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Abstract
In this study, we present a new family of discrete wavelets which are constructed with the help of Laguerre polynomials 
and the Daubechies biorthogonal wavelets construction method. Our aim is to propose the discrete version of some 
previously constructed continuous Laguerre wavelets and also to present a method of discrete wavelets construction by 
several iterations. With this scheme, we use two different sets of finite impulse response filters for the signal decomposi-
tion and their duals for reconstruction. The quadruplet finite impulse response filters respect the anti-aliasing and the 
perfect reconstruction conditions, and at the same time, they resemble as much as possible the continuous Laguerre 
wavelets when using the cascade algorithm. We use the mean squared error, the maximum deviation, and the standard 
deviation to quantify the similarity between the continuous Laguerre wavelets and the constructed discrete Laguerre 
wavelets. The results show that, they are both the same wavelets due to the small nature of these parameters. Our method 
is important because, it can permit the determination of the finite impulse response filter coefficients corresponding 
to many other continuous wavelets.

Keywords Laguerre wavelets · Biorthogonal wavelets · Cascade algorithm · FIR filters

1 Introduction

Wavelets are a very vital tool in the field of signal process-
ing and they are applied in several domains like medicine 
and engineering to perform tasks such as data compres-
sion, signal denoising, signal feature extraction for clas-
sification, etc. In recent years, many wavelets have been 
constructed by different researchers for various purposes 
since they have proven to be a better signal analysis tool 
than the Fourier transform. More so, they are popular due 
to the existence of algorithms that can compute wavelet 
coefficients fast such as the fast wavelet transform (FWT) 
algorithm [1, 2]. Fundamentally, we have the continuous 
wavelets (small waves of zero mean, that oscillate and var-
nish) and the discrete wavelets (finite impulse response 

filters). The cascade algorithm is a technique whereby the 
continuous wavelets can be obtained from the FIR filters 
through several iterations. We are proposing a method 
whereby, the FIR filter coefficients of the discrete wavelets 
can be obtained from its continuous wavelets.

It was long suggested that Laguerre functions could be 
used to construct wavelets [3].

Recently, some new continuous wavelets were con-
structed with Laguerre functions and applied in the clas-
sification of electroencephalogram (EEG) signals [4, 5]. The 
applications of the continuous wavelets are however limited 
because of the limitations of the continuous wavelet trans-
form (CWT) algorithm (it is slower, redundant and requires 
more computational space and time) compared to the 
FWT algorithm. If we want to implement the constructed 
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wavelets using the FWT algorithm, their corresponding 
finite impulse response filter (FIR) coefficients have to be 
determined because discrete wavelets correspond to the 
coefficients of FIR filters [6]. It is in this perspective that we 
study how we can determine the FIR filter coefficients corre-
sponding to the constructed continuous Laguerre wavelets. 
Once this is done, the wavelets can be implemented with the 
FWT algorithm in signal analysis tasks like filtering, denois-
ing, compression, etc.

The question is “how do we determine the FIR filter coef-
ficients of continuous wavelets?” We know that in an exact 
reconstruction sub-band coding Scheme with orthonormal 
bases of compactly supported wavelets, the analysis and 
synthesis filters are the same. Meanwhile, with biorthogo-
nal wavelets, the synthesis and analysis filter coefficients are 
not the same [7]. This permits flexibility during the construc-
tion of compactly supported wavelets with some desired 
attributes like the modification of the number of vanishing 
moments or its shape [8]. Many authors have devised sev-
eral techniques to construct wavelets in the literature, start-
ing from the simplest Haar wavelet [9], through the Morlet 
wavelet for CWT to Stephan Mallat and Ingrid Daubechies 
wavelets for DWT [10]. In recent years, some authors have 
designed many other wavelets [11]. Most of these wavelets 
are designed to suit certain conditions or constraints like the 
number of filter tabs, varnishing moments and regularity. 
They also serve diverse purposes and applications [12, 13].

