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Abstract
Nanostructured binary skutterudites represented by MX3 are potential thermoelectric materials for high efficiency ther-
moelectric. In this work, we synthesized for the first-time high purity nanofibers of CoSb3 and rare earth filled LaCo4Sb12 
with external diameters < 100 nm via electrospinning which provides a simple, easy to implement and versatile technique 
to develop novel nanostructured-based thermoelectric materials.
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1  Introduction

Binary skutterudite type compounds, represented by MX3 
(M = Co, Rh or Ir and X = P, As or Sb), are bulk semiconduc-
tors with cage-type crystal structures that possess high 
carrier mobilities, which is important for the develop-
ment of new, high efficiency, thermoelectric devices [1]. 
Possible applications of such devices include the harvest-
ing of the waste heat generated in industrial processes, 
automotive operations, and alternative refrigeration that 
could avoid the use of environmentally hazardous gases 
[2–5]. Among skutterudite structure compounds [6], CoSb3 
has attracted considerable attention in recent years due to 
its high Seebeck coefficient and electrical conductivity [1, 
3, 7]. However, for practical applications, its high thermal 
conductivity (10–25 Wm−1 K−1 at room temperature) [8, 
9] needs to be reduced to further increase the efficiency. 
In fact, the performance of thermoelectric materials can 
be defined by the figure of merit zT = S2σT/κ, where S is the 
Seebeck coefficient, σ and κ are the electrical and thermal 
conductivities, T is the absolute temperature. Consider-
ing that zT value directly reflects the energy conversion 
efficiency, a lot of studies have focused on reducing the 

thermal conductivity of skutterudite in order to zT maxi-
mization for increase their efficiency [10].

Skutterudites are commonly prepared and shaped 
using methods like solid-state reaction [11], spark plasma 
sintering [12, 13], high pressure and high-temperature 
(HPHT) [14–17], high-temperature electrochemical synthe-
sis [18] co-precipitation [19], sol–gel [20] and solvothermal 
methods [21–28]. However, the application of electrospin-
ning technique to the preparation of unfilled or filled skut-
terudites is less explored.

Electrospinning is able to continuously produce 
nanofibers with diameters ranging from 50 to 500 nm, 
having the advantages of an easy implementation and 
versatility in the manufacture of polymeric materials, 
composites, and ceramics [29–31]. Electrospinning is fast 
developing to two directions for extending its capability 
of creating novel nanofibers. One is the developments 
of coaxial [32], side-by-side [33], tri-axial [34], and other 
multiple-fluid processes [35] for producing core–shell [36], 
Janus [37], tri-layer core–shell [38] and other multiple-
chamber nanofibers [39]. The other is the combination 
with other traditional techniques for more possibilities in 
fabricating novel functional nanomaterials [40].
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The nanoscale of the fibers can be adjusted by varying 
the properties of the solution and tuning of the processing 
parameters [29, 30]. Nanofibers, due to their reduced size, 
enjoy a range of attractive properties compared to known 
materials, such as high ratio area/volume and flexibility of 
structures [40]. Moreover, the preparation of nanostruc-
tured materials [41] and the elemental doping and/or 
voids filling of the CoSb3 matrix, namely with lanthanides 
or alkaline earth metals [15, 42–47], currently approaches 
to improve the thermoelectric properties of skutterudites 
and to reduce their thermal conductivity, while keeping 
their excellent electrical properties.

The decrease of dimensionality can produce materi-
als that have high thermoelectric figures of merit [48]. 
In nanostructured materials, this can be due to the dif-
ferences between the mean free paths of phonons and 
electrons, which can lead to the scattering of phonons at 
the grain boundaries while keeping the large electronic 
conductivity [24, 49–51]. On the other hand, theoreti-
cal calculations indicated that high figures of merit can 
also occur because the nanodimensions can increase the 
change of density of states near Fermi energy level and, 
consequently, increase the Seebeck coefficient. It can also 
contribute to a local increase of effective mass of electrons 
and consequently reinforce the Seebeck coefficient [52]. 
Indeed, many investigations demonstrated that the ther-
moelectric properties can be improved by nanostructuring 
the materials, such as Bi2Te3/Sb2Te3 superlattices thin-film 
thermoelectric materials [53], PbSeTe-based quantum dot 
superlattice structures [54] incorporating nanoscale con-
stituents within bulk materials to form nanocomposites 
[55, 56] and nanosized CoSb3 [41].

