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Abstract
In this paper, static, dynamic and natural frequency responses of composite annular sector plate with carbon nanotubes 
(CNTs) reinforcements resting on viscoelastic foundation are investigated. The carbon nanotubes are considered to have 
uniform or functionally graded pattern in the plate thickness. Kelvin-voight model is used to model the viscoelastic 
foundation. To model the problem, Hamilton principle based on first shear deformation plate theory and finite element 
method are applied. The mechanical properties of annular sector plate composed of CNTs and polymer matrix are evalu-
ated by using the rule of mixtures. The numerical results are obtained for investigating the effect of various factors such 
as distribution and volume fraction of CNTs, boundary conditions, stiffness and damping coefficients of viscoelastic 
foundation and sector angles on natural frequency, static and dynamic transient responses of the plate.

Keywords  FGCNT · Annular sector plate · FEM · FSDT · Natural frequency · Transient and static responses

1  Introduction

The specific mechanical properties of carbon nanotubes 
(CNTs) lead to utilize it instead of common reinforcements 
in composite structures. Because of great mechanical 
properties of the functionally graded carbon nanotube 
reinforced composite (FG-CNTRC) structures, many stud-
ies are conducted to investigate the responses of these 
structures, which some of them are reviewed here. Singh 
and Bhar [1] studied vibration characteristics of CNTRC 
plates by using the higher-order shear deformation theory 
(HSDT). Shen [2] investigated nonlinear static bending of 
FGCNT plate with simply supported boundary conditions 
under different transverse loads in thermal surroundings. 
Tornabene et al. [3] studied the linear static response of 
nanocomposite plates and shells reinforced by agglomer-
ated CNTs based on several HSDTs. Zhu et al. [4] presented 

a numerical procedure based on finite element method 
for the natural frequency and static bending analyses of 
FGCNT plates for various boundary conditions by applying 
the first order shear deformation plate theory (FSDT). Lei 
et al. [5] studied the natural frequency and static bend-
ing responses of rectangular plates by applying element-
free Ritz method and plate theories. Nonlinear vibration 
of CNT-RC plates based on a HSDT theory in thermal sur-
roundings was studied by Wang and Shen [6]. They used 
perturbation technique to solve the obtained governing 
equations. Ansari et al. [7] performed natural frequency 
analysis of FG-CNTRC quadrilateral plates in thermal sur-
roundings by using elasticity theory. The vibration char-
acteristics of composite plates with FGCNT layers with 
arbitrary quadrilateral shape by using the FSDT and the 
differential quadrature method (DQM) were studied by 
Malekzadeh and Zarei [8]. Malekzadeh and Heydarpour 
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[9] presented the natural frequency and static bending 
responses of simply supported composite plates with 
FGCNTRC layers by applying the Navier-layer wise and 
DQ methods. Natarajan et al. [10] used HSDT and normal 
deformable plate theory for static and natural frequency 
analysis of FGCNT plate and sandwich plates containing 
face sheets reinforced with CNTs. Alibeigloo and Emte-
hani [11] studied the natural frequency and static bend-
ing behavior of FGCNT rectangular plates under transverse 
uniform pressure for various boundary conditions by using 
DQM. Based on von-Karman assumptions and HSDT plate 
theory, nonlinear dynamic bending behavior of FGCNT 
plate supported on elastic medium in thermal surround-
ings were investigated by Wang and Shen [12]. Alibeigloo 
[13] by using an analytical solution based on theory of 
elasticity studied static bending response of FGCNT plate 
with piezoelectric layers. Phung-Van et al. [14] by using 
HSDT and isogeometric analysis methods studied static 
and dynamic bending response of the FGCNT plates with 
various essential boundary conditions.

Literature review shows the existence of a large num-
ber of researches on the response of FGCNTRC beams and 
rectangular plates. However, circular, sector, annular and 
annular sector plates are used in different engineering 
structures to sustain different static and dynamic loads. 
Hence, it is necessary to investigate response of these 
FGCNT structures under static and dynamic loads to sat-
isfy the design requirements. In the literature, analyses 
correspond to FGCNT circular, annular and annular sec-
tor plates are limited in number. For example, Keleshteri 
et al. [15] and Mohammadzadeh-Keleshteri et al. [16] by 
using FSDT plate theory, von Karman starin-displacement 
assumptions, Hamilton principle and the generalized DQM 
studied the nonlinear vibration response of FGCNT annular 
sector plates with piezoelectric layers. Zhong et al. [17] 
based on FSDT and by using weak form approach and Ritz-
variational energy method investigated vibration analysis 
of FGCNT annular and sector plates.

