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Abstract
This paper presents a polynomial least squares (LS) method of overcoming numerous weaknesses and deficiencies in the 
interacting multiple model (IMM), which comprises multiple Kalman filter models as the state-of-the-art algorithm for 
tracking maneuvering targets. The paper also addresses several polynomial LS misunderstandings and flaws applied in 
econometrics. These aims are achieved by first uniquely deriving a very simple version of conventional LS, which fits dis-
crete deterministic data by minimizing the sum of squared deviations of data from an assumed polynomial (often called 
data-fitting). The contrasting contemporary polynomial LS method filters out corrupting statistical noise from already 
existing known polynomials, as in target tracking. Contemporary polynomial LS is developed from the conventional LS 
method derived by Gauss. Polynomial LS conventionally applied to data-fitting and contemporarily applied to noise 
filtering are shown to be different problems that are not to be conflated as done in econometrics, where data-fitting is 
described as regression using a 1st degree polynomial called ordinary LS. Most significantly, analogous to the IMM, the 
polynomial LS multiple model (LSMM) is derived. Contrary to the IMM, which is not optimized; the LSMM is optimized 
with a trade-off between the statistical variance and the deterministic bias-squared to minimize the mean-square-error 
(variance plus bias-squared). A sequence of optimal LSMMs matched to accelerations covering the spectrum of accel-
eration between zero and the assumed maximum are derived and applied in designing an adaptive algorithm. Results 
demonstrate improved target tracking and accuracy by the LSMM of maneuvering targets compared with published 
IMM performances.
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1  Introduction

Original least squares (LS) methods approximate an exist-
ing set of data with a mathematical function or a series by 
minimizing the sum of the squared deviations of the data 
from the function or series [1–5]. Often called data-fitting, 
conventional LS constructs coefficients to approximate 
deterministic data with an assumed polynomial [6–8].

However, in contrasting contemporary problems (e.g., 
target tracking), LS estimates already existing polynomial 
coefficients by filtering out corrupting statistical errors 
[8–10]. (More references in [11]). Contemporary LS is 

associated with maximum likelihood estimation [12, 13], 
general method of moments [14–16], and Bayesian esti-
mation [17].

Polynomial LS applies in tracking [9, 10], signal process-
ing [18, 19], and statistical estimation [19, 20]. It is also 
applied in statistics and econometrics where a 1st degree 
polynomial is assumed, called ordinary least squares (OLS), 
and described as regression [21, 22].

Polynomial LS can be derived and applied using the 
orthogonality principle [6, 7, 23], matrix theory [1], and 
the basic approach of determining the solution to an over-
determined linear system of equations [6, 7].

 *  J. W. Bell, jwbell@infowest.com | 1Santa Clara, UT, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-03439-x&domain=pdf
http://orcid.org/0000-0002-7749-6820


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1964 | https://doi.org/10.1007/s42452-020-03439-x

As the solution to an overdetermined linear system of 
equations, conventional polynomial LS is deterministic. 
It says nothing about statistics. In fact, statistics did not 
exist when Gauss invented and used LS on Ceres two and 
a quarter centuries ago [24]. It was not considered an 
organized mathematical science until Fisher established 
the foundation of statistics and estimation theory more 
than a century later—in the 1920s [25, 26].

Because of contemporary polynomial LS resource inten-
sive matrix inversion during computer infancy, it gave way 
to recursive tracking in the form of 2nd order (constant 
velocity) � − � as well as 3rd order (constant acceleration) 
� − � − � estimators [9, 27, 28].

As a state space estimator; the Kalman filter (KF) [11] 
makes improvements: (a) providing a running measure 
of prediction accuracy (variance) and (b) adding to the 
filtered error variance prior to prediction the variance of 
state noise, which prevents the filtered error variance from 
going to zero and causing the KF to become unstable and 
blow up [8, 9].

The advantage of 2nd order estimators is that the vari-
ance is smaller than from 3rd order estimators. The disad-
vantage is that a bias is created from target acceleration. 
The bias increases as more samples are processed, caus-
ing the tracking filter mean-square-error (MSE), compris-
ing variance plus bias-squared, to rapidly exceed the 3rd 
order variance (MSE).

The disadvantage of a 3rd order estimator is that the 
variance remains the same no matter the size of the accel-
eration. Thus, in the absence of acceleration, the 3rd order 
variance remains larger than the 2nd order variance. Thus, 
a trade-off is needed.

To deal more effectively with acceleration jumps from 
maneuvering targets, various combinations of 2nd and 
3rd order estimators described as multiple-models (MMs) 
have become available. 2nd and 3rd order KFs are selected 
and fused based on thresholds and computed probabili-
ties [29–31]. The interacting multiple-model (IMM) adap-
tively and interactively makes adjustments between 2nd 
and 3rd order KFs based on likelihoods from KF residuals 
and ad hoc transition probabilities of assumed accelera-
tion jumps [32–34]. The IMM is generally considered the 
best MM combination of performance and computational 
complexity.

Presumably as a holdover from KF use in control theory, 
steady-state (Oxymoronic, given continuingly maneu-
vering targets?) functions as the IMM default [35]. (The 
KF does not control targets. It filters out noise, which is 
actually a signal processing problem, not a control prob-
lem.) Thus, when an acceleration jump occurs as the IMM 

approaches “steady-state”, a large bias-squared creates 
high MSE transition spikes at the maneuver beginning 
and end. Yet, the IMM does not address the bias, perform 
a variance/bias-squared trade-off, or minimize the MSE.

There have been no significant theoretical improve-
ments to the IMM since its inception in the 1984 [32]. The 
thrust of IMM has been focused instead on applications 
[36–38]. This lack of recent IMM improvements opens the 
favorable opportunity for introducing the new LS multi-
ple-model (LSMM) for overcoming adverse effects of the 
IMM addressed below and improving tracking and accu-
racy of maneuvering targets.

This paper addresses the problem by first formulating a 
weighting function from conventional polynomial LS and 
expanding it to form unique orthogonal polynomial coeffi-
cient estimators. This has the advantage of independently 
estimating each coefficient and its variance, which makes 
estimating the tracking variance easier. It offers a simple 
method of processing existing polynomials corrupted with 
noise to yield the empirical statistical estimate, expected 
value, and variance of any arbitrary point on the estimate 
of the existing polynomial.

Based on the orthogonal coefficient estimators; the 
LSMM is created by establishing linear interpolation 
between 2nd and 3rd order polynomial LS estimators, the 
2nd order acceleration bias is defined, and interpolation 
is optimized (LSMM MSE minimized) in a variance/bias-
squared trade-off. A sequence of optimal LSMMs matched 
to accelerations covering the spectrum of acceleration 
between zero and assumed maximum is derived and an 
adaptive algorithm is designed.

Optimized at the worst case acceleration (worst case 
is normally assumed in tracking, not left open-ended) as 
a function of sliding window size (sample number) and 
noise variance; the LSMM offers improved tracking accu-
racy, smooth RMSE transitions (no MSE transition spikes 
from acceleration jumps), and a stable RMSE.

After the two model IMM is introduced and shown to 
analogously linearly interpolate between 2nd and 3rd 
order KFs, the optimal LSMM is compared with published 
IMM performance and shown to yield improved accuracy 
over the IMM.

The paper is organized as follows: Sect. 2 derives the 
contemporary polynomial LS estimator from conventional 
polynomial LS data-fitting. Section 3 establishes orthogo-
nal polynomial coefficient estimators and formulates the 
LSMM. The IMM is introduced and described in Sect. 4. In 
Sect. 5 the LSMM is applied to tracking examples in the 
literature, adaptivity is designed, and comparison is made 
with the IMM. Section 6 is a review and discussion. Sec-
tion 7 is the conclusion.
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2 � LS estimate of polynomials corrupted 
by noise

2.1 � Preliminaries and definitions: statistics, sample 
statistics, deterministic modeling

Deterministic modeling applies in the absence of statis-
tics. For example, a set of data that may look random, but 
is not described statistically, is therefore deterministic. 
Conventional polynomial LS fits deterministic data, such 
as scatter grams or a mathematical function. It constructs 
coefficients in an assumed polynomial to fit the determin-
istic data.