This work is a continuation of [4, 5] where the authors 
constructed some new continuous wavelets with the 
Laguerre functions and applied them in the classification 
of EEG signals with good classification accuracy results. 
In [4], we constructed continuous wavelets with Laguerre 
polynomials which respect the admissibility and regular-
ity conditions of wavelets. In [5], the continuous Laguerre 
wavelets are applied in the detection of epilepsy in electro-
encephalographic (EEG) signals with the help of artificial 
neural networks and support vector machines with good 
classification accuracy results. In this work, we have deter-
mined the finite impulse response (FIR) filter coefficients that 
correspond to discrete Laguerre wavelets and they can be 
useful in several signal processing applications. This paper is 
divided as follows. In part one, we Introduce this paper, part 
two is a presentation of the materials and methods used in 
this work. In part three, we present the results obtained from 
this research and we discuss them. We end this paper with 
a conclusion.

2  Materials and methods

2.1  The Wavelet construction method.

Laguerre wavelets are part of the family of the Hermitian hat 
wavelet, which are defined by generalized Laguerre func-
tions. They are not compactly supported, but their effec-
tive support is [− 5, 5] and can be rendered compactly sup-
ported if it is defined only within its effective interval. They 
are defined as follows [4]:

For even values,

For odd values,

where  Jn and  Kn are normalization constants such that the 
 L2 norm of ψ is 1 [5].

Ln is the generalized Laguerre polynomial [14, 15]. It is 
worth noting that these wavelets have a similar shape to 
the Gaussian wavelets though they are different in their 
expressions [16]. The absolute mean square error differ-
ence between them is also greater than zero.

The next step is to get a scaling function �(x) , which is 
a function that can verify the refinement equation below.

The scaling function coefficients  Cn in (5) cannot be any 
arbitrary sequence. Orthogonality of the �0,k immediately 
implies

The orthonormal wavelet basis �(x) associated with this 
multiresolution analysis is then defined by [17]
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where the wavelet coefficients

With orthonormal wavelet bases for which the functions 
�(x) and �(x) are not compactly supported, infinitely many 
C is different from zero. If �(x) and �(x) have compact sup-
port, then all but finitely many  Cn vanish, and the filters 
h and g have a finite number of “taps” (that is, nonzero 
entries  hn,  gn). For every orthonormal basis of compactly 
supported wavelets, there exists, therefore, an associated 
pair of finite filters for sub-band coding with exact recon-
struction [18]. Exact reconstruction by orthogonal wave-
lets is only possible if

w h e r e  �l  i s  t h e  u s u a l  d e l t a  s e q u e n c e 
�l,0 = 1 if l = 0 and 0 otherwise

where h and g are the finite impulse response (FIR) filters 
associated with �(x) and �(x) . In [19], it is shown that for 
the orthogonal basis of wavelets the series  hn and  gn, are 
such that,

This condition makes it difficult to construct a Laguerre 
wavelet basis which is orthogonal. Therefore, we seek 
other means to tackle the problem. A possibility is through 
wavelet frames or biorthogonal wavelets. The idea here is 
to find a sequence that can generate Laguerre wavelets 
with the cascade algorithm, but at the same time, respect 
certain similarity conditions.

2.2  The Construction of the Biorthogonal Laguerre 
wavelets basis

The orthogonal wavelet construction schemes use the 
same filters for the decomposition and the reconstruction 
of a given signal. In the signal processing literature, there 
have been constructions of exact reconstruction filter banks 
whereby the decomposition filters are different from the 
reconstruction filters [7]. These filters permit more flexibil-
ity, are easier to design, and they have the advantage that 
symmetric filters can be obtained, which is not possible in 

(8)dn = (−1)nC−n+1
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the case where the decomposition and the reconstruction 
filters are identical. This property is very useful, given that 
Laguerre wavelets are symmetric.

Two dual bases �mn , �̃�mn are Biorthogonal wavelet bases 
if they are each given by the dilates and translates of one 
single function � or �̃� . Duality is defined as [7]

In this scheme, we use four filters: h and g for the analysis 
while h̃ and g̃ are used for the synthesis of the signal. The 
scheme becomes like in Fig. 1

All four filters are related to their wavelets and scaling 
functions by the refinement equation. The relationships are 
as follows:

It is shown that the relationships between these filters 
are [19]:

The z transform notation of these filters by the conven-
tion used here is:
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Fig. 1  Sub-band coding scheme with four different filters, two for 
decomposition and their duals for reconstruction [19]
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We consider only the case where the scaling function, 
the wavelet, and their duals are compactly supported. 
The consequence is that, we shall have a finite number of 
nonzero coefficients in the refinement Eqs. (15)–(18). In 
the field of signal processing, the set of filters are a set of 
finite biorthogonal filters if the following conditions are 
satisfied [7]:

The condition of (22) is often known as the perfect 
reconstruction condition while the condition of (23) is 
often known as the anti-aliasing condition. We usually 
refer to the four filters as biorthogonal quadruplets. Com-
bining (23) and (22) yields

In [7], the relationship between the low pass filter  hn 
and its dual h̃n is given as:

We can notice that (25) is similar to (9) in the orthogonal 
case. (25) is very important in the construction because it 
suffices to obtain the filter coefficients  hn and its dual can 
be got.