The literature review illustrates that a detailed study 
including; static, dynamic and free vibration analyses of 
FGCNT annular sector plate have not been investigate so 

far. Therefore, in this paper, static, dynamic and natural 
frequency behavior of composite FGCNT annular sector 
plates resting on viscoelastic foundation is investigated. 
In Sect. 2, geometry of plate resting on Kelvin-voight vis-
coelastic foundation and material properties of CNTRC are 
presented. The CNTs are considered to have uniform or 
functionally graded distributions in the plate thickness. 
The mechanical properties of composite annular sector 
plate composed of CNTs and a polymer matrix are evalu-
ated by using the rule of mixtures. Then, the governing 
equations based on FSDT are derived and, finite element 
method is used to solve the governing equation of FGCNT 
plate. A 4-node two-dimensional element with 20 degree 
of freedom is applied to mesh the domain. In Sect. 3, first, 
static response of FGCNT annular sector plate have been 
verified by using data of a FGCNT square plate, and then, 
the effects of different factors such as distribution and vol-
ume fraction of CNTs, different boundary conditions, stiff-
ness and damping coefficients of viscoelastic foundation 
and sector angles on natural frequency, static and tran-
sient dynamic responses of the plate have been studied.

2 � Theoretical formulations

2.1 � Description of the Geometry

An FGCNT annular sector plate resting on viscoelastic 
foundation with thickness h, angle of sector θ0, inner and 
outer radii R0 and R1 is considered (Fig. 1). The cylindrical 
coordinates r, θ and z at the mid-plane of the plate are 
used.

2.2 � Material properties of CNTRC​

In this study, the idea of FGMs is implemented to the nano-
composite structures reinforced by CNTs with low CNTs 
volume fractions. The carbon nanotubes are considered 
to have uniform or FG distributions in the plate thickness. 
UD-CNTRC denotes the uniform distribution of CNTs and 
FGX, FGO and FGV-CNTRC show the FG patterns of CNTs 

Fig. 1   Description of geometry and coordinate system of FGCNTRC annular sector plate
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through the plate thickness (Fig. 2). The mechanical prop-
erties of CNTs are considered to be size-dependent and are 
estimated from molecular dynamics (MD) simulations. The 
mechanical properties of FG CNTRCs are obtained by using 
a micromechanical model in which the CNTs efficiency 
parameter is obtained from the MD simulation with the 
results estimated from the rule of mixture [2]. The effec-
tive material properties may be estimated by Mori–Tanaka 
scheme or the rule of mixture. The Mori–Tanaka scheme 
is applicable to nanoparticles and the rule of mixture is 
simple and convenient to apply for predicting the overall 
material properties and responses of the structures. Thus, 
in this study, the effective mechanical properties of plate, 
mixtures of isotropic polymeric matrix and CNTs are evalu-
ated by using the rule of mixtures [18] as shown in Eq. (1). 
In this model, it is assumed that both CNTs and polymer 
are very well-bonded and equally strained [2].

where ECN
11
, ECN

22
, G

CN

12
, �CN

12
 are modulus of elasticity, shear 

modulus and Poisson’s ratio of carbon nanotubes, respec-
tively. Also, Em, Gm and �m are the same properties of iso-
tropic polymer matrix. �m and �CN are the mass density of 
matrix and CNTs, respectively. VCN is the volume fraction 
of CNTs, and Vm is the volume fraction of polymer matrix 
( VCN + Vm = 1 ). VCN for different distribution of CNTs are 
shown in Table 1. CNTs efficiency parameters �i , i = 1, 2, 3 
are given in Table 2 [19, 20].

2.3 � Governing equations

According to the FSDT plate theory, the displacement 
components of annular sector plate are considered as [21]:

(1)
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In Eq. (2), u, v, w, are displacement components along 
the r, θ and z directions, respectively, while u0, v0, w0 are 
the same at the mid-plane. Also, �r and �� are respec-
tively normal transverse rotations around r and θ. The cor-
responding strains related to the displacement field are 
defined as follows:

where

(2)

u(r, �, z) = u0(r, �) + z�r(r, �)

v(r, �, z) = v0(r, �) + z�r(r, �)
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Fig. 2   Different kinds of CNTs 
distribution

Table 1   Mathematical representation of CNT distributions

CNTs distribution VCN

UD CNT V
∗
CN

FG-X CNT 4V∗
CN

|z|
h

FG-VCNT
V
∗
CN

(
1 + 2

|z|
h

)

FG-OCNT 2V∗
CN

(
1 − 2

|z|
h

)

Table 2   CNTs efficiency parameters for different values of V∗
CN

Efficiency param-
eter

V
∗
CN

= 0.11 V
∗
CN

= 0.14 V
∗
CN

= 0.17

η1 0.149 0.150 0.149
η2 0.934 0.941 1.381
η3 0.934 0.941 1.381
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The matrix form of the strain field is as follows

where

where
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The relation between stress and strain in an orthotropic 
structure is as:

The resultants of moment and force are given by inte-
grating the stress components through the z direction:

where K = 5/6 is the shear correction factor.
By the integral from Eq. (7) along the thickness:
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where:

By substituting Eqs. (10), (11) in Hamilton principle, we 
have:

�W is virtual work of external forces, where the plate is sub-
jected to a transverse pressure Pz is as following equation:

2.4 � Finite element model of governing equations

Finite element method is used to solve the governing 
equation of FGCNT plate. A 4-node two-dimensional ele-
ment with 20 degree of freedom is applied to mesh the 
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solution domain (Fig. 3). Also, a local-coordinate system 
( �, � ) is used to express shape functions.