Mechanical moments in deterministic polynomial 
LS data-fitting are commonly conflated with statistical 
moments in discussions and treatments of polynomial 
LS and regression (OLS), as in [20, 21, 39]. In reality, the 
average of deterministic data is neither the expected 
value (mean) nor the sample average. It is the mechani-
cal 1st order moment, commonly called the centroid. The 
expected value (mean) is the statistical centroid analogous 
to the mechanical centroid. Likewise, the average of the 
squared differences between the data and the centroid 
is neither the variance nor the sample variance. It is the 
deterministic mechanical 2nd order central moment of the 
data. The statistical 2nd order central moment called the 
variance is analogous to the mechanical 2nd order central 
moment.

Stochastic processes and random variables are defined 
only in terms of statistics, not in sample statistics or the 
absence of statistics [23, 40]. Expected value (mean) and 
variance are defined only in terms of statistics, not sample 
statistics [23, 40]. Whereas, sample average and sample 
variance are defined in terms of sample statistics [40]. 
Thus, it is important to not confuse sample statistics with 
statistics as done in [20, 21, 39].

Consider the issue from the following perspective: add-
ing, removing, or changing a single sample in conven-
tional polynomial LS or sample statistics changes param-
eters in polynomial LS or sample statistics predictably and 
deterministically. Whereas; adding, removing, or chang-
ing samples in infinite statistics has no effect on statistical 
parameters.

Thus, it is crucial to understand and keep in mind differ-
ences among statistics, sample statistics, and deterministic 
modeling; and to not conflate them. Conventional poly-
nomial LS is not defined in terms of statistics, it is deter-
ministic. Nevertheless, if samples of an existing polynomial 
include statistical errors, polynomial LS may be viewed in 
terms of sample statistics [41].

For clarity, the term “estimation” from statistical esti-
mation theory is used in this paper when statistically 

described errors are assumed; whereas, the term “approx-
imation” is used in the absence of statistical errors.

2.2 � Conventional polynomial LS data‑fitting

To apply conventional LS for constructing 1st degree 
polynomial coefficients that fit existing deterministic 
data yn ≜ y

(
tn
)
 at points tn , set �S

��
=

�S

��
= 0 and solve, 

where

This yields 𝛼̃ =

(
ȳt2−ytt̄

)
(
t2−t̄2

)  and 𝛽 =
(yt−ȳ t̄)(
t2−t̄2

) , where the tilde 

(~) denotes deterministic construction and the overline 
v̄ ≜ 1

N

∑N

n=1
vn is defined here as the arithmetic average.

Approximation 𝛼̃ can be written as yn

(
t2−tnt̄

)
(
t2−t̄2

)  = ynan  , 

where an =

(
t2−tnt̄

)
(
t2−t̄2

)  comprises weights for constructing 𝛼̃. 

Likewise, 𝛽  can be written as yn
(tn−t)(
t2−t̄2

)  = ynbn  , where 

bn =
(tn−t̄)(
t2−t̄2

) =
(
tn − t̄

)/
tn
(
tn − t̄

) comprises weights for 

constructing 𝛽  . Multiplying bn by � and adding to an yields 
the deterministic weighting function

for approximating y at any arbitrary point t = � on the con-
structed polynomial:

In effect, Gauss used this concept on Ceres [8].

2.3 � From conventional polynomial LS data‑fitting 
to contemporary polynomial LS estimation

Now consider the contemporary and contrasting problem 
of estimating already existing 1st degree polynomial coef-
ficients in y(t) = � + �t corrupted by the additive meas-
urement stochastic process noise �:

samples �n of which are zero mean, stationary, and white 
noise random variables (not necessarily Gaussian) with 
variance �2

�
.

(1)S =

N∑
n=1

(yn − � − �tn)
2

(2)wn(𝜏) ≡

(
t2 − tnt̄

)
+
(
tn − t̄

)
𝜏

(
t2 − t̄2

)

(3)ỹ(𝜏) = ynwn(𝜏) = 𝛼̃ + 𝛽𝜏

(4)z(t) = y(t) + � = � + �t + �
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Applying deterministic wn(�) to estimate existing con-
stants � and � from samples of (4) yields

because tnan =tn
(t2−tnt̄)(
t2−t̄2

) = bn =
(tn−t̄)(
t2−t̄2

) = 0 . The hat (^) rep-

resents the statistical estimate from noise samples �n and (5) 
filters out noise (a deterministic noise filter) to reduce the 
variance as a function of the sliding window of size N . For 
the boundary condition of � = 0 , ŷ(𝜏) = y(𝜏) = 𝛼 + 𝛽𝜏.

(Note: In effect, wn(�) establishes an average curve. 
When applied to deterministic data for constructing pol-
ynomial coefficients, it is described as data-fitting. When 
applied to noisy data for estimating already existing poly-
nomial coefficients, it is described as noise filtering. The 
fact that wn(�) is the same in both cases seems to be a 
source of confusion and conflation.)

2.4 � Difference between (3) and (5)

The fundamental difference between (3) and (5) is that (3) 
constructs polynomial coefficients to fit deterministic data 
from (2); whereas, (5) estimates already existing underlying 
polynomial coefficients by using (2) to filter out corrupting 
noise. These are two different problems that are not to be 
conflated.

Nevertheless, (3) is often conflated with (5), as demon-
strated in [20, 21, 39]. Since samples yn are not described 
statistically in (1), it is a deterministic problem. How-
ever, conflation occurs when the deterministic deviation 
en ≜ yn − a − �tn as a component of (1) is rewritten as 
yn = a + �tn + en , which mysteriously transforms deter-
ministic en into a statistical error and then adds it to the 
non-existent deterministic a + �tn . Of course, (1) does not 
include statistics; and since a and � do not exist, they are 
deterministically constructed by minimizing (1), which 
results in deterministic (2).

A n o t h e r  u n i ve r s a l  m i s t a k e  i s  d e s c r i b i n g 

𝛽 =
(y−ȳ)(t−t̄)

(t−t̄)
2

=
(yt−ȳ t̄)(
t2−t̄2

) as the covariance of y and t  divided 

by the variance of t, as in [20, 21]. In reality, cov(y, t)
var(t)

 ≜ 

E[(y − E[y])(t − E[t])]

E[(t − E[t])2]
=

E[yt] − E[y]E[t]

E[t2] − (E[t])2
 , where E[·] is the statis-

tical expected value operator. Note: Same form ≠ same 
function. The independent variable t  is not described sta-
tistically (often equally spaced samples). It is deterministic, 
although arbitrary samples may look random. Thus, t̄ is not 

(5)

ŷ(𝜏) = znwn(𝜏) = 𝛼̂ + 𝛽𝜏 =

⎡⎢⎢⎢⎣
𝛼 +

�
𝜂̄t2 − 𝜂tt̄

�
�
t2 − t̄2

�
⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣
𝛽 +

�
𝜂t − 𝜂̄t̄

�
�
t2 − t̄2

�
⎤⎥⎥⎥⎦
𝜏

the expected value or even the sample average of t  ; it is 
the deterministic mechanical 1st order moment com-
monly called the centroid. Likewise, 

(
t2 − t̄2

)
 is the deter-

ministic mechanical 2nd order central moment of t  , not 
the statistical variance or even the sample variance. Thus, 
var(t) = 0 . Moreover, cov(y, t) = 0 , even if y is statistical as 
in [42].

Because � is statistical, (5) is the statistical estimate 
of existing coefficients � and � , where (2) is in essence a 
deterministic noise filter. Whereas, (3) does not filter out 
noise to estimate � and � ; it constructs them to mini-
mize the sum of squared deviations of samples from the 
assumed polynomial.

However, the average of the squared deviations of the 
deterministic data from the constructed polynomial is 
minimized (1) divided by N . Thus, if the fictitious assump-
tion is then made that the data were statistical deviations 
from an underlying polynomial that the constructed 
polynomial approximates, this average can be fictitiously 
assumed to be a sample average of the statistical noise 
variance and substituted into (9) below, which describes 
the filtered variance at any point on the estimated poly-
nomial as is common in tracking.

Nevertheless, this includes two major fictitious assump-
tions: (a) The data are statistical deviations from an under-
lying polynomial and (b) the average of the squared devia-
tions represents a sample variance. However, the crucial 
point is that this average is of squared deterministic devia-
tions from the constructed polynomial, not a true sample 
average of squared statistical deviations from an actual 
underlying existing polynomial. Therefore, this consti-
tutes reframing conventional deterministic LS in terms of 
contemporary LS estimating a fictitious underlying poly-
nomial corrupted by fictitious statistical noise in order to 
estimate the fictitious noise variance. Although this math-
ematical model is fictitious, it may be useful if it produces 
effective and reasonably valid results. [43, 44]

References [45–47] address applying OLS in econo-
metrics and polynomial LS. The remainder of this paper 
focuses on the main aim of deriving and using the LSMM 
to improve tracking and accuracy of maneuvering targets 
over that from the IMM.