Doping and/or voids filling the CoSb3 lead to a remark-
able reduction of the lattice thermal conductivity, in 
particular if the voids are filled with large atoms like rare 
earths [13, 23, 42–45, 49, 51]. The lanthanide or alkaline 
earth metals presented a size consistent with the host 
void and the difference of electronegativity (χSb – χLn) > 0.8. 
Generally, the filler forms weak bonds with Sb, and their 
delocalization is responsible for the decrease of thermal 
conductivity. [46, 57–59]. So far, the effects of partially 
filled skutterudites with lanthanum, cerium, and ytterbium 
have been reported to possess lower thermal conductivi-
ties and better electrical transport properties than CoSb3 
[23, 46].

The purpose of the present work was to use nano-
structure engineering in the preparation of CoSb3-based 
skutterudites through the employment of the electrospin-
ning technique. We fabricated for the first time CoSb3 and 
lanthanum filled La0.5Co4Sb12 nanofibers by applying the 
electrospinning followed by specific heat treatments. The 
structure and microstructure of the materials obtained 
were characterized by powder X-ray diffraction (XRD) and 

scanning electron microscopy with energy dispersive X-ray 
detection (SEM/EDS). BET measurements and tempera-
ture-programmed reduction under oxygen (O2-TPO) and 
hydrogen (H2-TPR) were used to characterize this prepara-
tion route.

2 � Experimental

2.1 � Synthesis

Nanofibers of CoSb3-based materials were obtained by a 
three-step methodology: (i) electrospinning of the appro-
priate solution containing a mixture of Co(NO3)2∙6H2O 
(Sigma, purity 99.9%) and Sb(CH3COO)3 (Aldrich, purity 
99.9%), followed by (ii) calcination and (iii) reduction steps. 
All the reagents were used without further purification. 
Solutions were prepared by mixing the starting metal 
salts (molar ratio Co:Sb, 1:3 or 1:5) with 42 wt.% PVP40 
(AlfaAsaer, average mol wt. 40,000) in a solution of abso-
lute ethanol (Fischer-Scientific, purity > 99.9%). To filled 
CoSb3 with lanthanum, a third solution was prepared using 
La(NO3)3.6H2O (molar ratio La:Co:Sb, 0.125:1:5). The solu-
tions were stirred at 50 °C for 15 min to dissolve the metal 
salts, cooled down to room temperature and collected in 
a syringe with a ~ 0.9 mm interior diameter stainless steel 
flat tip needle. To start the electrospinning experiments, 
the solution was pumped continuously using a syringe 
pump (KW scientific) at a rate of 1 mL h−1, with an electric 
field of 17 kV applied between the syringe tip needle and 
a grounded aluminum plate placed 10 cm from the needle 
tip and used as a collector. The electrospun materials were 
subsequently calcined at 600 °C for 2 h in air atmosphere 
and then reduced under pure hydrogen flow (2 L h−1) at 
500 °C for 2 h, both at 1 °C min−1 heating rate (Scheme 1).

2.2 � Characterization

Nitrogen gas adsorption/desorption measurements 
(BET) were carried out using a Micrometrics ChemiSorb 
2720–ChemiSoft TPx system (30% N2 in Helium, Air Liq-
uid 99.9995%). Powder X-ray diffraction patterns were 
obtained in a Bruker D8 advance diffractometer (Cu 
Kα-radiation) with Bragg–Brentano geometry. The oper-
ational settings for all scans were voltage = 40 kV; cur-
rent = 30 mA; 20º–80º range of 2θ using a step size of 0.03º 
at a scan speed of 0.06º s−1. The experimental data were 
compared with the theoretical powder patterns simulated 
with the help of the Powder-Cell program. Crystalline 
sizes were calculated using the Scherrer’s equation. The 
surface morphology and the particle size of the samples 
were obtained using a FE-SEM JEOL JSM-6500F, operat-
ing at 15 keV and 80 μA. The chemical composition was 
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determined by a coupled EDS system. EDS composition 
(wt.%) was obtained from the analysis of different particles 
of each sample.