The relationship between the natural and the global 
coordinates is as [22, 23]:
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where �n, n = 1, 2, 3, 4 are the shape functions, and �  is 
the matrix of shape functions. u0i , v0i ,w0i ,�ri and ��i are 
nodal degrees of freedom and are approximated as

Substituting Eq. (17) in Eq. (12) can be rewritten as
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⎜
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⎭

= �q(e)

(17)

u0 =

4∑

i=1

�iU0i , v0 =

4∑

i=1

�iV0i ,w0 =

4∑

i=1

�iW0i

�r =

4∑

i=1

�i�ri ,�� =

4∑

i=1

�i��i

(18)∫
𝛺e

0

[((
d3𝛹

)T
ATd3𝛹 +

(
d4𝛹

)T
BTd3𝛹 +

(
d3𝛹

)T
BTd4𝛹 +

(
d4𝛹

)T
DTd4𝛹+

(
d2𝛹

)T
eTd2𝛹

)
d + 𝛹 T I𝛹 q̈ − 𝛹 T P

]
rdrd𝜃 = 0

By sorting the above equation, the following equation 
is obtained for the each annular sector element:

Finally, after sum of the stiffness, mass and force ele-
ment matrices, the finite element equations of the FGCNT 
plate is as

For the case that the plate is resting on the Kelvin-
voight linear viscoelastic foundation, the relationship 
between force per unit area and deflection can be calcu-
lated according to the following equation [24]:

where kw is the elastic coefficient of the foundation in 
terms of (N/m3), and Cd is the damping coefficient of the 
foundation in terms of (N s/m3). Therefore, in this case, by 
adding the effects of viscoelastic foundation on the plate, 
the governing Eq. (20) can be rearranged as:

where k4 is the stiffness matrix due to the elastic proper-
ties of the foundation, and C is the damping matrix due 
to damping property of foundation. The mass, stiffness, 
damping and force matrices are given in “Appendix”.

The considered essential boundary conditions of plate 
are as:

All edges clamped (CCCC):

(19)
(
k1 + k2 + k3

)(e)
q(e) +Meq̈(e) = Fe

(20)
(
k1 + k2 + k3

)
q +Mq̈ = F

(21)Pv = kww + cd
�w

�t

(22)
(
k1 + k2 + k3 + k4

)
q +Mq̈ + Cq̇ = F

(23)u0, v0, w0, �r , �� = 0 at(r, 0),
(
r, �0

)
, (a, �), (b, �)

Fig. 3   The schematic of the 
meshed annular sector plate 
and the natural coordinates
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Clamped radial edges (FCFC):

Clamped circumferential edges (CFCF):

Simply supported edges (SSSS):

Finally, Newmark integeration method [25] is applied 
to solve the Eq. (22) with respect to time. The natural fre-
quency analysis of the plate converts to the solution of the 
eigen value problem as

where � is the circular natural frequency and q is the vibra-
tion mode shapes.

3 � Results and discussions

In this part, results of static, natural frequency and dynamic 
transient responses of FGCNT annular sector plate rest-
ing on viscoelastic foundation have been presented. The 

(24)u0, v0, w0, �r , �� = 0 at (r, 0),
(
r, �0

)
= 0

(25)u0, v0, w0, �r , �� = 0 at (a, �), (b, �)

(26)
u0, w0 = 0 at (a, �), (b, �)

v0, w0 = 0 at (r, 0),
(
r, �0

)

(27)
((
k1 + k2 + k3 + k4

)
−M�2

)
q = 0

effect of various boundary conditions, stiffness and damp-
ing coefficients of viscoelastic foundation, CNT distribu-
tions, volume fraction of CNTs, slenderness ratio and sector 
angle have been studied. The mechanical and geometrical 

Table 3   Mechanical and geometrical properties of FGCNT annular sector plate

Geometrical properties (mm)

a(m) b(m) �0 h(m)

1 2 30°, 60°, 120°, 240° 0.1, 0.05

Mechanical properties of polymeric core (MPa)

E
CN

11
(TPa) E

CN

22
(TPa) G

CN

12
(TPa)

5.6466 7.08 1.9445

�CN
12 �CN

(
Kg

m3

)
Em(GPa)

0.175 1400 2.1
Gm(GPa) �m �m

(
Kg

m3

)