Let us suppose that the vector of the scaling filter (low-
pass filter associated with the scaling function) has 8 coef-
ficients, such that:

the wavelets are symmetric, so we render these coef-
ficients symmetric. This yield

In the same manner, the dual scaling filter (low pass 
filter associated with the dual scaling function) shall be

from (25) and for k = 0, we have:

Applying (29) to the filter coefficients yields

For k = 1, we have
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For k = 2, we have

For k = 3, we have

We can see that we have a system of four equations and 
four unknowns, which give the matrices below:

From (37) and (38), it is easily seen that the determina-
tion of the low pass filter coefficients can be obtained from 
the high pass filter coefficients and vice versa through the 
inversion of the respective 4 × 4 matrix.

2.3  The proposed scheme

The wavelets construction method we are proposing 
consists of several steps as can be seen in the scheme 
described in Fig. 2. Once an arbitrary sequence of sym-
metric low pass decomposition filters  hn is determined, 
we use Eq. (25) to obtain the corresponding matrix. This 
matrix is inverted in order to obtain the other param-
eters that will generate the quadruplet of wavelets used 
in the cascade algorithm. We have selected this tech-
nique (Daubechies method of biorthogonal wavelets 
construction) because of the properties of the continu-
ous Laguerre wavelets (symmetry, regularity and a fam-
ily) which are similar to the properties of biorthogonal 
and reverse biorthogonal wavelets. In fact, biorthogonal 
wavelets in most of the cases are used as a starting point 
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(36)bã + ab̃ = 0

(37)

⎛⎜⎜⎜⎝

2a 2b 2c 2d

c d a + d b + c

d c b a

b a 0 0

⎞⎟⎟⎟⎠

⎡⎢⎢⎢⎣

ã
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for the various iterations in order to determine the cor-
responding Laguerre wavelets.

The generated wavelets are compared with the 
required continuous wavelets using parameters like the 
mean squared error, maximum deviation and standard 
deviation. If both wavelets are similar enough, the cor-
responding FIR filter coefficients are retained, if not, the 
low pass decomposition filter parameters are adjusted 
and the process is repeated till the results are satisfac-
tory. What makes our work novel is not only the objec-
tive, but the method as well. We have ameliorated the 
Daubechies method of biorthogonal wavelets con-
struction by adding a stage of several iterations and 
comparing.

The cascade algorithm stage permits the determina-
tion of the wavelet function through its high pass fil-
ter counterpart over several iterations according to the 
mathematical law

The corresponding Laguerre wavelets are given by 
Eqs. (1) and (2), meanwhile the comparator does a point 
by point comparing of the two functions in order to 
determine the mean squared error, maximum deviation 
and the standard deviation.

Where the statistical parameters are defined by [20] 
as follows:

(39)�(t) =
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g[n]
√
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s(i) is the continuous Laguerre wavelet, while ŝ(i) is its 
discrete version generated by implementing the cascade 
algorithm and the number of samples is N.

If the parameters are lower than a particular threshold, 
it means the two functions are very similar to each other, 
as such, the corresponding filter coefficients are retained. If 
not, the coefficients of the filters are adjusted and another 
iteration executed untill he required threshold is met.

We have used the graphical user interface of MATLAB 
R2016b software running on a 64 bits windows 10 operat-
ing system to write an algorithm that performs the opera-
tions step by step as described in Fig.  2. The example 
illustrated here is an 8-filter tab Laguerre 3 wavelet. The 
continuous wavelet (full line) is plot on the same axis with 
the cascade algorithm generated discrete wavelet (dot-
ted line). We used 4 slide bars to adjust the parameters of 
the FIR filter coefficients continuously, while the results are 
plot instantaneously and compared (Fig. 3). 
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Fig. 2  The steps to obtain the Laguerre FIR filter coefficients from the continuous Laguerre wavelets
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The FIR filter coefficients that best suit our similarity 
requirements are retained.