Thermogravimetric analysis of the electrospun mate-
rial was performed on the Micromeritics ChemSorb 2720 
instrument either under oxidative (O2-TPO, temperature-
programmed oxidation) or reductive (H2-TPR, tempera-
ture-programmed reduction) conditions. Under oxida-
tive conditions, the samples were placed in a specific 
Micromeritics quartz type U reactor and oxidized under 
a 10% O2/helium mixture from 20 to 1000 °C, at 10 °C 
min−1 and using a total flow of 20 mL min−1. The reduc-
ibility studies (H2-TPR) were also performed on the same 
instrument using a 10% H2/argon mixture and the same 
experimental conditions. Quantitative H2-uptakes were 
evaluated by integration of the experimental H2-TPR pro-
files. The detector calibration response was obtained using 
different highly pure NiO (99.99995%, Aldrich) H2-TPR pro-
file areas as reference, covering our samples range of H2 
consumption.

3 � Results and discussion

The analysis by SEM confirms that the collected electro-
spun fibers are composed of Co, Sb, C, and O, with diam-
eters covering a range from 400 to 700 nm and slightly 
higher in the case of the lanthanum filled nanofibers 
(CoSb: 500 ± 100 nm; La-CoSb: 600 ± 100 nm) (Fig. 1a, b). 
After calcination, the nanofiber morphology is preserved 
(Fig. 1c, d) with a significant decrease of the fiber diameter 
(CoSb: 110 ± 20 nm; La-CoSb: 130 ± 20 nm), which is related 
to the decomposition of the polymer (PVP) and formation 
of Co-Sb (La) oxides nanofibers. After reduction, such 
decrease is lower (CoSb: 80 ± 10 nm; La-CoSb: 90 ± 10 nm), 
attributed to oxygen losses and to the formation of CoSb3 
and La-CoSb3 nanofibers that were successfully obtained 
using this two-step treatment (Fig. 1e, f ).

The powder XRD characterization of the collected elec-
trospun material confirms that they have an amorphous 
nature (data not presented) due the high carbon content. 
Figure 2 shows the XRD patterns obtained for the calcined 
materials. These oxides present a low crystallinity but, it 
was possible to identify the diffraction patterns of CoSb2O6 

(tetragonal phase) and α-Sb2O4 (orthorhombic phase), as 
reported on the standard JCPDS powder diffraction files 
[60]. It is known that the antimony acetate decomposes 
at 128 °C to form Sb2O3 and then this phase is oxidized to 
α-Sb2O4. In our case, probably all Sb2O3 was converted into 
α-Sb2O4 at 500 °C [61]. Other cobalt oxides phases (e.g., 
Co3O4 or CoO) were not observed.

To obtain pure CoSb3, the calcined samples were 
treated at 600 °C under pure hydrogen atmosphere. It is 
important to notice that a direct treatment of the electro-
spun material under hydrogen implies a partial decompo-
sition of the polymer (PVP) and end products with signifi-
cant carbon impurities. Figure 3 shows the powder X-ray 
patterns obtained after reduction. Clearly, the use of an 
excess of antimony is indispensable in order to obtain pure 
CoSb3 and the filled CoSb3 with lanthanum.

Using a stoichiometric ratio of Sb/Co = 3 gives rise to the 
formation of the desired cubic phase of CoSb3 accompa-
nied with large quantities of impurities of the monoclinic 
phase of CoSb2. For the ratio Sb/Co = 5, the pure body cen-
tered-cubic phase of CoSb3 is the main product, with a unit 
cell parameter of 9.055 Å. This value is slightly higher than 
the values reported for the bulk material (9.034 Å) [3, 60]. 
In both cases, no oxides were observed but in filled skut-
terudite, metallic Sb was detected. Taking into account the 
binary Co-Sb phase diagram, on the stoichiometric ratio 
(75% Sb; 25% Co) the formation of pure CoSb3 should 
occur with a stoichiometric ratio of Sb/Co = 3. However, the 
moderate solubility of antimony acetate in ethanol and 
the possibility of its volatilization referred in the literature 
[62–64] can explain the necessity of an excess of Sb.