Em

2(1+�m)
0.34 1150

Table 4   Effect of VCN on the W̃ = w0∕h of FGCNT square plate with all edges clamped (CCCC) subjected to an uniform pressure P = 0.1 MPa 
(a = 200 m, b = 200.2 m, h = 0.02 m, α = 0.001 rad)

VCN UD (Present) UD [4] FGX (Present) FGX [4] FGV (Present) FGV [4] FGO (Present) FGO [4]

0.11 0.002226 0.002228 0.002106 0.002109 0.002353 0.002351 0.002509 0.002512
0.14 0.002083 0.002087 0.001974 0.001979 0.002176 0.002182 0.002307 .002313
0.17 0.0014108 0.001412 0.0013176 0.001318 0.001484 .001483 0.001593 0.001595

Table 5   Effects of VCN on W̃ = w0∕h , P = 1  MPa, CCCC, θ0 = 30°, 
60°,120°, 240° (a = 1 m, b = 2 m, h = 0.1 m)

VCN UD FGX FGV FGO

θ0 = 30°
 0.11 0.01912 0.018101 0.019946 0.021201
 0.14 0.017971 0.01698 0.018575 0.01971
 0.17 0.012107 0.011253 0.012561 0.013505

θ0 = 60°
 0.11 0.022728 0.021478 0.024307 0.026021
 0.14 0.021169 0.020111 0.022345 0.023683
 0.17 0.014413 0.013501 0.015361 0.016473

θ0 = 120°
 0.11 0.02257 0.021329 0.024067 0.025754
 0.14 0.021048 0.019975 0.022151 0.023489
 0.17 0.01431 0.013383 0.015204 0.016315

θ0 = 240°
 0.11 0.022808 0.021556 0.024299 0.02599
 0.14 0.021272 0.020188 0.022382 0.023733
 0.17 0.014461 0.013525 0.015347 0.016471
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properties of FGCNT annular sector plate are presented 
in Table 3.

3.1 � Static analysis

3.1.1 � verification

In this section, static response of FGCNT annular sector 
plate have been verified by using data of a FGCNT square 
plate [4]. Table 4 shows the effect of VCN and different dis-
tributions of nanotubes on the non-dimensional central 
deflection W̃ = w0∕h of FGCNT square plates with CCCC 
edges. Therefore, the sector angle is assumed as a small 
value θ0 = 0.001 rad, and inner and outer radiuses of plate 
are chosen as large values: b = 200 m, a = 200.2 m and 
h = 0.02 m. These geometric dimensions lead to nearly a 
square plate with length-to-thickness ratio of 10:1. Also, 
the material properties are considered as previous section. 

Comparison between results in Table 4 shows excellent 
agreement between them.

3.1.2 � Static analysis of FGCNT annular sector plate

In this part, static response of FGCNT annular sector plate 
without foundation under a transverse pressure P = 1 MPa 
is investigated. The effects of VCN on the non-dimensional 
central deflection W̃ = w0∕h are shown in Table 5. Also, the 
effects of CNTs distribution and sector angle have been 
investigated. Table  5 denotes that VCN has great influ-
ence on the deflection of plate. Increasing VCN from 0.11 
to 0.17 leads to more than 36% decrease in the deflec-
tion. This is because that by increasing VCN , stiffness of 
plate enhances. Also, results show that the maximum and 
minimum deflection belong to the FGO and FGX distribu-
tions, respectively. Therefore, it can be deduced that CNTs 
distribution close to upper and lower surface of plate 
are more appropriate than those distributions concen-
trated on near the mid-plane for enhancing the overall 
stiffness of plate. Also, results present that as the sector 
angle increases from 30° to 60°, central deflection of plate 
is also increases, and for 60° to 240°, it is almost identical. 
Table 6 shows the effect of different boundary conditions 
on the non-dimensional central deflection. In this case: 
θ0 = 120°, h = 0.05 m, VCN = 0.11. Results denote that the 
maximum and minimum non-dimensional central deflec-
tion is related to FCFC and CFCF boundary conditions, 
respectively. Also, comparisons between Tables 5 and 6 

Table 6   Effects of different boundary conditions on W̃ = w0∕h , 
P = 1 MPa, θ0 = 120° (a = 1 m, b = 2 m, h = 0.05 m), VCN = 0.11

UD FGX FGV FGO

CCCC​ 0.1328 0.114223 0.157748 0.184754
CFCF 0.13016 0.111324 0.155998 0.183737
FCFC 4.56E + 02 4.27E + 02 4.51E + 02 4.80E + 02
SCSC 0.352556 0.263195 0.378349 0.60904
SSSS 0.357795 0.267416 0.383524 0.616172

Table 7   Effects of VCN on 𝜔̃ = 𝜔(a2∕h)
√
𝜌m∕Em of FGCNT square plate with all edges clamped (CCCC) (a = 200 m, b = 200.2 m, h = 0.02 m, 

θ0 = 0.001 rad)