2.5 � Variance of the contemporary polynomial LS 
estimate

Because the statistical expectation operator E[·] and arith-
metic average operator 1

N

∑N

n=1
(⋅) are linear, their order 

is interchangeable [23]. Since noise samples �n are zero 
mean, i.e., E

[
�n
]
= 0 ; the expected value of estimate ŷ(𝜏) in 
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(5) at any � is the 1st order statistical moment from statisti-
cal estimation theory [23]:

which naturally matches the noise free case.
The variance of ŷ(𝜏) is the 2nd order statistical central 

moment from estimation theory:

where 
∑N

i=1
E
�
�n�i

�
wi(�) = �2

�
wn(�) from the white noise:

Carrying out multiplications and summations in (7) 
yields the variance of the estimate at time �:

where 𝜏
2−2t̄𝜏+t2

N
(
t2−t̄2

)  is also deterministic. Equivalent to the vari-

ance used in statistics and econometrics as described in 
[39, 48], (9) is more conducive to tracking. (Note that set-
ting the derivative of (9) with respect to � equal to zero and 
solving yields 

�2
�

N
 , which as the minimum of (9) is also the 

variance of the estimate of a noisy zero degree polyno-
mial—a constant.)

Missing from original LS invented and used by Gauss 
on Ceres two and a quarter centuries ago, (9) is the empiri-
cally determined statistical tracking variance of ŷ(𝜏) from 
additive noise samples �n by deterministic estimator wn(�) 
(noise filter) and statistical estimation theory at estimation 
point � on the estimated polynomial. Since statistics did 
not exist when Gauss invented LS [24], a statistical variance 
of the estimate was not available.

(6)

E
[
ŷ(𝜏)

]
= E

[
1

N

N∑
n=1

znwn(𝜏)

]
= E

[
1

N

N∑
n=1

(
𝛼 + 𝛽tn + 𝜂n

)
wn(𝜏)

]

= 𝛼 + 𝛽𝜏 +
1

N

N∑
n=1

E[𝜂n]wn(𝜏) = 𝛼 + 𝛽𝜏

(7)

𝜎2

ŷ
= E

[{
ŷ(𝜏) − E

[
ŷ(𝜏)

]}2
]

=
1

N

1

N

N∑
n=1

N∑
i=1

wn(𝜏)E[𝜂n𝜂i]wi(𝜏)

= 𝜎2

𝜂

1

N

1

N

N∑
n=1

w2

n
(𝜏)

(8)E
[
�n�i

]
=

{
�2
�

for i = n

0 for i ≠ n

(9)𝜎2
ŷ
(𝜏) = 𝜎2

𝜂

𝜏2 − 2t̄𝜏 + t2

N
(
t2 − t̄2

)

3 � The LS multiple‑model (LSMM)

3.1 � Orthogonal polynomial coefficient estimators 
for equally spaced samples

Consider generalizing estimator wn(�) for equally spaced 
samples to wmn(�) where the new subscript m represents 
estimator order, which is 2 in (2). (Note: Estimator order 
from KF theory is degree of the polynomial estimated plus 
one.) For m = 1 the 1st order estimator w1n(�) is simply 1

N
 . 

Estimating a 1st degree polynomial with w1n(�) from very 
s i m p l i f i e d  e q u a l l y  s p a c e d  s a m p l e s  y i e l d s ∑N

n=1
(� + �n)w1n(�) = � + �

1

N

∑N

n=1
n = � + �

�
N+1

2

�
, where 

�

(
N+1

2

)
 is the bias. Furthermore, bn = (n − n̄)∕(n2 − n̄2) 

yields 
∑N

n=1
(� + �n)bn� = �� . Thus, � + �� =

∑N

n=1
(� + �n)�

w1n(�) + bn

�
� −

N+1

2

��
=
∑N

n=1
(� + �n)w2n(�), where

Continuing with induction, the mth order estimator can 
be written recursively for equally spaced samples in the 
unique form

where

starting with w1n(�) = U1n = 1∕N and U2n = bn . Orthogo-
nality of Umn s is exemplified by 

∑N

n=1
U1nU2n = 0.

Note: each Umn is fortuitously the estimator  
of the highest polynomial coefficient in the contempo-
rary LS mth order estimator for equally spaced  
samples, analogous to U2n = bn . That is, U1n from a 1st 
order estimator 

[
U1n =

1

N

]
 ,  U2n from a 2nd order  

estimator 
[
U2n = bn =

n−n̄

n2−n̄2
= numerator

/
n(numerator)

]
 , 

a n d  U3n  f r o m  a  3 r d  o r d e r  e s t i m a t o r 

U3n =
n2 n2−n2 +n n2n−n3 + n3n−n2

2

n4 n2−n2 +n3 n2n−n3 +n2 n3n−n2
2 = numerator

n2(numerator)  

ad infinitum are all orthogonal to each other over n . The 
Umn s can also be defined more easily in terms of unique 
orthogonal polynomials specifically used in polynomial 
LS as in (15) below [6, 7, 49]. The wmn(�) in (11) is reminis-
cent of and equivalent to equally spaced Gram-Schmidt 

(10)w2n(�) ≜ w1n(�) + bn

(
� −

N + 1)

2

)

(11)

wmn(�) = w(m−1)n(�) + Umn

[
�m−1 −

N∑
n=1

nm−1w(m−1)n(�)

]

(12)
N∑

n=1

UmnUkn

{
≠ 0 for m = k

= 0 for m ≠ k
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orthogonalization and seems suggestive in (5). Orthogo-
nalization could be used in the absence of equally 
spaced samples.

Advantage of orthogonality is that it allows each poly-
nomial coefficient and its variance to be independently 
estimated, simplifying LSMM tracking variance estimation.

3.2 � Forming the LSMM from orthogonal coefficient 
weights

Consider approximating deterministic x(t) at time � with 
a polynomial weighting function wMn(�) of order M from 
equally spaced samples xn:

where Tm(�) ≜
�
�m−1 −

∑N

n=1
nm−1w(m−1)n(�)

�
 for brevity 

from (11), which projects the mth coefficient estimate to 
time �.

For 3rd order processing, M = 3 and N ≥ M yield

where

are derived from orthogonal polynomials [6, 7, 49]. Terms 
in brackets of (14) are manifestations of Tm(�) in (13).

Consider now linearly interpolating between the 2nd 
and 3rd order estimators w2n(�) and w3n(�) with 0 ≤ f3 ≤ 1 
to formulate the LSMM weighting function, the order of 
which can be described as 2 + f3 [10]. It is described in vari-
ous forms simply as

As the estimator of fractional order 2 + f3 , this is the 
fraction f3 times the orthogonal acceleration estimator 
U3n multiplied by T3(�) and added to w2n(�), where the 

(13)x̃(𝜏) =

N∑
n=1

xnwMn(𝜏) =

N∑
n=1

M∑
m=1

xnUmnTm(𝜏)

(14)

w3n(�) = U1n + U2n

[
� −

N + 1

2

]

+ U3n

[
�2 − (N + 1)� +

(N + 1)(N + 2)

6

]

= w2n(�) + U3n

[
�2 − (N + 1)� +

(N + 1)(N + 2)

6

]

(15)

U1n =
1

N
, U2n =

[
−6

N(N + 1)

][
1 − 2

(n − 1)

(N − 1)

]
, and

U3n =

[
30

N(N + 1)(N + 2)

][
1 − 6

(n − 1)

(N − 1)
+ 6

(n − 1)(n − 2)

(N − 1)(N − 2)

]

(16)

wf3n
(�) = w2n(�)

[
1 − f3

]
+ f3w3n(�)

= w2n(�) + f3[w3n(�) − w2n(�)]

= U1n + U2nT2(�) + f3U3nT3(�)

= w2n(�) + f3U3nT3(�)

fraction subscript matches 3 of U3n . This is a special case of 
the multi-fractional order estimator [10]. As shown later, 
it is analogous to the IMM.