From a more general perspective, this method can be 
used to obtain the FIR filter coefficients, and hence the 
DWT implementation of any continuous wavelet. In the 
process of pattern recognition in a signal for example, 
one can design continuous wavelets that look similar to 
a required pattern using the polynomial approximation 
or the ortho polynomial approximation method. How-
ever, such continuous wavelets can be implemented only 
using the CWT algorithm if their FIR filter coefficients are 
unknown. We hereby propose a method that can permit 
the tuning of some FIR filter coefficients that can be used 
for the DWT analysis in the pattern recognition of a signal, 
thereby saving much computation space and time.

This paper is not aimed at designing the best possible 
wavelets for signal analysis, but simply aimed at propos-
ing a new wavelet tool which can be used just like many 
other wavelets with their strengths and weaknesses. 
In most signal processing tasks, the property of perfect 
reconstruction of a signal is the most important aspect of 
the scheme. In a signal compression task for example, once 

the signal can be perfectly reconstructed, it now suffices 
to apply a certain threshold to the wavelet coefficients in 
order to get some compression. This compression ratio 
depends on the said threshold, which affects the recon-
structed signal as well.

We are proposing in this paper, a family of wavelets that 
have both analytical expression and FIR filter coefficients 
that can be used to perform several signal processing tasks 
as shown in Fig. 4.

3  Presentation of results

3.1  The constructed discrete Laguerre wavelets

The process of constructing the digital FIR filter coef-
ficients took into consideration two main criteria, first 
of all, that the wavelet permits perfect reconstruction of 
a signal, and secondly, that the wavelet should resem-
ble the corresponding continuous Laguerre wavelet 
as much as possible when generated with the cascade 
algorithm. As such, a vector of numbers was fine-tuned 

Fig. 3  Determining the FIR filter parameters that best suit an 8-filter tab Laguerre 3 wavelet by tuning the filter coefficients on the MATLAB 
GUI tool
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using Eq. (25) and inverting the corresponding gener-
ated matrices to respect those two criteria. The results 
obtained in this work are coefficients of FIR filters that 
correspond to Laguerre wavelets. We have observed 
that, these filter coefficients are all different from all the 
other wavelets in the wavelets data base. In Table 1, we 
present the results obtained for the first fifteen members 
of the Laguerre wavelet family, alongside their quadru-
plet of FIR filter coefficients.

We can generate the corresponding wavelet by employ-
ing the cascade algorithm and compare their similarities 
with the continuous Laguerre wavelets. Once that is done, 
we can notice that the analysis wavelet corresponds to a 
shifted version of the Laguerre wavelets. Figures 5, 6 and 
7 plots the Laguerre wavelets and the wavelet generated 
by these filter coefficients on the same scale.

For the Lag3 wavelet, we shall have to invert the fol-
lowing matrix corresponding to 12 FIR filter symmetric 
coefficients:

After performing the same operations as above, we 
obtain the following plots.

(43)
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We can notice that the analysis wavelet corresponds to 
a shifted version of the Laguerre 3 and 4 wavelet respec-
tively. Figure 7 plots the Laguerre 5 continuous wavelet 
and its discrete version obtained by the cascade algorithm.

3.2  Discussion

We have resorted to the Daubechies method of biorthogo-
nal construction of wavelets to construct discrete Laguerre 
wavelets. The biorthogonal wavelets are not orthogonal, 
but not having to be orthogonal gives more options to 
a variety of filters such as symmetric filters thus allowing 
them to possess the symmetric property. The Biorthogonal 
analysis is possible with perfect reconstruction if a pair of 
filters are used for the analysis and another for the synthe-
sis as shown above in Table 1.

When applied to model a signal, the reconstruction is 
perfect, using these wavelets. The Laguerre discrete wave-
lets are constructed to resemble the continuous version as 
much as possible, and at the same time, permit the per-
fect reconstruction of a digital signal. We used objective 
parameters like the mean squared error, the maximum 
deviation, and the standard deviation to quantify the dif-
ferences between the continuous and the discrete wave-
lets obtained from the cascade algorithm. It is seen from 
Figs. 5, 6 and 7 that, these parameters are close to zero, 
meaning that the two wavelets are very similar to each 
other. These wavelets can serve in several applications like 
data compression, denoising, filtering, etc.