VCN Mode No. UD (Present) UD [4] FGX (Present) FGX [4] FGV (Present) FGV [4] FGO (Present) FGO [4]

0.11 1 17.597 17.625 18.058 18.083 17.181 17.211 16.675 16.707
2 22.898 23.041 23.461 23.606 22.678 22.818 22.117 22.253
3 33.02 33.529 33.760 34.338 32.932 33.070 32.232 32.378
4 33.601 33.729 34.344 34.464 32.988 33.552 32.304 32.857
5 36.877 37.011 37.404 37.400 36.390 36.528 35.668 35.809
6 37.267 37.317 37.654 38.084 37.397 37.437 37.410 37.447

0.14 1 18.108 18.127 18.577 18.642 17.773 17.791 17.291 17.311
2 23.438 23.572 24.107 24.369 23.285 23.413 22.659 22.782
3 33.683 34.252 34.649 35.224 33.718 34.101 32.867 33.411
4 34.537 34.650 35.303 35.410 33.983 34.275 33.317 33.441
5 37.805 37.921 38.136 38.121 37.422 37.538 36.672 36.788
6 37.931 37.972 38.673 39.095 38.129 38.159 38.143 38.169

0.17 1 21.973 22.011 22.711 22.804 21.506 21.544 20.795 20.833
2 28.618 28.801 29.685 30.023 28.443 28.613 27.498 27.651
3 41.293 42.015 42.845 43.287 41.254 41.431 40.121 40.501
4 41.965 42.132 43.129 43.572 41.425 42.119 40.315 40.781
5 46.076 46.250 47.016 47.009 45.624 45.796 44.533 44.699
6 46.627 46.694 47.424 47.969 47.007 47.055 47.032 47.071
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show that by decreasing the thickness of plate, deflection 
significantly is increased.

3.2 � Natural frequency analysis

3.2.1 � Verification

In this section, natural frequency of FGCNT annular sector 
plate has been validated by using data of FGCNT square 
plate [4]. Table 7 shows the effects of VCN and distributions 
of carbon nanotubes on the non-dimensional natural fre-
quency 𝜔̃ = 𝜔(a2∕h)

√
𝜌m∕Em of CNTRC square plates with 

CCCC edges. Geometric dimensions and the mechanical 
properties are considered same as the previous sections. 
Comparison between results in Table 7 shows excellent 
agreement between them.

3.2.2 � Natural frequency analysis of FGCNT annular sector 
plate

In this part, free vibration analysis of FGCNT annular sector 
plate without foundation is investigated. Table 8 shows 
the effects of VCN on the natural frequencies of CCCC plate. 
Also, the effects of CNTs distribution and sector angle have 
been investigated. Table 8 denotes that as VCN increases, 
natural frequencies are increased. It should be noted that 
by enhancing VCN, both of the stiffness and mass density 
of plate increases. However, the effect of CNTs on the stiff-
ness of the structure is more considerable than the mass 
density. Therefore, the natural frequencies of plate are 
increased. Also, Table 8 denotes that minimum and maxi-
mum fundamental frequency belongs to the FGO and FGX 
distributions. Furthermore, results show that as the sec-
tor angle of plate increases, the fundamental frequency 
decreases. Table 9 shows the effects of different boundary 
conditions on natural frequencies of FGCNT annular sector 
plates for VCN = 0.11, θ0 = 120° and h = 0.05 m. Results show 
that the minimum natural frequencies are related to FCFC 
and fundamental frequencies of CCCC and CFCF boundary 
conditions and also fundamental frequencies of SSSS and 
SCSC boundary conditions are almost identical.

Figures 4, 5, 6 and 7 show the first six mode shapes of 
FGCNT annular sector plate for θ0 = 30°, 60°, 120° and 240°, 
respectively (FGV, VCN= 0.11, a = 1 m, b = 2 m, h = 0.1 m, 
CCCC). Figures 8, 9, 10 show the first six mode shapes 
of FGCNT annular sector plate for FCFC, SSSS and SCSC 
boundary conditions, respectively. (FGV, VCN= 0.11, a = 1 m, 
b = 2 m, h = 0.05 m, θ0 = 120°)

3.3 � Transient vibration analysis

3.3.1 � Transient analysis of plate without foundation

Transient vibration analysis of FGCNT annular sector plate 
without foundation is conducted, and the effect of the dif-
ferent distribution of CNTs and VCN on time histories of 
centerpoint of plate are investigated (a = 1 m, b = 2 m, 
h = 0.1 m, θ0 = 120°, CCCC). The plate is under an impulsive 
loading (Eq. 28), and the plate is unloaded in t = 0.005 (s).