Now assume a tracking problem with equally time 
spaced samples corrupted with measurement noise:

where the �n are equivalent to noise samples from the 
stochastic process noise � in (4). Note that Umns in (14) do 
not produce coefficients cj from equally spaced samples 
of x(t) =

∑3

j=1
cjt

j−1 because of orthogonalization; but (14) 
does produce the same value at any x(t = �).

The estimate of x(t) at time � from noisy measurements 
yn by the LSMM weighting function is

For the filtered position corresponding to the last meas-
urement, set � = N , which yields

Because the variance of the sum of weighted uncorre-
lated random variables equals the sum of the variance of 
the random variables times the square of their weights [40, 
50], and because of coefficient estimator orthogonality

which is the variance of the estimate x̂(𝜏) normalized with 
respect to noise variance �2

�
 . The first term on the right of 

the equal sign is the variance of the position estimate; the 
second term, the variance of the velocity estimate; and the 
third term for f3 = 1 , the variance of the acceleration esti-
mate. The first two terms sum to the 2nd order variance 
4N−2

N(N+1)
 . Adding the variance from the third term for f3 = 1 

yields the 3rd order variance 9N2−9N+6

N(N+1)(N+2)
 . Absent state noise, 

2nd and 3rd order KF variances are equivalent to these two 
variances [9] as a result of the KF first being equivalent to 
polynomial LS (as Sorenson maintains [8] and Brookner 
shows [9]).

For 0 ≤ f3 < 1 a bias is created by the 2nd order esti-
mator applied to a 2nd degree polynomial describing 
an accelerating target. Normalized with respect to noise 
standard deviation (SD), the bias is easily discovered to be

(17)yn =

3∑
j=1

cjn
j−1 + �n = xn + �n

(18)

x̂(𝜏) =

N∑
n=1

ynwf3n
(𝜏) =

N∑
n=1

yn

{
U1n + U2n

[
𝜏 −

N + 1

2

]

+f3U3n

[
𝜏2 − (N + 1)𝜏 +

(N + 1)(N + 2)

6

]}

(19)

wf3n
(� = N) = U1n + U2n

[
N − 1

2

]
+ f3U3n

[
(N − 1)(N − 2)

6

]

(20)�2
f3
≜

N∑
n=1

w2
f3n

=
1

N
+

3(N − 1)

N(N + 1)
+ f 2

3

5(N − 1)(N − 2)

N(N + 1)(N + 2)
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where �3 ≜
c3

��
=

aΔ2

2��
 and subscript 3 matches that of c3 in 

(17); a is acceleration and Δ is the sample period. For � = N 
this reduces to

Normalized with respect to the noise variance, the 
LSMM MSE is �2

f3
+ B2:

The variance decreases roughly as only N−1 ; whereas, 
the bias-squared increases roughly as the staggering N4 
(deviation between the two is asymptotically propor-
tional to stunning N5 ), which quickly exceeds the variance, 
demanding a trade-off.

3.3 � Minimum LSMM MSE

Minimizing the LSMM MSE with variance/bias-squared 
trade-off by setting the derivative of (23) with respect to 
f3 equal to zero and solving yields

Substituting f3opt into (23) reduces the minimum LSMM 
MSE to

Minimized as a function of f3 , MSEmin is smaller than 
the 3rd order variance, which occurs only when �2

3
→ ∞ 

⇒ f3opt → 1 (i.e., aΔ2
→ ∞ or �� = 0. This can happen only 

when noise is zero, i.e., �� = 0, rendering variance and MSE 
meaningless.) Thus, 3rd order estimators, including the 
3rd order KF, are not minimum MSE estimators. This is a 
LSMM advantage as a function f3 and separable functions 
U1nT1(�) , U2nT2(�), and U3nT3(�).

MSEmin is a complex non-linear function of two sim-
ple parameters, �3 = �3opt (effectively, intuitive accelera-
tion-to-noise ratio) and N. Although not obvious, MSEmin 
includes the bias-squared and is the linear interpolation 

(21)

B(�) = �3
(
1 − f3

)
T3(�)

= �3
(
1 − f3

)[
�2 − (N + 1)� +

(N + 1)(N + 2)

6

]

(22)B(� = N) = �3
(
1 − f3

)[ (N − 1)(N − 2)

6

]

(23)

MSE =
4N − 2

N(N + 1)
+ f 2

3

[
5(N − 1)(N − 2)

N(N + 1)(N + 2)

]

+ �2
3

(
1 − f3

)2[ (N − 1)(N − 2)

6

]2

(24)f3opt =
�2
3

�2
3
+

180

N(N2−1)(N2−4)

(25)

MSEmin =
4N − 2

N(N + 1)
+

�2
3

�2
3
+

180

N(N2−1)(N2−4)

[
5(N − 1)(N − 2)

N(N + 1)(N + 2)

]

between the 2nd and 3rd order variances as a function 
of f3 = f3opt . Whereas, the variance in (23) is the quadratic 
interpolation between these same 2nd and the 3rd order 
variances as a function of f 2

3
.

MSEmin is similar to KF tuning; the target acceleration 
being the numerator of �3opt , the denominator of �3opt 
being the measurement noise SD, and N corresponding 
to the state noise variance.

MSEmin is uniquely plotted as a function of N for various 
�3 values in Fig. 1. Several important points are noteworthy 
in Fig. 1: (a) MSEmin curves drop rapidly to a knee, then (b) 
flatten out beyond the knee yielding virtually no increase 
in accuracy as N increases until they begin to approach 
the 3rd order variance. (c) Increasing parameters �3 and 
N each drive the MSEmin toward the 3rd order variance. (d) 
Parameter 𝜌3 > 1 almost yields a 3rd order estimator.

Choosing a data window of N samples near the knee is 
advantageous for two reasons: First, there is virtually no 
MSE reduction between the knee and the point where the 
MSE begins to approach the 3rd order variance. Second, 
windows beyond the knee create RMSE transition spikes 
from acceleration jumps. The longer the window, the 
higher the spikes. Shown later.

3.4 � False assertion of Kalman filter optimality

Prior to the IMM, the KF was ubiquitously declared to 
be optimal. In fact, Maybeck audaciously asserts “…the 
Kalman Filter is optimal with respect to virtually any cri-
terion that makes sense” [51]. Criteria generally cited are 
minimum MSE and minimum variance unbiased estimator, 
both of which the KF is claimed to achieve.

However, Brookner points out that state noise variance 
limits KF measurement noise reduction [9]. This can be eas-
ily seen by comparing filtered numerical KF measurement 
noise variances at each iteration with and without state 
noise, which demonstrates that the variance from the KF 
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with state noise is larger than without state noise. Since 
the KF without state noise is equivalent to contemporary 
polynomial LS [8.9], polynomial LS is actually the minimum 
variance unbiased estimator, not the KF.

Furthermore, the KF is not the minimum MSE estimator 
either. Recall that the MSE is defined as the variance plus 
the bias-squared. The minimum LSMM MSE in (25) is less 
than (23) for f3opt = 1 , which is equal to the KF MSE absent 
state noise and less than the KF MSE with state noise.

4 � Enter The IMM for comparison 
with the optimal LSMM

Several tracking surveys and comparisons generally con-
cur that the IMM is the best overall maneuvering target 
tracking estimator [29–31]. This paper offers a comparison 
of the fundamental differences in the two model—con-
stant velocity and constant acceleration—IMM and opti-
mal LSMM approaches.

4.1 � The two model IMM

The estimated IMM state equation is the sum of 2nd order 
KF times the model probability �1(k) plus 3rd order KF 
times probability �2(k):

where X1(k|k) represents 2nd order KF, X2(k|k) represents 
3rd order KF, and k is the time increment [31, 52, 53]. Since 
model probabilities must necessarily sum to one, i.e., 
�1(k) + �2(k) = 1 [31]; this constitutes linear interpolation 
(a straight line) between 2nd and 3rd order KFs, analogous 
to LSMM in (16). IMM interpolation is formed during each 
recursive cycle as model probabilities are interactively pro-
duced and adaptively applied.

The recursive calculation of the model probabil-
ity μj(k) as a function of time increment k is as follows: 
c̄j =

∑
i μi(k − 1)pij , pij is the ad hoc probability of transition 

from model i to j, c =
∑

i λi(k)c̄i , λj(k) is the model likeli-
hood, and μj(k) =

λj(k)c̄j

c
 [31, 52, 53].