Fig. 4  The constructed wavelets can be used for signal compression, classification and fusion
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Table 1  The first fifteen members of the Laguerre wavelet family FIR filter coefficients

Wavelets FIR filter coefficients

Laguerre 1
hn 0.0127 0.0492 0.1631 0.2259 0.2259 0.1631 0.0492 0.0127

h̃n −1.3769 5.3247 − 4.2839 11.4450 11.4450 − 14.2839 5.3247 − 1.3769

gn 1.3769 5.3247 14.2839 11.4450 − 11.4450 − 14.2839 − 5.3247 − 1.3769

g̃n 0.0127 − 0.0492 0.1631 − 0.2259 0.2259 − 0.1631 0.0492 − 0.0127

Laguerre 2
hn 0 0 − 0.0564 − 0.0355 0.3760 0.7104 0.3760 − 0.0355 − 0.0564 0

h̃n 0.0378 − 0.0238 − 0.1106 0.3874 0.9827 0.3874 − 0.1106 − 0.0238 0.0378 0

gn −0.0378 − 0.0238 0.1106 0.3874 − 0.9827 0.3874 0.1106 − 0.0238 − 0.0378 0

g̃n 0 0 − 0.0564 0.0355 0.3760 − 0.7104 0.3760 0.0355 − 0.0564 0

Laguerre 3
hn 0 0 − 0.0014 − 0.0044 0.1681 0.5161 0.5161 0.1681 − 0.0044 − 0.0014 0 0

h̃n −0.0138 0.0414 0.0525 − 0.2679 − 0.0618 0.9867 0.9867 − 0.0618 − 0.2679 0.0525 0.0414 − 0.0138

gn 0.0138 0.0414 − 0.0525 − 0.2679 0.0618 0.9867 − 0.9867 − 0.0618 0.2679 0.0525 − 0.0414 − 0.0138

g̃n 0 0 − 0.0014 0.0044 0.1681 − 0.5161 0.5161 − 0.1681 − 0.0044 0.0014 0 0

Laguerre 4
hn 0 0 − 0.0002 − 0.0002 0.0145 0.0141 − 0.0766 − 0.0442 0.4024 0.7369 0.4024 − 0.0442

− 0.0766 0.0141 0.0145 − 0.0002 − 0.0002 0

h̃n
0.0019 − 0.0019 − 0.0170 0.0119 0.0497 − 0.0773 − 0.0941 0.4408 0.8459 0.4408 − 0.0941

− 0.0773 0.0497 0.0119 − 0.0170 − 0.0019 0.0019 0

gn − 0.0019 − 0.0019 0.0170 0.0119 − 0.0497 − 0.0773 0.0941 0.4408 − 0.8459 0.4408 0.0941

− 0.0773 − 0.0497 0.0119 0.0170 − 0.0019 − 0.0019 0

g̃n 0 0 − 0.0002 0.0002 0.0145 − 0.0141 − 0.0766 0.0442 0.4024 − 0.7369 0.4024 0.0442

− 0.0766 − 0.0141 0.0145 0.0002 − 0.0002 0

Laguerre 5
hn 0.0038 0.0114 0.0118 − 0.0141 0.2011 0.4832 0.4832 0.2011 − 0.0141 0.0118 0.0114 0.0038

h̃n −0.0138 0.0414 0.0525 − 0.3379 − 0.0818 1.0567 1.0567 − 0.0818 − 0.3379 0.0525 0.0414 − 0.0138

gn 0.0138 0.0414 − 0.0525 − 0.3379 0.0818 1.0567 − .0567 − 0.0818 0.3379 0.0525 − 0.0414 − 0.0138

g̃n 0.0038 − 0.0114 0.0118 0.0141 0.2011 − 0.4832 0.4832 − 0.2011 − 0.0141 − 0.0118 0.0114 − 0.0038

Laguerre 6
hn 0 0 − 0.0002 − 0.0002 0.0155 0.0151 − 0.0806 − 0.0462 0.4155 0.7770 0.4155