Figure 11 shows the effects of VCN on the time history of 
centerpoint of plate for UD distribution. This figure show 
that by increasing VCN, the amplitude of transient vibration 
decreases and its frequency increases. Figure 12 shows the 
effect of different distributions of CNTs on time history of 
centerPoint of plate for VCN= 0.11. It can be seen that the 
minimum and maximum amplitude of vibration is related 

(28)Pz =

{
400t

(
MPa

s

)
t ≤ 0.005

0 t ≥ 0.005

}

Table 9   Effects of different boundary conditions on natural fre-
quency (HZ) of FGCNT annular sector plates, VCN = 0.11, α = 120° 
(a = 1 m, b = 2 m, h = 0.05 m)

UD FGX FGV FGO

CCCC​ 292.4447 314.5595 268.6749 248.7521
293.5046 315.4782 269.9996 250.2419
296.2584 318.0104 273.288 253.7785
301.9806 323.4399 279.8957 260.7158
312.1752 333.294 291.3862 272.5936
328.3256 349.1003 309.2287 290.829

CFCF 292.1821 314.3537 268.3111 248.3308
292.2684 314.4072 268.4323 248.4997
292.7068 314.7207 269.0638 249.2696
293.9415 315.7441 270.6855 251.113
296.8584 318.3732 274.2532 254.9804
302.7264 323.8925 281.1076 262.2048

FCFC 5.727783 5.920648 5.75792 5.585857
15.68032 16.21052 15.75168 15.27689
22.35516 23.09105 22.44172 21.7807
30.67117 31.71775 30.78721 29.84659
46.8389 48.40097 46.99846 45.59145
50.31903 52.05301 50.45933 48.89582

SCSC 178.4713 204.7207 172.5659 135.9825
180.8721 206.4446 175.0873 139.2347
186.312 208.5048 180.775 146.3023
196.5102 213.3126 191.3703 158.9719
203.8926 222.5562 204.7382 178.6845
213.1469 237.9885 208.5288 204.7657

SSSS 178.2625 204.7202 172.3487 135.7096
179.9224 206.2592 174.0948 138.0196
183.8586 207.6492 178.2273 143.2526
191.6504 211.0679 186.3354 153.1441
203.8921 218.0387 200.2373 169.3872
205.0665 230.3476 204.682 193.0671
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Fig. 4   The first six mode shapes of FGCNT annular sector plate (FGV, V
CN

= 0.11 , a = 1 m, b = 2 m, h = 0.1 m, θ0 = 30°, CCCC)
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Fig. 5   The first six mode shapes of FGCNT annular sector plate (FGV, VCN= 0.11, a = 1 m, b = 2 m, h = 0.1 m, θ0 = 60°, CCCC)
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Fig. 6   The first six mode shapes of FGCNT annular sector plate (FGV, VCN= 0.11, a = 1 m, b = 2 m, h = 0.1 m, θ0 = 120°, CCCC)
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Fig. 7   The first six mode shapes of FGCNT annular sector plate (FGV, VCN= 0.11, a = 1 m, b = 2 m, h = 0.1 m, θ0 = 240°, CCCC)
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Fig. 8   The first six mode shapes of FGCNT annular sector plate (FGV, VCN= 0.11, a = 1 m, b = 2 m, h = 0.05 m, θ0 = 120°, FCFC)
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Fig. 9   The first six mode shapes of FGCNT annular sector plate (FGV, VCN= 0.11, a = 1 m, b = 2 m, h = 0.05 m, θ0 = 120°, SCSC)
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Fig. 10   The first six mode shapes of FGCNT annular sector plate (FGV, VCN= 0.11, a = 1 m, b = 2 m, h = 0.05 m, θ0 = 120°, SSSS)
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to FGX and FGO distributions. Figure 13 shows the tran-
sient vibration behavior of FGCNT annular sector plate.

3.3.2 � Transient analysis of plate resting on viscoelastic 
foundation

In this part, the effect of viscoelastic foundation on the 
transient behavior of plate is considered (a = 1 m, b = 2 m, 
h = 0.1 m, �0 = 120◦ , CCCC, VCN= 0.11, UD). The loading 
function is according to Eq. (28). Figure 14 show the effect 
of elastic coefficient of foundation on time history of cen-
terpoint transverse displacement of plate. In this result, 
damping coefficient of the foundation is considered to 

be zero (cd = 0) . Result illustrates that by increasing the 
elastic coefficient of the foundation, the stiffness of plate 
increases, and consequently, amplitude of transverse dis-
placement decreases significantly, and also, frequency of 
transient vibration increases. Figure 15 shows the effect 
of damping coefficient of foundation on time history 
of centerpoint transverse displacement of plate. In this 
result, elastic coefficient of the foundation is considered 
to be zero (kw = 0) . As it can be seen from this figure, by 
increasing damping of the foundation, amplitude of vibra-
tion diminishes and vibration of plate can be seen in three 
situations such as under-damped, critically-damped and 
over-damped.