The measured crystallite sizes (Scherrer’s equation) 
were around 35 nm and from a quantitative point of view, 
EDS analysis confirm that the atomic ratios between met-
als (Sb/Co) are very close to the expected value of 3, but 
only when we use an excess of Sb. Tables 1 and 2 com-
pile such XRD and EDS relevant data along with the com-
pounds surface areas and crystallite sizes.

The formation of CoSb3 and La-CoSb3 nanofibers implies 
a two-step treatment: first, the oxidation of the electrospun 
material, and second, a selective treatment under hydrogen, 
which provides a simple, easy to implement and versatile 
technique to prepare novel nanostructured-based thermo-
electric materials. Consequently, it was important to study 

Preparation of
precursor solutions

Electrospun 
nanofibers

Calcination step at 600 ºC, 
formation of cobalt-antimony oxides; 

elimination of PVP

Reduction step at 500 ºC,
H2 Flow, formation of skutterudite

compound

Electrospinning technique Heating treatments

Scheme 1   Methodology steps to obtain pure skutterudite compounds
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Fig. 1   SEM images of CoSb/PVP (Sb/Co = 5) and La-CoSb/PVP electrospun materials (Sb/Co = 5; La/Co = 0.125): a, b electrospun materials as 
collected; c, d after calcination and e, f after reduction
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such steps, using O2-TPO under a 10% of O2 in Helium, to 
study the formation of the CoSb and La-CoSb oxide phases, 
and H2-TPR under a 10% mixture of H2 in Argon, to study the 
formation of the CoSb3 and La-CoSb3 skutterudites.

Figure 4 shows the O2-TPO obtained for the electrospun 
materials. A first stage is present in all cases the loss until 
200 °C of volatile water and/or ethanol that exist in the pre-
cursor solution. A second stage (300 to 425 °C) only occurs 
for CoSb/PVP and La-CoSb/PVP nanofibers and correspond 
to the decomposition/oxidation of Co and Sb metal salts 
(cobalt nitrate and antimony acetate). A last stage starts at 
425 °C and corresponds to the decomposition of PVP, reflect-
ing the formation of large quantities of volatile products, 
e.g., CO, CO2 and formation of the cobalt-antimony oxides. 
No further significant weight changes are seen above 600 °C.

Figure 5 shows the H2-TPR profiles obtained for the selec-
tive treatment under hydrogen of the previously obtained 
oxides. They encompass at least three stages that we assign 
to the reduction of CoSb2O6 at 500–550 °C (Eq. 1), CoSb2O4 
at 580–590 °C (Eq. 2) and to the reduction of antimony oxide 
phase (Sb2O4) at 590–665 °C (Eq. 3). Quantitatively, the con-
sumption of H2 correlates well with the theoretical values 
and we have found that, as expected, the ratio between 
experimental and theoretical H2 uptake is close to 1 (0.91 
and 0.94 for CoSb and La-CoSb oxides, respectively).

(1)
2CoSb2O6 ⋅ Sb2O4 + 4H2 → 2CoSb2O4 ⋅ Sb2O4 + 4H2O

(2)2CoSb2O4 ⋅ Sb2O4 + 8H2 → 2CoSb2 ⋅ Sb2O4 + 8H2O

(3)2CoSb2 ⋅ Sb2O4 + 4H2 → 2CoSb2 ⋅ 2Sb + 4H2O

(4)2CoSb2 + 2Sb → CoSb3(solid - state reaction)
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Table 1   Characterization of the 
cobalt-antimony compounds 
by XRD

a Between parentheses the experimental Co:Sb molar ratio
b In the case of calcined samples the lattice parameters values and crystallite sizes corresponds to the 
orthorhombic phase α-Sb2O4. Theoretical values between parentheses

Compoundsa XRD

Phase (main) Lattice P. (Å) Crystallite size (nm)