− 0.0462 − 0.0806 0.0151 0.0155 − 0.0002 − 0.0002 0

∼

h
n

0.0019−0.0019−0.0170 0.0119 0.0497−0.0773−0.0941 0.4408 0.7859 0.4408

−0.0941−0.0773 0.0497 0.0119−0.0170−0.0019 0.0019 0

gn −0.0019−0.0019 0.0170 0.0119−0.0497−0.0773 0.0941 0.4408−0.7859 0.4408

0.0941−0.0773−0.0497 0.0119 0.0170−0.0019−0.0019

g̃n 0 0 − 0.0002 0.0002 0.0155 − 0.0151 − 0.0806 0.0462 0.4155 − 0.7770 0.4155

0.0462 − 0.0806 − 0.0151 0.0155 0.0002 − 0.0002 0

Laguerre 7
hn 0.0002 0.0006 0.0027 0.0060 0.0199 0.0367 0.1729 0.4302 0.4302 0.1729

0.0367 0.0199 0.0060 0.0027 0.0006 0.0002

h̃n
0.0030 − 0.0091 − 0.0168 0.0847 0.0113 − 0.3512 − 0.2765 1.3016 1.3016 − 0.2765

− 0.3512 0.0113 0.0847 − 0.0168 − 0.0091 0.0030

gn − 0.0030 − 0.0091 0.0168 0.0847 − 0.0113 − 0.3512 0.2765 1.3016 − 1.3016 − 0.2765

0.3512 0.0113 − 0.0847 − 0.0168 0.0091 0.0030

g̃n 0.0002−0.0006 0.0027−0.0060 0.0199−0.0367 0.1729−0.4302 0.4302−0.1729

0.0367−0.0199 0.0060−0.0027 0.0006−0.0002

Laguerre 8
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Table 1  (continued)

Wavelets FIR filter coefficients

hn 0 0 0 0 0.0185 0.0185 − 0.1009 − 0.0518 0.5357 0.9730 0.5357 − 0.0518

− 0.1009 0.0185 0.0185 0 0 0

h̃n
0.0015 − 0.0015 − 0.0133 0.0093 0.0388 − 0.0603 − 0.0734 0.3282 0.6442

0.3282 − 0.0734 − 0.0603 0.0388 0.0093 − 0.0133 − 0.0015 0.0015 0

gn − 0.0015 − 0.0015 0.0133 0.0093 − 0.0388 − 0.0603 0.0734 0.3282 − 0.6442

0.3282 0.0734 − 0.0603 − 0.0388 0.0093 0.0133 − 0.0015 − 0.0015 0

g̃n 0 0 0 0 0.0185 − 0.0185 − 0.1009 0.0518 0.5357 − 0.9730 0.5357 0.0518

− 0.1009 − 0.0185 0.0185 0 0 0

Laguerre 9
hn 0.0004 0.0012 0.0015 0.0012 0.0125 0.0418 0.1516 0.4502 0.4502 0.1516

0.0418 0.0125 0.0012 0.0015 0.0012 0.0004

h̃n
0.0030−0.0091−0.0168 0.0747 0.0313−0.3512−0.1765 1.2016 1.2016

−0.1765−0.3512 0.0313 0.0747−0.0168−0.0091 0.0030

gn − 0.0030 − 0.0091 0.0168 0.0747 − 0.0313 − 0.3512 0.1765 1.2016 − 1.2016

− 0.1765 0.3512 0.0313 − 0.0747 − 0.0168 0.0091 0.0030

g̃n 0.0004 − 0.0012 0.0015 − 0.0012 0.0125 − 0.0418 0.1516 − 0.4502 0.4502 0.1516

− 0.0418 0.0125 − 0.0012 0.0015 − 0.0012 0.0004

Laguerre 10
hn 0 0 0 0 0.0166 0.0166−0.0905−0.0464 0.4803 0.8723 0.4803

−0.0464−0.0905 0.0166 0.0166 0 0 0

h̃n
0.0017 − 0.0017 − 0.0148 0.0104 0.0433 − 0.0672 − 0.0818 0.3661 0.7186

0.3661 − 0.0818 − 0.0672 0.0433 0.0104 − 0.0148 − 0.0017 0.0017 0

gn − 0.0017 − 0.0017 0.0148 0.0104 − 0.0433 − 0.0672 0.0818 0.3661 − 0.7186

0.3661 0.0818 − 0.0672 − 0.0433 0.0104 0.0148 − 0.0017 − 0.0017 0

g̃n 0 0 0 0 0.0166−0.0166−0.0905 0.0464 0.4803−0.8723 0.4803

0.0464−0.0905−0.0166 0.0166 0 0 0

Laguerre 11
hn 0.0008 0.0025 0.0017 − 0.0014 0.0132 0.0683 0.1325 0.4711 0.4711 0.1325

