0.31 0.54 0.08 0.08 − 0.20
08-FEB-2018 21.99 32.53 26.91 1.30 − 0.16 0.46 0.08 0.05 − 0.18
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bodies. However, the present results show that the area 
with green vegetation has low LST value, whereas the 
built-up areas and bare lands have moderate to high LST 
value. In pre-monsoon season, built-up area and bare land 
has comparatively high LST than the other LULC types. But 
in the winter season, these areas have comparatively low 
to moderate LST due to low emissivity. The green areas 
and water areas are characterized by a relatively stable 
range of LST.

4.5 � LST variation with the change in LULC types

Table 4 presents the temporal changes in LST with the 
changes in LULC types. Only the post-monsoon images 
of 1991, 2004, and 2018 were considered for this analy-
sis. Generally, the land is converted into the built-up area 
or bare land from the other types of LULC, e.g., vegeta-
tion or water bodies. No such exceptional cases are seen 
in Raipur City during the entire period. Built-up area and 
bare land are increased while vegetation and water bodies 
are decreased significantly. The mean LST of the built-up 
area and bare land is increased from 1991 to 2004 (4.23 °C 
in post-monsoon season) and from 2004 to 2018 (1.49 °C 
in post-monsoon season), irrespective of any season. The 
green area gains 4.66 °C mean LST when it is converted 

into the built-up area and bare land between 1991 and 
2018, and gained 2.20 °C mean LST between 2004 and 
2018. The converted land from water bodies to the built-
up area and bare land gains 2.49 °C during 1991–2018 
and 0.96 °C mean LST during 2004–2018, respectively. 
Furthermore, the unchanged built-up area and bare land 
have also witnessed an increase in LST during the entire 
time span (2.79 °C mean LST from 1991 to 2018 and 0.83 °C 
mean LST from 2004 to 2018). Hence, the results indicate 
significantly to the trend of climate change.

4.6 � Seasonal variation on LST‑NDVI relationship

Table 3 presented the seasonal variation of mean LST 
values. Winter images indicate the lowest mean LST for 
1991, 2004, and 2018. The highest mean LST values are 
found in the pre-monsoon images for all the three years. 
From 1991 to 2004, mean LST has been increased in every 
season. From 2004 to 2018, mean LST has been increased 
again for all the seasons. Post-monsoon images have 
mean LST value nearer to winter images while monsoon 
images have a slightly high value of mean LST than the 
post-monsoon images. Figure 7a–d show the seasonal 
variation of LST-NDVI relationships on different LULC types 
in pre-monsoon, monsoon, post-monsoon, and winter 

Fig. 3   Spatial distribution of LST in pre-monsoon season: a 18-MAR-1991 b 22-APR-2004 c 28-MAR-2018; spatial distribution of NDVI in pre-
monsoon season: d 18-MAR-1991 e 22-APR-2004 f 28-MAR-2018
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season, respectively. Here, only three types of LULC were 
considered, i.e., (1) vegetation, (2) water bodies, and (3) 
built-up area and bare land. On vegetation, the LST-NDVI 
relationships were negative, irrespective of any season. 
Only winter season (Fig. 7d) has weak negative regression, 
while the other three seasons (Fig. 7a–c) have moderate 
to strong negative regression. Since, NDVI is a vegetation 
index the LST-NDVI relationship is strongly effective on 
vegetation. On water bodies, the relationship is positive 
(weak to moderate). In the post-monsoon season (Fig. 7c), 
the relationship is weak to moderate. In the rest of the 
three seasons (Fig. 7a–d), the relationship is moderate. 
On the built-up area and bare land, the relationship is not 
so much significant. All four seasons (Fig. 7a–d) indicate 
weak regression as the surface materials become more 
heterogeneous in nature. Figure 7e represents a gener-
alized view of the overall seasonal variation of LST-NDVI 
relationships. The relationship is negative, irrespective of 
any season. In winter, the relationship was weak nega-
tive (− 0.12 in 1991, − 0.2 in 2004, and − 0.20 in 2018). The 
pre-monsoon and monsoon season built a moderately 

negative LST-NDVI relationship. In the pre-monsoon sea-
son, the correlation coefficient values of LST-NDVI relation-
ship were − 0.40 (1991), − 0.51 (2004), and − 0.45 (2018). In 
post-monsoon season, these correlation coefficient values 
were − 0.48 in 1991, − 0.41 in 2004, and − 0.47 in 2018. The 
post-monsoon season built a stable and strong negative 
correlation. The correlation coefficient values of LST-NDVI 
relationship were − 0.63 for all the 3 years. Hence, the post-
monsoon season reveals the best correlation among the 
four seasons. It was mainly due to the high intensity of 
moisture and chlorophyll content in green vegetation. Dry 
atmosphere reduces the strength of correlation, whereas 
the wet seasons (post-monsoon and monsoon) enhance 
the strength of correlation.