From �1(k) = 1 − �2(k) , the IMM estimate is equal to the 
sum of the 2nd order KF plus the difference between the 
3rd and 2nd order KFs times �2(k) , analogous to LSMM:

The difference between X2(k|k) and X1(k|k) effec-
tively augments the 2nd order KF with a fraction of the 
estimated target acceleration as a function of the single 
model probability �2(k) , analogous to the LSMM. This form 
of IMM is reminiscent of augmenting a 2nd order KF with 
an acceleration bias based on maneuver detection in [52].

(26)X (k|k) = X1(k|k)�1(k) + X2(k|k)�2(k)

(27)X(k|k) = X1(k|k) +
[
X2(k|k) − X1(k|k)

]
�2(k)

4.2 � IMM weakness and deficiencies

Both the LSMM and IMM linearly interpolate between 2nd 
and 3rd order estimators. However, there are significant 
differences that expose IMM weaknesses and deficiencies.

(1) State noise is added to the KF state equation prior to 
prediction. This results in state noise variance being added 
to the filtered measurement noise variance. Absent state 
noise; filtered measurement noise variance approaches 
zero as more data are processed, causing the KF to become 
unstable and blow up. State noise artificially prevents this 
by establishing a non-zero variance floor the sum of the 
two variances asymptotically approach [8, 9].

(2) As noted in Sect. 3.4, establishing a variance floor 
with state noise simultaneously renders the KF less accu-
rate than absence of state noise (and a variance floor). 
Moreover, the KF absent state noise (and a variance floor) 
is equivalent to the truly minimum variance unbiased 
polynomial LS [8, 9].

(3) In effect, the KF state noise variance creates recur-
sive sliding windows, analogous to non-recursive sliding 
windows. By hijacking and controlling state noise variance, 
designers can formulate KF recursive windows of desired 
length, analogous to non-recursive windows of N sam-
ples. When targets accelerate, 2nd order KFs create biases. 
Increasing state noise variance decreases recursive sliding 
window sizes—like reducing N in non-recursive windows, 
which reduces biases. As a specialized KF design param-
eter, the purpose of which is to size KF recursive sliding 
windows and establish filtering limits; state noise variance 
is actually fictitious [52]. Biases from jumps in target accel-
eration are reduced by designer introduced and controlled 
fictitious state noise variances.

The purpose of KF based complex IMM filtering is to filter 
out measurement noise. Is it not utterly obtuse to add even 
more noise and complexity to force the KF to artificially 
reduce a bias from a jump in acceleration, but only after dis-
covering that the bias has already created an RMSE transi-
tion spike because the KF and IMM obscure the bias itself? 
The IMM does absolutely nothing to prevent RMSE transition 
spikes; instead, it continually plays after-the-fact “catch-up”. 
This paper offers estimators that preclude troublesome tran-
sition spikes.

(4) Although KF theory has a random variable repre-
senting state noise added to the state equation, it is not 
actually added in Monte Carlo simulations. The reason is 
that the sole purpose of fictitious state noise is to add the 
state noise variance to the random measurement noise 
variance to prevent the sum of the variances from going 
to zero, causing the KF from becoming unstable and 
blowing up. Therefore, state noise variance is not in real-
ity reduced in simulations along with measurement noise 
variance. Since in KF theory state and measurement noises 
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are assumed to be independent zero mean, stationary, and 
white; their variances add. The sum of the two should be 
reduced in KF simulations, but isn’t. Whereas, the sum of 
the two noises added to a polynomial representing a tar-
get trajectory in contemporary polynomial LS estimation 
does yield the reduced variance of the sum, as it should.

(5) The IMM does not directly address, describe, or even 
explicitly acknowledge the 2nd order KF acceleration bias 
per se—the “elephant in the room”, as it were. Hence, the 
IMM does not perform any form of variance/bias-squared 
trade-off to actually minimize the MSE; even though the 
2nd order KF bias-squared is analogous to the LSMM bias-
squared in (22), which quickly exceeds the variance as the 
bias-squared to variance ratio increases asymptotically 
proportional to N5 in (23). This will be shown in examples 
later.

(6) Furthermore, �2 is a combination of likelihoods from 
KF residuals and ad hoc transition probabilities. The transi-
tion probabilities are control parameters, the sole purpose 
of which is to match specifically assumed scenarios, like KF 
tuning matches proposed scenarios.

(7) Since the 3rd order KF estimates acceleration 
from noisy data, multiplying it by �2 is noisily incestu-
ous because it too is a function of noisy acceleration 
data through residuals. This is remindful of positive noise 
feedback.

(8) In addition, likelihoods in the IMM from KF residuals 
prevent �2 from meeting the required boundary condi-
tion of zero absent acceleration to correctly execute the 
IMM 2nd order KF alone. Instead, 𝜇2 > 0 augments the 2nd 
order KF estimate with part of the difference between the 
3rd and 2nd order KF estimates (effectively, noise only 
acceleration estimate), thereby counteracting the IMM 
oxymoronic default KF 2nd order steady-state measure-
ment noise variance by adding part of the acceleration 
measurement noise variance to it.

In contradistinction, the LSMM produces the minimum 
possible two model MSE by performing a variance/bias-
squared trade-off while avoiding adverse IMM effects.

4.3 � Comparison: f
3opt versus �

2

Functions f3opt and �2 have the commonality of linearly 
interpolating between 2nd and 3rd order estimators. The 
KF being equivalent to contemporary polynomial LS in 
the absence of state noise [8, 9], the main substantive dif-
ferences between optimal LSMM and IMM are differences 
between f3opt and �2 . Table 1 compares them.

Given differences between �2 and f3opt , consider differ-
ences in performance of IMM and optimal LSMM.

Table 1   Detailed dissection and comparison of f 3opt and �2

f3opt �2

1. Direct and deterministic function of measurement noise variance 1. Function of measurement noise variance only through multiple 
likelihoods

2. Direct and deterministic function of noise reduction through N 2. Function of noise reduction only through multiple likelihoods
3. Direct and deterministic function of worst case (high) acceleration, 

the only unknown to be assumed. (Also commonly assumed in IMM 
and KF tuning.)

3. Function of acceleration only through noisy estimates of accelera-
tion biases from residuals in multiple likelihoods

4. Direct function of sample rate 4. No direct function of sample rate
5. Optimized with variance/bias-squared trade-off from MSE deriva-

tive
5. Not optimized with variance/bias-squared trade-off from MSE 

derivative, or otherwise
6. No transition probabilities or other ad hoc design parameters 6. Function of transition probabilities as ad hoc design parameters 

to improve accuracy based on assumed frequency of acceleration 
changes

7. No recursivity, interactivity, updating, or adaptivity 7. Function of recursivity, interactivity, updating, and adaptivity
8. Very simple one time off-line deterministic computation from �3opt 

and N
8. Complicated with recursive KF, residual, and likelihood updating, 

interactivity, adaptivity—infused with ad hoc transition probabili-
ties

9. Correctly executes the 2nd order LSMM from the absence of accel-
eration (i.e., f3opt = 0 from �3opt = 0.)

9. Prevented by likelihoods from matching the boundary condi-
tion zero absent acceleration for correctly executing 2nd order KF 
alone
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5 � Examples

Generally concurred to be the best overall MM [29–31], 
the IMM continues to be addressed in the literature. How-
ever, a search revealed only the following two particu-
larly well suited examples [31, 53] for comparing the IMM 
and optimal LSMM. Both examples include comparisons 
themselves. Ref. [31] compares seven MMs, including the 
IMM. Ref. [53] compares IMM and KF. Documented by well 
respected authors whose work is generally included in the 
KF and IMM gold-standard, these examples facilitate ideal 
comparisons.

5.1 � Example 1 (Pitre scenario)

Consider Pitre’s Scenario 1 in [31, 54] where seven MM 
tracking algorithms are compared, including the IMM. Pitre 
compares performance and computational complexity. He 
states: “IMM and the rest of the algorithms had compara-
ble RMSE values … IMM, however, achieved it much more 
efficiently.”

Pitre’s Scenario 1 target constantly accelerates at 20 m/
s2 for 30 s, travels at constant velocity for 30 s, then con-
stantly decelerates − 60 m/s2 (> 6 g) for only 10 s, and 
finally continues at a constant velocity. Sample rate is 
1 Hz. The two simulated Pitre accelerations are matched 
here, but time periods are changed slightly for expediency: 
Each acceleration lasts 10 s, as does their separation. The 
measurement SD is 140 m. For worst case acceleration this 
yields �3 = �3opt = − 0.214 in (25).