Calcined samples
2CoSb2O6.Sb2O4 (1:3) Sb2O4 – –
2CoSb2O6.3Sb2O4 (1:5) Sb2O4 a, 5.435 (5.434)b

b, 4.808 (4.809)b

c, 11.760 (11.779)b

31.8 ± 0.6b

La0.25.2CoSb2O6.3Sb2O4 (1:5) Sb2O4 a, 5.435 (5.434)b

b, 4.794 (4.809)b

c, 11.740 (11.779)b

30.7 ± 0.4b

Reduced samples
CoSb3 (1:3) CoSb3 CoSb2 a, 9.057 (9.038) 33.7 ± 0.8
CoSb3 (1:5) CoSb3 a, 9.055 (9.038) 36.0 ± 0.7
La0.125.CoSb3 (1:5) CoSb3 Sb a, 9.029 (9.038) 24.4 ± 0.3
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Nevertheless, stability studies of such oxide phases 
under hydrogen and studies about their formation are 
rare and we have only found two that seems to confirm 
our reduction stage hypothesis (validated by the H2-TPR 

quantitative analysis). The first reported shows that the 
oxidation of CoSb3 leads to a formation of CoSb2O4, 
CoSb2O6, and Sb2O4 [65], whereas the second study indi-
cates that CoSb2 is the final product of the reduction of 
CoSb2O6 under hydrogen at temperatures ≥ 650 °C [66]. 
The formation of CoSb3 can be explained by solid-state 
reaction (Eq. 4), which agrees with literature results that 
indicate that CoSb2 acted as intermediate for the forma-
tion of CoSb3 [65, 67].

Considering the improvement effect of nanostructures 
on thermoelectric efficiency of materials, the synthesis of 
unfilled and La-filled CoSb3 nanofibers by electrospinning 
technique seem to be a good way to develop novel nano-
structured skutterudite-based thermoelectric materials.

4 � Conclusions

Nanosized skutterudites of the type CoSb3 unfilled and La 
filled were successfully synthesized via electrospinning 
technique. A “three-step” model is suggested for the for-
mation of the CoSb3 phase, where a precursor solution was 

Table 2   Characterization of 
cobalt-antimony compounds: 
surface areas (BET) and EDS 
quantifications

a Between parentheses the experimental Co:Sb molar ratio
b Theoretical values between parentheses, calculated take in account the compounds chemical formula
c Antimony/cobalt atomic ratio; theoretical value 3.0

Compoundsa BET EDS (wt.%)b

Co Sb O La Sb/Coc

Calcined samples
2CoSb2O6.Sb2O4 (1:3) 34.3 ± 1.3 19.4 (10.7) 65.7 (66.1) 15.0 (23.2) – 1.6
2CoSb2O6.Sb2O4 (1:5) 25.1 ± 3.6 14.2 (10.7) 70.1 (66.1) 15.7 (23.2) – 2.5
La0.25.2CoSb2O6.Sb2O4 (1:5) 13.7 ± 0.1 12.4 (10.3) 67.7 (64.1) 10.8 (22.5) 9.1 (3.0) 2.7
Reduced samples
CoSb3 (1:3) 26.3 ± 1.4 24.6 (13.9) 75.4 (86.1) – – 1.5
CoSb3 (1:5) 4.8 ± 0.2 14.5 (13.9) 85.5 (86.1) – – 2.9
La0.125CoSb3 (1:5) 9.1 ± 0.6 11.1 (13.3) 85.0 (82.7) – 3.9 (3.9) 3.0
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Fig. 5   H2-TPR profiles of CoSb3 
formation (1:5)
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electrospun, the collected fibers were calcined at 600 °C 
and finally reduced at 500 °C to form CoSb3 unfilled and 
filled with lanthanum. This preparation methodology 
requires the use of an excess of antimony (Sb/Co = 5). SEM 
observations show that the synthesized CoSb3 nanofibers 
consist of particles with sizes of around 35 nm and their 
synthesis by electrospinning provides a simple and low-
cost way to develop novel nanostructured skutterudite-
based thermoelectric materials.
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