Liang et al. [92], Ghobadi et al. [27], and Guha et al. [24] 
observed a negative LST-NDVI relationship in their study. 
A significant positive linear LST-NDVI relationship was 
observed between LST and NDVI [93]. In Shanghai City, 
Yue et al. [56] showed a negative LST-NDVI relationship 
and it varied on different LULC types. Sun and Kafatos [94] 
stated that LST-NDVI correlation was positive in winter 

Fig. 4   Spatial distribution of LST in monsoon season: a 26-SEP-1991 b 09-JUN-2004 c 16-JUN-2018; spatial distribution of NDVI in monsoon 
season: d 26-SEP-1991 e 09-JUN-2004 f 16-JUN-2018
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season, while it was negative in summer season. This rela-
tionship was also negative in Mashhad, Iran [57]. The rela-
tionship was strong negative in Berlin City for any season 
[95]. This correlation tends to be more negative with the 
increase of surface moisture [96–99]. The present study 
also found that the LST-NDVI correlation is negative, irre-
spective of any season. The value of correlation coefficient 
is inversely related to the surface moisture content, i.e., 
negativity of the relationship increases with the increase 
of surface moisture content.

5 � Conclusion

The present study analyzes the spatial, temporal, and 
seasonal relationship of LST and NDVI in a tropical city of 
India using 12 Landsat data sets of four different seasons 

(winter, pre-monsoon, monsoon, and post-monsoon) for 
1991, 2004, and 2018. The mono-window algorithm was 
applied in deriving LST. In general, the results showed 
that LST is inversely related to NDVI, irrespective of any 
season. In the post-monsoon season, the relationship was 
strong negative (− 0.63), while it was found weak negative 
(− 0.17) in winter. A moderate range of negativity (− 0.45) 
was noticed in pre-monsoon and monsoon season. The 
presence of healthy green plants and high moisture con-
tent in the air are the main responsible factors for high 
negativity. The LST-NDVI relationship varies for specific 
LULC types. The green area presents a strong negative 
(− 0.51) regression, while the built-up area and bare land 
presents a weak positive regression (0.14). The relationship 
is moderately positive (0.45) on water bodies. On vegeta-
tion, the LST-NDVI relationship was highly negative in the 
pre-monsoon (− 0.65), monsoon (− 0.52), and post-mon-
soon (− 0.58) seasons, while it was weak negative (− 0.28) 

Fig. 5   Spatial distribution of LST in post-monsoon season: a 12-OCT-1991 b 15-OCT-2004 c 22-OCT-2018; spatial distribution of NDVI in 
post-monsoon season: d 12-OCT-1991 e 15-OCT-2004 f 22-OCT-2018
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in the winter season. The mean LST of the study area was 
increased by 5.16 °C during 1991–2018. The conversion of 
other lands into the built-up area and bare land influences 

a lot on the mean LST of the city. Both the changed and 
unchanged built-up area and bare land suffer from the 
increasing trend of LST. This result significantly presents 
the influence of climate change in Raipur City.

Fig. 6   Spatial distribution of LST in winter season: a 14-FEB-1991 b 02-DEC-2004 c 08-FEB-2018; spatial distribution of NDVI in winter sea-
son: d 14-FEB-1991 e 02-DEC-2004 f 08-FEB-2018

Table 4   Change in mean LST 
(°C) with the conversion of 
different types of LULC into the 
built-up area/bare land

Conversion of different LULC 
into built-up area/bare land

1991–2018 2004–2018

1991 2018 1991–2018 2004 2018 2004–2018

Vegetation 25.02 29.68 4.66 27.32 29.52 2.20
Water bodies 26.29 28.87 2.49 26.78 27.74 0.96
Built-up area/bare land 27.25 30.04 2.79 29.14 29.97 0.83
Total 25.51 29.74 4.23 28.25 29.74 1.49
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