0.0683 0.0132 − 0.0014 0.0017 0.0025 0.0008

h̃n
0.0030 − 0.0091 − 0.0168 0.0747 0.0303 − 0.3812 − 0.1265 1.1516 1.1516

− 0.1265 − 0.3812 0.0303 0.0747 − 0.0168 − 0.0091 0.0030

gn − 0.0030 − 0.0091 0.0168 0.0747 − 0.0303 − 0.3812 0.1265 1.1516 − 1.1516

− 0.1265 0.3812 0.0303 − 0.0747 − 0.0168 0.0091 0.0030

g̃n 0.0008 − 0.0025 0.0017 0.0014 0.0132 − 0.0683 0.1325 − 0.4711 0.4711 − 0.1325

0.0683 − 0.0132 − 0.0014 − 0.0017 0.0025 − 0.0008

Laguerre 12
hn 0 0 0 0 0.0144 0.0145 − 0.0787 − 0.0404 0.4178 0.7589 0.4178 − 0.0404

− 0.0787 0.0145 0.0144 0 0 0

h̃n
0.0019 − 0.0019 − 0.0170 0.0119 0.0497 − 0.0773 − 0.0941 0.4208 0.8259

0.4208 − 0.0941 − 0.0773 0.0497 0.0119 − 0.0170 − 0.0019 0.0019 0

gn − 0.0019 − 0.0019 0.0170 0.0119 − 0.0497 − 0.0773 0.0941 0.4208 − 0.8259

0.4208 0.0941 − 0.0773 − 0.0497 0.0119 0.0170 − 0.0019 − 0.0019 0

g̃n 0 0 0 0 0.0144−0.0145−0.0787 0.0404 0.4178−0.7589 0.4178 0.0404

−0.0787−0.0145 0.0144 0 0 0

Laguerre 13
hn 0.0001 0.0004 0.0001 − 0.0008 0.0031 0.0116 0.0232 0.0379 0.2474 0.5006

0.5006 0.2474 0.0379 0.0232 0.0116 0.0031 − 0.0008 0.0001 0.0004 0.0001

h̃n
− 0.0007 0.0020 0.0051 − 0.0206 − 0.0141 0.0991 0.0123 − 0.3202 − 0.3479 1.1921

1.1921 − 0.3479 − 0.3202 0.0123 0.0991 − 0.0141 − 0.0206 0.0051 0.0020 − 0.0007
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We have used the first five members of the discrete 
Laguerre wavelet family to perform the same analysis as 
in [5]. Here, the wavelets are used in association with the 
artificial neural network and support vector machines in 
order to classify EEG (Electro encephalograph) epileptic 
signals as seizure or none seizure. The idea was to compare 
the performance of the discrete Laguerre wavelets imple-
mented with the DWT to the continuous Laguerre wave-
lets counterpart, implemented with the CWT. The method 

consisted of decomposing each signal up to level 8 and 
for each level we computed some features to serve as 
feature vectors for the classifiers. These features included 
the mean, minimum, maximum, standard deviation, 
percentage power, Shannon and wavelet entropy of the 
approximation and detail coefficients. The results of this 
experiment were not very different from that conducted 
with the CWT in terms of classification accuracy (for each 
classification case, the CA was on average ± 2% compared 

Table 1  (continued)

Wavelets FIR filter coefficients

gn 0.0007 0.0020 − 0.0051 − 0.0206 0.0141 0.0991 − 0.0123 − 0.3202 0.3479 1.1921

− 1.1921 − 0.3479 0.3202 0.0123 − 0.0991 − 0.0141 0.0206 0.0051 − 0.0020 0.0007

g̃n 0.0001 − 0.0004 0.0001 0.0008 0.0031 − 0.0116 0.0232 − 0.0379 0.2474 − 0.5006

0.5006 − 0.2474 0.0379 − 0.0232 0.0116 − 0.0031 − 0.0008 − 0.0001 0.0004 − 0.0001