4 � Conclusions

A full comprehensive study about static, dynamic and 
natural frequency analyses of FGCNT annular sector 
plate has been investigated. A general solution based on 
FSDT in polar coordinate is presented that can be used 
for analyses of circular, annular and annular sector plates. 
Linear strain–displacement relationship is used to model 
the problem, and it is assumed that the plate is resting 
on simple linear Kelvin-voight viscoelastic foundation. 
Hamilton principle and finite element method have been 
used to derive the governing motion equations. A 4-node 
two-dimensional element with 20 degree of freedom is 
applied to mesh the domain. The influence of volume frac-
tion of carbon and its distribution, different boundary con-
ditions, damping and stiffness of viscoelastic foundation 
and sector angles on displacements and natural frequency 
of plate have been studied. Results show that volume frac-
tion of CNTs has great effect on the deflection of plate, and 
increasing the VCN from 0.11 to 0.17 leads to more than 
36% decrease in the deflection. Also, the minimum and 
maximum displacements correspond to the FGX and FGO 
distributions, respectively. It means that CNTs distributions 
close to upper and lower surface of plate are more appro-
priate than those distribution concentrated on near the 
mid-plane for enhancing the overall stiffness of plate. Also, 
results denote that by increasing the VCN , natural frequen-
cies increases, and minimum and maximum fundamental 
frequency corresponds to the FGO and FGX distributions. 
Furthermore, by increasing damping of the foundation, 
amplitude of vibration decreases and vibration of plate 
can be seen in three situations such as under-damped, 
critically-damped and over-damped. For the future stud-
ies, applying higher order theories for thicker plates, large 
deflection analysis, and also investigating the effects of 
nonlinear foundations can be considered.
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Appendix

(29)Me = ∫
�e

0

� t I� rdrd�

(30)ke
1
= ∫

�e
0

[
BT
3
AT + BT

4
BT
]
B3rdrd�

I is a mass inertia matrix and is obtained from the fol-
lowing equation:

where Ii, i = 0, 1, 2 are

References

	 1.	 Singh AK, Bhar A (2019) Isogeometric FE analysis of CNT-rein-
forced composite plates: free vibration. SN Appl Sci 1(9):1010

	 2.	 Shen H (2009) Nonlinear bending of functionally graded car-
bon nanotube- reinforced composite plates in thermal environ-
ments. Compos Struct 91(1):9–19

	 3.	 Tornabene F, Fantuzzi N, Bacciocchi M (2017) Linear static 
response of nanocomposite plates and shells reinforced by 
agglomerated carbon nanotubes. Compos B Eng 115:449–476

	 4.	 Zhu P, Lei Z, Liew KM (2012) Static and free vibration analyses of 
carbon nanotube-reinforced composite plates using finite ele-
ment method with first order shear deformation plate theory. 
Compos Struct 94:1450–1460

	 5.	 Lei ZX, Zhang LW, Liew KM (2015) Free vibration analysis of lami-
nated FG-CNT reinforced composite rectangular plates using 
the kp-Ritz method. Compos Struct 127:245–259

(31)ke
2
= ∫

�e
0

[
BT
3
BT + BT

4
DT

]
B4rdrd�

(32)ke
3
= ∫

�e
0

[
BT
2
eTB2

]
rdrd�

(33)ke
4
= ∫

�e
0

[
� T kw�

]
rdrd�

(34)Fe = ∫
�e

0

� T Prdrd�

(35)Ce = ∫
�e

0

� T cd� rdrd�

(36)I =

⎡
⎢
⎢
⎢
⎢
⎢⎣

I0 0 0 I1 0

0 I0 0 0 I1
0 0 I0 0 0

I1 0 0 I2 0

0 I1 0 0 I2

⎤
⎥
⎥
⎥
⎥
⎥⎦

(37)

⎧
⎪
⎨
⎪
⎩

I0
I1
I2

⎫
⎪
⎬
⎪
⎭

=

h

2

∫
−

h

2

⎧
⎪
⎨
⎪
⎩

1

z

z2

⎫
⎪
⎬
⎪
⎭

�dz

0 0.005 0.01 0.015
t 

w
 (m

)

(s)

-6

-4

-2

0

2

4

6 10-3

kw=0

kw=1e9
kw=5e9

Fig. 14   The effect of different stiffness coefficient of viscoelastic 
foundation on time history of centerpoint of plate ( V

CN
= 0.11 , UD, 

a = 1 m, b = 2 m, h = 0.1 m, θ0 = 120°, CCCC)

Fig. 15   The effect of different damping coefficient of viscoelastic 
foundation on time history of centerpoint of plate ( V

CN
= 0.11 , UD, 

a = 1 m, b = 2 m, h = 0.1 m, θ0 = 120°, CCCC)



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1652 | https://doi.org/10.1007/s42452-020-03421-7	 Research Article

	 6.	 Wang ZX, Shen HS (2011) Nonlinear vibration of nanotube-
reinforced composite plates in thermal environments. Comput 
Mater Sci 50(8):2319–2330