From (24) f3opt ≈ 0.39 weights the 3rd order estima-
tor in (16). The 2nd order estimator is weighted with (
1 − f3opt

)
≈ 0.61 . Accordingly, the LSMM MSEmin of (25) is 

plotted in Fig. 2 (Opt LSMM MSE). Other curves are shown 
from (23): variance portion of Opt LSMM MSE (Var in Opt 
LSMM MSE: f3 = f3opt and �3 = 0 ), 2nd order MSE ( f3 = 0 ), 
2nd order variance ( f3 = �3 = 0 ), and 3rd order variance 
( f3 = 1).

The knee of the Opt LSMM MSE curve occurs near 
N = 5 . Although designed for �3opt = −0.214 in f3opt , the 
Opt LSMM MSE is reduced to only the variance—first two 
terms right of equal sign in (23)—when the acceleration 
bias is zero, i.e., �3 = 0 . It also levels off for several incre-
ments, as does Opt LSMM MSE. Both Opt LSMM MSE and 
Var in Opt LSMM MSE approach the 3rd order variance as 
N → ∞.

Because of the bias-squared, the 2nd order MSE 
exceeds the 3rd order variance also near N = 5 as pointed 
out in item 5) of the IMM deficiencies in Sect. 4.2. Particu-
larly troubling is the resulting enormous asymptotic N5 
deviation between the 2nd order MSE and the 3rd order 
variance for N > 6 . Since �2 is analogous to f3opt , this same 
general concept applies to the IMM.

Feeding Pitre’s scenario into a 5-point LSMM optimized 
for �3opt = −0.214 yields the RMSE shown in Fig. 3 as �3 
changes from acceleration jumps between minimum of 
�3 = 0 and worst case of �3opt = −0.214.

Of particular significance: LSMM linearity obviates 
Monte Carlo simulation. This makes LSMM plots much sim-
pler. It also eliminates IMM RMSE volatility seen in Pitre’s 
plots.

The Opt LSMM MSE is the variance plus the bias-
squared, the bias-squared being in the form of the square 
of the difference between the true position and noiseless 
LSMM estimate. Track initiation is ignored for expediency.

In effect, the optimal LSMM with no RMSE transition 
spikes reaches stability faster from acceleration jumps 
than does recursive IMM steady-state.

Choosing N = 8 on the Opt LSMM MSE curve in Fig. 2 
(beyond the knee) yields the second curve with transition 
spikes in Fig. 3. In this case f3opt = 0.89 yields nearly a 3rd 
order estimator as Fig. 2 indicates.

An interesting feature in Fig. 3 is that for no accelera-
tion—no bias in (23)—the 5-point optimal LSMM RMSE 
(i.e., SD) is smaller than from the 8-point optimal LSMM. 
This seems to violate the notion that larger windows 
always yield smaller variances (and SDs). The reason: The 
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MSE is minimized, not the variance, which in Fig. 2 for 
N = 8 is larger than for N = 5.

Obviously, increasing from 5 to 8 data points does not 
improve the LSMM accuracy much, if at all. Accuracy is 
arguably worsened by transition spikes before settling to 
correct RMSEs. There is a small spike at the onset of the 
first maneuver and tiny ripple at the end from the 8-point 
LSMM. The second maneuver creates a larger spike at the 
beginning and just a little uptick at the end. Since the 
LSMM is optimized for worst case acceleration, the lesser 
and no accelerations automatically produce correspond-
ing smaller RMSEs from smaller biases.

5.1.1 � Comparing LSMM RMSEs with Pitre’s Fig. 6

Notice the extremely high RMSE transition spikes above 
steady-state ( ≈ 3× higher) in Pitre’s Fig. 6 [31], a trans-
formative use of which is copied in Fig. 4 of this paper. 
The spikes result from biases caused by jumps in accel-
eration, which the IMM does nothing to prevent because 
it fails to explicitly acknowledge existence of biases. The 
IMM simply adjusts state noise only after recognizing that 
spikes have occurred.

Within the purpose and scope of this paper; an easy and 
effective comparison initiated by Pitre himself in Fig. 8 of 
[31] is applied here. Pitre plots horizontal lines of “credibil-
ity measured in terms of log average normalized estima-
tion error squared (LNEES)”.

Similar horizontal lines representing the LSMM RMSEs 
are added here to Pitre’s Monte Carlo simulated 7 MM 
RMSEs in Fig. 4 (Pitre’s Fig. 6). There are two sets of horizon-
tal lines representing LSMM RMSEs applied in Fig. 4 that 
serve different purposes: One set red, the other, brown.

5.1.2 � Red lines in Fig. 4

The red lines represent the 5-point LSMM RMSEs of 
118.1 m, 113.0 m, and 112.3 m at the maximum accelera-
tion, the lesser acceleration, and no acceleration; respec-
tively. The lines were located manually (with Windows 
Paint, mouse, and computer screen) to Pitre’s computer 
created Fig. 6. They are unquestionably imprecise: they are 
approximations for illustration.

Because of Monte Carlo simulation; the transition spikes 
and volatile MM RMSEs are due to biases and the algo-
rithms themselves, not the noise. Absent quantitative 
data in [31], qualitative visible inspection clearly indicates 
that the IMM RMSE average (including transition spikes) is 
higher than LSMM RMSEs during both accelerations.

Pitre’s IMM curve has a large transition spike at the 
beginning of the first maneuver and a smaller spike at the 
end. Thus, both initial first maneuver spikes of the 8-point 
LSMM and IMM are consistent, although the second LSMM 
spike is very small because of the relatively small drop in 
acceleration. However, Pitre’s IMM curve shows a very large 
transition spike at the beginning of the second maneu-
ver and no spike at the end, which is consistent with the 
8-point LSMM.

Presumably because of Pitre’s higher acceleration short 
10 s duration; neither the 8-point LSMM nor the IMM is 
able to settle down before the end of the second maneu-
ver, which appears to be undetected by both and causes 
the gradual RMSE reduction with no spikes.

Although Pitre’s Fig. 6 provides a variety of colors show-
ing curves well, much of the IMM is obscured by plots of 
other MMs. The same plots are given in Fig. 2 of [54], where 
vivid colors are not displayed, but the IMM plot is more 
distinguishable.

Zooming in on the peaks of plots in Fig. 2 [54] on a 
computer screen allows slightly better approximations. 
This shows the first maneuver IMM onset spike near 145 m 
(28% larger than the LSMM 113 m RMSE); the end spike, 
about 128 m (13% larger). The second maneuver onset 
spike is near 210  m (a whopping 78% larger than the 
LSMM 118 m RMSE).

This suggests that the optimal 5-point LSMM yields sig-
nificantly lower RMSEs during both accelerations than the 
IMM. Furthermore, the first LSMM RMSE always remains 
19% below the measurement SD of 140 m; the second, 
16% below. Whereas, the first IMM onset spike is about the 
same; the second, 50% larger.

Although Pitre’s curves display transition spikes at both 
the beginning and end of the first maneuver (the spike at 
the end being smaller), the LSMM 8-point shows a spike 
only at the beginning. This results from the very small 
�3opt = −0.214 . Larger values of �3opt yield small spikes at 
maneuver ends, as the next example shows.

Fig. 4   Copy of Pitre’s Fig.  6 with added horizontal lines represent-
ing LSMM RMSEs [31]
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This exercise demonstrates a different perspective on 
the trade-off between worst case and steady-state RMSEs. 
This paper emphasizes worst case acceleration accuracy. 
Pitre seems to prefer steady-state over worst case accuracy 
in the statement: “acceptable RMSE during steady-state 
with a tradeoff in peak error and quick transition between 
states”. However, Pitre does not define “acceptable”. There-
fore, it must be ad hoc and subjective.

Pitre recommends the IMM based on less complexity, 
but does not give quantitative complexity results. Pitre 
states instead: “The computational complexity was calcu-
lated using MATLAB’s stopwatch timer” [31]. Fortunately, 
the optimal 5-point LSMM requires only 5 multiplies and 
4 adds.

Figure 4 shows the 5-point LSMM RMSE to be nearly 
constant across the assumed acceleration spectrum 
and slightly less than IMM steady-state worst case RMSE 
(including spikes and volatility), and to be near the average 
of IMM RMSE including spikes and steady-state volatility.

The optimal LSMM offers significant advantages of 
lower RMSEs during worst case acceleration, smooth 
RMSE transitions (no spikes), stable RMSEs, and much less 
processing.