Laguerre 14
hn 0 0 − 0.0001 − 0.0001 0.0157 0.0155 − 0.0824 − 0.0445 0.4261 0.7962

0.4261 − 0.0445 − 0.0824 0.0155 0.0157 − 0.0001 − 0.0001 0

h̃n
0.0019 − 0.0019 − 0.0170 0.0119 0.0497 − 0.0773 − 0.0941 0.4408 0.8459 0.4408 − 0.0941

− 0.0773 0.0497 0.0119 − 0.0170 − 0.0019 0.0019 0

gn −0.0019 −0.0019 0.0170 0.0119−0.0497−0.0773 0.0941 0.4308−0.7659

0.4308 0.0941−0.0773−0.0497 0.0119 0.0170−0.0019−0.0019 0

g̃n 0 0 − 0.0001 0.0001 0.0157 − 0.0155 − 0.0824 0.0445 0.4261 − 0.7962

0.4261 0.0445 − 0.0824 − 0.0155 0.0157 0.0001 − 0.0001 0

Laguerre 15
hn 0 0.0001 0.0001 0.0000 0.0017 0.0051 0.0171 0.0375 0.1917 0.4439

0.4439 0.1917 0.0375 0.0171 0.0051 0.0017 0 0.0001 0.0001 0

h̃n
−0.0007 0.0020 0.0051−0.0206−0.0141 0.0991 0.0123−0.3202−0.3479 1.3021

1.3021−0.3479−0.3202 0.0123 0.0991−0.0141−0.0206 0.0051 0.0020−0.0007

gn 0.0007 0.0020−0.0051−0.0206 0.0141 0.0991−0.0123−0.3202 0.3479 1.3021

−1.3021−0.3479 0.3202 0.0123−0.0991−0.0141 0.0206 0.0051−0.0020−0.0007

g̃n 0 − 0.0001 0.0001 − 0.0000 0.0017 − 0.0051 0.0171 − 0.0375 0.1917 − 0.4439

0.4439 − 0.1917 0.0375 − 0.0171 0.0051 − 0.0017 0 0.0001 − 0.0001 0

Fig. 5  A plot of the Laguerre 1 and 2 wavelets ----, and their discrete versions___ generated by the cascade algorithm
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to the CWT experiment). However, as we expected, the 
computation time was greatly reduced. This is due to the 
fact that, the DWT is faster than the CWT. It took on aver-
age only about 20% of the CWT computation time to per-
form the same classification task with DWT.

4  Conclusion

The goal in this paper is to propose a new wavelet tool 
which can be used for signal analysis. We started by 
determining the Finite impulse response filter coeffi-
cients that correspond to the Laguerre wavelets which 
will permit a fast wavelet transform analysis implementa-
tion. This was done by the help of biorthogonal wavelets, 
which respect the constraints of perfect reconstruction 

and anti-aliasing, and at the same time look as close to 
the continuous wavelets as possible. Contrary to contin-
uous wavelets like the Mexican hat wavelet which has an 
explicit expression and no FIR filters, or discrete wavelets 
like Daubechies wavelets that have no analytical expres-
sion but FIR filter coefficients, the proposed Laguerre 
wavelets have both analytical expressions and FIR filter 
coefficients. This makes them suitable to be used both in 
the discrete wavelet transform and the continuous wave-
let transform algorithms as well. This research work will 
permit in the future the determination of the discrete 
versions of several continuous wavelets. In the wavelets 
data base, most wavelets are either continuous (with a 
mathematical expression but no FIR filter coefficients) or 
discrete (with a FIR filter coefficient but no mathemati-
cal expression). The specialty of the Laguerre wavelets is 
that, they have both a continuous and a discrete version. 
The fast wavelet transform algorithm can also be used in 
several signal analysis applications with these filter coef-
ficients such as signal de-noising, compression, image 
fusion, just to name a few. In the future, we shall work 
on the applications of the constructed Laguerre wave-
let filters in several biomedical signal processing tasks 
like the brain control interface (BCI), and some digital 
signal processing tasks like image fusion, filtering, and 
compression.
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Fig. 6  Plot of the Laguerre 3 and 4 continuous wavelets ___, and their discrete version generated by the cascade algorithm ----

Fig. 7  Plot of the Laguerre 5 wavelet ___, and its discrete version 
generated by the cascade algorithm ----
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