	 7.	 Ansari R, Shahabodini A, Shojaei MF (2016) Vibrational analysis 
of carbon nanotube-reinforced composite quadrilateral plates 
subjected to thermal environments using a weak formulation 
of elasticity. Compos Struct 139:167–187

	 8.	 Malekzadeh P, Zarei A (2014) Free vibration of quadrilateral lami-
nated plates with carbon nanotube reinforced composite layers. 
Thin-Walled Struct 82:221–232

	 9.	 Malekzadeh P, Heydarpour Y (2015) Mixed Navier-layerwise 
differential quadrature three-dimensional static and free vibra-
tion analysis of functionally graded carbon nanotube reinforced 
composite laminated plates. Meccanica 50:143–167

	10.	 Natarajan S, Haboussi M, Manickam G (2014) Application of 
higherorder structural theory to bending and free vibration 
analysis of sandwich plates with CNT reinforced composite 
facesheets. Compos Struct 113:197–207

	11.	 Alibeigloo A, Emtehani A (2015) Static and free vibration analy-
ses of carbon nanotube-reinforced composite plate using dif-
ferential quadrature method. Meccanica 50:61–76

	12.	 Wang Z-X, Shen H-S (2012) Nonlinear dynamic response of 
nanotube-reinforced composite plates resting on elastic foun-
dations in thermal environments. Nonlinear Dyn 70:735–754

	13.	 Alibeigloo A (2013) Static analysis of functionally graded car-
bon nanotube-reinforced composite plate embedded in pie-
zoelectric layers by using theory of elasticity. Compos Struct 
95:612–622

	14.	 Phung-Van P, Abdel-Wahab M, Liew K, Bordas S, Nguyen-Xuan 
H (2015) Isogeometric analysis of functionally graded carbon 
nanotube-reinforced composite plates using higher-order shear 
deformation theory. Compos Struct 123:137–149

	15.	 Keleshteri MM, Asadi H, Wang Q (2017) Large amplitude vibra-
tion of FG-CNT reinforced composite annular plates with inte-
grated piezoelectric layers on elastic foundation. Thin-Walled 
Struct 120:203–214

	16.	 Mohammadzadeh-Keleshteri M, Asadi H, Aghdam MM (2017) 
Geometrical nonlinear free vibration responses of FG-CNT rein-
forced composite annular sector plates integrated with piezo-
electric layers. Compos Struct 171:100–112

	17.	 Zhong R, Wang Q, Tang J, Shuai C, Qin B (2018) Vibration analysis 
of functionally graded carbon nanotube reinforced composites 
(FG-CNTRC) circular, annular and sector plates. Compos Struct 
194:49–67

	18.	 Malekzadeh P, Dehbozorgi M (2016) Low velocity impact analy-
sis of functionally graded carbon nanotubes reinforced com-
posite skew plates. J Compstruct 01:045

	19.	 Wang ZX, Xu J, Qiao P (2014) Nonlinear low-velocity impact anal-
ysis of temperature-dependent nanotube-reinforced composite 
plates. Compos Struct 108:423–434

	20.	 Zhang LW, Cui W, Liew KM (2015) Vibration analysis of function-
ally graded carbn nanotube reinforced composite thick plates 
with elastically restrained edges. Int J Mech Sci 103:9–21

	21.	 Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates 
and shells, 2nd edn. McGraw-Hill, New York

	22.	 Asemi K, Salehi M (2018) Shear post buckling analysis of FGM 
annular sector plates based on three dimensional elasticity for 
different boundary conditions. Comput Struct 207:132–147

	23.	 Babaei M, Hajmohammad MH, Asemi K (2020) Natural frequency 
and dynamic analyses of functionally graded saturated porous 
annular sector plate and cylindrical panel based on 3D elasticity. 
Aerospace Sci Technol 96:105524

	24.	 Babaei M, Asemi K, Safarpour P (2019) Natural frequency and 
dynamic analyses of functionally graded saturated porous beam 
resting on viscoelastic foundation based on higher order beam 
theory. J Solid Mech 11(3):615–634

	25.	 Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element 
method: its basis and fundamentals. Elsevier, New York

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Static, dynamic and natural frequency analyses of functionally graded carbon nanotube annular sector plates resting on viscoelastic foundation
	Abstract
	1 Introduction
	2 Theoretical formulations
	2.1 Description of the Geometry
	2.2 Material properties of CNTRC​
	2.3 Governing equations
	2.4 Finite element model of governing equations

	3 Results and discussions
	3.1 Static analysis
	3.1.1 verification
	3.1.2 Static analysis of FGCNT annular sector plate

	3.2 Natural frequency analysis
	3.2.1 Verification
	3.2.2 Natural frequency analysis of FGCNT annular sector plate

	3.3 Transient vibration analysis
	3.3.1 Transient analysis of plate without foundation
	3.3.2 Transient analysis of plate resting on viscoelastic foundation


	4 Conclusions
	References