5.1.3 � Brown lines in Fig. 4

Visual inspection of Fig. 4 (copy of Pitre’s Fig. 6) shows 2nd 
order steady-state position RMSE to be near 68 m, about 
50% reduction of 140 m measurement SD. This corre-
sponds to a non-recursive 2nd order LS sliding window of 
about 15 samples. The optimal LSMM at worst case accel-
eration is about 118 m, 16% reduction from only 5 sam-
ples. This represents a 34% difference in RMSE reduction 
between 5 and 15 samples.

Consider an adaptive LSMM concept with the follow-
ing general outline: 4 additional position LSMM estima-
tors (� = N ) covering the two extremes represented by the 
brown lines in Fig. 4—also drawn manually for illustration 
and undeniably imprecise. Each is optimally matched to 
a specific acceleration with a corresponding RMSE shown 
in Table 2. The RMSEs are purposely designed to be about 
10 m apart while keeping �3opt at the knee to specifically 
avoid RMSE transitions spikes. Again, the lines were drawn 

manually and are only approximations. Although not 
shown to avoid cluttering up the figure even more, each 
of these LSMMs would also yield smaller RMSEs at lower 
accelerations, like the two lower red lines.

This concept is somewhat analogous to recursive MMs 
where multiple acceleration models are used, as described 
by Pitre:” …, a multiple-model target-tracking algorithm 
runs a set of filters that model several possible maneu-
vers and non-maneuver target motion.” However, no ad 
hoc transition probabilities are included in the LSMM for 
matching specific maneuver scenarios as in the IMM.

The separation of these RMSEs is roughly the same as 
the variability due to IMM RMSE volatility of IMM steady-
state during all three accelerations of zero, 20 m/s2, and 
− 60 m/s2 in Fig. 4. Most obvious is the deviation at zero 
acceleration. This suggests that the adaptive LSMMs with 
no RMSE transition spikes yields better accuracy than the 
IMM across the spectrum of accelerations between 20 m/
s2 and − 60 m/s2.

Multiple LSMMs, each with its own theoretical RMSE 
threshold in Table 2, against which a corresponding sam-
ple RMSE could be compared, would allow rapid detec-
tion of threshold crossings. Shorter windows would detect 
crossings faster than longer ones.

The 2nd order KF steady-state functions as the IMM 
default. However, the optimal LSMM at maximum accel-
eration should be default: (a) Because as the shortest 
window, it will be established first. (b) Because it is likely 
that in some scenarios large transition spikes from longer 
windows could disrupt tracking and be more troublesome 
than no spikes in larger MSEs from shorter LSMM windows.

5.1.4 � Adaptive algorithm: one simple example of several 
possible

Begin each update with the shortest LSMM window 
(default). Check sample RMSE against the theoretical RMSE 
threshold. If crossed, predict target location and MSEmin 
with it. Otherwise, sequentially check next longer window 
sample RMSE against theoretical RMSE threshold until first 
crossing. Predict target location and MSEmin with previous 
LSMM. No crossings: Predict with longest window LSMM. 
Update.

Other possibilities: (a) Set a probability threshold for the 
default window to reduce crossings by large random noise 
spikes. (b) Weight RMSEs from a sample threshold crossing 
and the previous theoretical LSMM.

For one-step prediction change � in (18) to N + 1 , which 
is the same as changing all the negative signs on the right 
side of (19) to positive. Similarly, � = N + 1 in (the normal-
ized) MSEmin—i.e., in wf3,n

(�) from (18) and (21) preceding 
(25)—is equivalent for one-step prediction to switching all 
signs (+ and −) on the right of (25) in the first term and in 

Table 2   LSMM RMSEs ( � = N ) (Pitre)

N �3,opt Acceleration (m/s2) RMSE (m)

5 0.214 60 ≈ 118
6 ≈ 0.09 ≈ 25 ≈ 108
7 ≈ 0.034 ≈ 9.5 ≈ 98
9 ≈ 0.015 ≈ 4.2 ≈ 88
12 ≈ 0.007 ≈ 2 ≈ 78
15 ≈ 0 ≈ 0 ≈ 68
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the brackets (not the denominator of f3opt ) of the second 
term [49].

The weights can be stored and applied as needed, 
requiring no more than N multiplies and (N − 1) adds. 
Example weights and MSEs for 7-point one-step predic-
tors are given in Table 3.

Notice the characteristic polynomial LS pattern of pre-
dictor weights and MSEs, including w3 = 0 in the 2nd order 
predictor and division of each weight and MSE in the inte-
ger order predictors by the number of weights ( N = 7) . 
Numerators of order 2.0 differ by 1; of order 3.0, by 4, 2, 0, 
2, 4, 6, and 8 in sequence.

An alternative method can be adapted from (16) for 
calculating each optimal LSMM predictor weight in Table 3 
from the 2nd and 3rd order estimator weights: 
wf3optn

= w2n + f3opt
(
w3n − w2n

)
 . For example, converting 

fractions to decimals yields: w1 = {−0.286 + 0.089[0.429−

(−0.286)] = −0.222} . Of course, w2 =
1

7
 and w6 =

3

7
 because 

of equal 2nd and 3rd order weights, the difference of 
which multiplied by f3opt is zero leaving only the 2nd order 
weight.

Because the normalized variance of non-recursive esti-
mators is the sum of the squares of the weights,  
which is equivalent to the MSE of the 2nd and 3rd order 
predictors in Table 3 based on the assumption that each 
polynomial degree does not exceed its matching predictor 
order (i.e., no bias); the optimal 7-point LSMM predictor 
MSE can be calculated analogously from (25): 
MSEmin = MSE2+f3opt = MSE2 + f3opt

(
MSE3 −MSE2

)
.

However, the sum of the squares of the LSMM weights 
do not match its MSE. The bias-squared is the difference 
between the MSE and variance. The normalized variance 
(sum of the squared weights) of the optimal 7-point 2.089 
order LSMM predictor is 0.728, which when subtracted 
from the MSE of 0.867 yields a normalized bias-squared 
of 0.139. As described in (21), the bias comes from the 2nd 
order predictor applied to the maximum acceleration in 
Pitre’s scenario.

Another advantage of the LSMM over the IMM: It is easy 
to see what actually transpires in non-recursive estima-
tors, especially regarding biases. The IMM does not directly 
address biases. Instead, biases are hidden in mathematical 
gymnastics, “Kalmanisthenics”, and ever expanding “Compli-
cation Theory”: Out of sight, out of mind.

It is easy to show from Table 3 that the 7-point LSMM 
predictor RMSE differs very little from the 2nd order RMSE 
in comparison with the 3rd order RMSE (RMSE ratio of 
7-point LSMM to the 2nd order is only 1.102). In practical 
real world scenarios it probably makes little sense to apply 
a predictor beyond 7-points (or corresponding KF state 
noise variance). Example from Table 2: N = 9 and �3opt ≈ 
0.015 ⇒ f3opt ≈ 0.065 ⇒ a 2.065 order LSMM predictor and 
RMSE ratio ≈ 1.065—virtually no real advantage. In fact, 
the trade-off from IMM conventionally processing more 
data samples than the optimal LSMMs at knees amounts 
to diminishing 2nd order variance reduction (like diminish-
ing returns in economics) versus ever larger MSE transition 
spikes from target acceleration changes. Thus, 15-point 
and analogous MM predictors may be great in theory; 
but are way beyond practicality against maneuvering tar-
gets—the original and still main purpose of MMs.

(For Gaussian statistics, a correlation gate based on [55] 
may apply.)

Since IMM residuals used for adaptation include some, 
if not all, of the same noise samples in the estimates, there 
exists some correlation between the two. Thus, distortion 
from noise in one is shared in the other. Conversely, the 
LSMM maneuver detection would be based on theoretical 
RMSEs, not on random noisy residuals.

5.2 � Example 2 (Blair scenario)

The main purpose of this scenario is to show a transition 
spike at the maneuver end from a larger �3opt like those in 
response to the first maneuver in Pitre’s comparison.

Consider Blair’s scenario of [53], which compares the 
IMM with the KF. After traveling at constant velocity, the 
target constantly accelerates at 20 m/s2 for 20 s and then 
continues at constant velocity. Blair’s acceleration, 1 Hz 
sample rate, and �� = 25 m all yield �3 = �3opt = 0.4 ; which 
is larger value than Pitre’s.

LSMM MSEmin and Opt LSMM Var of (23) are plotted in 
Fig. 5. Also shown are 2nd order MSE as well as 2nd and 
3rd order variances. For Blair’s �3 = �3opt = 0.4 , the knee 
of the MSEmin curve occurs near N = 4 . These two param-
eters yield f3opt ≈ 0.39—interestingly, the same as Pitre’s 
for N = 5 and �3opt = −0.214 . Again, the 2nd order MSE 
crosses the 3rd order variance near the MSEmin knee, in 
his case near N = 4.

Table 3   7-point predictors. 
(Subscripts of wn are n from 
wmn , which are of order m.)

N and �3,opt from Table 2 in (24) ⇒ f3opt ≈ 0.089 ⇒ optimal LSMM predictor order of 2.089 from (16)

Order w1 w2 w3 w4 w5 w6 w7 MSE

2.0 −
2

7
−

1

7
0 1

7

2

7

3

7

4

7

5

7

3.0 3

7
−

1

7
−

3

7
−

3

7
−

1

7

3

7

9

7

17

7

2.089 (LSMM) − 0.222 −
1

7
− 0.038 0.092 0.248 3

7
0.635 0.867
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Feeding Blair’s scenario into 4-point optimal LSMM 
optimized for �3 = �3opt = 0.4 yields RMSE shown in Fig. 6. 
Choosing N = 8 (beyond the knee) on Opt LSMM MSE curve 
in Fig. 5 yields the second curve in Fig. 6, in which case 
f3opt = 0.96 yields nearly a 3rd order estimator as indicated 
in Fig. 5. The 8-point RMSE clearly exhibits transition spikes 
at both the beginning and end of the maneuver, as does 
Blair’s Fig. 4. However, because of Monte Carlo simulation; 
Blair’s spike at the end is less pronounced resulting from 
the RMSE volatility due to the algorithm, not noise. Both 
the LSMM and Blair’s IMM spike at the end is smaller, as 
is Pitre’s. However, ignoring Blair’s transition spikes in a 
visual inspection of his Fig. 4 compared to this Fig. 6 sug-
gests that the optimal 4-point LSMM yields roughly the 
same steady-state RMSE during acceleration as Blair’s IMM. 

However, including Blair’s spikes suggests superior accu-
racy from the LSMM RMSE.

Adaptive LSMMs for Blair’s scenario are shown in 
Table 4, where only 4 are needed. The RMSEs are sepa-
rated by about a mere 1.75m while again keeping �3opt at 
the knee to avoid RMSE transition spikes. Note that this 
separation is much smaller than the variation of Blair’s 
IMM during steady-state, which appears to be greater than 
2 m—possibly up to 4 m.

6 � Review and discussion

The optimal LSMM produces several results for improved 
tracking: (a) Defining �3 ≜

aΔ2

2��
 (proportional to the accel-

eration-to-noise ratio) yields this single parameter for 
tracker design, analysis, and comparison. (b) For compari-
son, the optimal LSMM MSEmin for tracking maneuvering 
targets can be plotted as a function of time for given �3 
and N . (c) Plotting optimal LSMM MSEs (i.e., MSEmins) as a 
function of N for given �3 yields accuracy curves with 
knees. (d) The larger is �3 , the smaller is N at the knee and 
(e) the larger are transition spikes for N beyond the knee. 
(f ) For many—if not most—practical scenario accelera-
tions, the knee is probably in the range 3 ≤ N≲ 6 (where 
N ≥ 3 for 3rd order acceleration estimation).

Comparisons reveal that the optimal LSMMs designed 
at MSEmin knees produce improved accuracy over the 
IMM with no volatility or MSE transition spikes during 
maneuvers at worst case (high) acceleration. It yields 
smaller MSEs at all lower accelerations automatically (no 
external adaptivity), even though still optimized for worst 
case acceleration. This results from smaller biases at lower 
accelerations in �3 , while the variance remains constant in 
(23) for f3,opt.

The LSMM does not try to capture target acceleration 
changes when new measurements are received and then 
decide how to respond. It processes all measurements the 
same. Maneuvers pass through optimal LSMMs designed 
at knees of MSEmin curves as smooth RMSE bulges with 
no transition spikes, somewhat analogous to “a pig in a 
python”.

The LSMM is not limited to a fraction of acceleration 
(i.e., interpolating only between 2nd and 3rd order esti-
mators). For example, if acceleration is negligible, a frac-
tion of the velocity analogous to (16) may be applicable: 
wf2,n

(�) = U1n + f2U2nT2(�).

Based on unique orthogonal polynomial coefficient 
estimators combined with variance/bias-squared trade-
offs; the LSMM designed at MSEmin knees is practical and 
yields optimal accuracy (minimum MSE), RMSE stability, 
and no transition spikes with only handfuls of multiplies 
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Table 4   LSMM RMSEs ( � = N ) (Blair)

N �3,opt Acceleration (m/s2) RMSE (m)

4 ≈ 0.4 ≈ 20 ≈ 22.5
5 ≈ 0.175 ≈ 8.75 ≈ 20.7
6 ≈ 0.065 ≈ 3.25 ≈ 18.8
7 ≈ 0.0 ≈ 0 ≈ 17
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and adds each during high acceleration maneuvers (when 
needed most) by giving up minimal accuracy during 
absence of acceleration (when needed least).

By introducing innovative concepts and new perspec-
tives on tracking; the LSMM offers insight, understanding, 
flexibility, simplicity, optimality, adaptivity, and practical-
ity. Strictly adhering to straightforward and essential fun-
damentals while eschewing inimical complication is the 
key.

Glaring central questions about the IMM: (1) Theoreti-
cal: Does IMM steady-state applied to a recurrently maneu-
vering target with acceleration jumps actually make sense; 
or is it obviously self-contradictory? (2) Practical: Is the 
specific benefit of short term IMM RMSE steady-state from 
maneuvering targets at the expense of volatility and large 
transition spikes more important than the nearly constant 
LSMM RMSE?

7 � Conclusion

The main purpose of this paper is to derive and apply the 
novel LSMM based on orthogonal coefficient estimators 
and a variance/bias-squared trade-off for overcoming 
weaknesses and deficiencies in the KF based state-of-
art IMM target tracking algorithm. In addition, the paper 
sought to address and clarify several polynomial LS mis-
understandings and modeling flaws applied mostly in 
econometrics.

Thru analysis and examples the paper demonstrates 
that the LSMM offers improved tracking accuracy and 
steady-state of continually maneuvering targets with less 
processing. The paper also demonstrates that the polyno-
mial LS has two main applications that are often confused: 
First, it fits deterministic data to create polynomial coef-
ficients. Second, it filters out statistical noise to estimate 
existing polynomial coefficients. They are disparate func-
tions not to be conflated. Additionally, the paper clarifies 
crucial differences among often conflated deterministic, 
statistical, and sample statistical modeling.

The state space recursive KF was introduced in 1960 
during the computer infancy to overcome the intensive 
processing required to invert polynomial LS matrices, and 
to include state noise to keep filtered measurement noise 
from approaching zero, causing the algorithm from blow-
ing up. The KF has been used for tracking targets with con-
stant velocity or acceleration. The IMM was introduced in 
1984 to deal with continually maneuvering targets. These 
algorithms became state-of-the-art for tracking and 
largely obviated the incentive to seek alternatives. Fortui-
tously, this author stumbled onto the embryonic form of 
the LSMM in the mid ‘80 s and has continued research and 

application since. Advantages of polynomial LS have been 
found and exploited, culminating in this paper.

The main limitation of this study is the development 
and simulation of specific adaptive LSMM algorithms, 
some suggested herein. This paper addresses only the frac-
tion of acceleration with adaptivity. However, fractions of 
velocity, acceleration, jerk, and jink could also possibly be 
useful. They were used in simulations for the US NAVY on 
real IRST data and found to yield accuracy superior to that 
of the extended KF [56].

Three directions for future research come to mind. First, 
pursue adaptivity. Second, consider the concept in areas 
other than polynomials, orthogonal series expansions, and 
tracking. For example, tracking with fractions of deriva-
tives in addition to acceleration is not unlike amplitude 
weighting in signal processing, antenna beam shaping, 
and apodizing in optics. Other applications surely await 
discovery. Third, optimized at critical points on the esti-
mated target trajectory, the LSMM might serve as a bench-
mark for comparing and improving IMM performance.
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