
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1434 | https://doi.org/10.1007/s42452-020-03225-9

Research Article

Time series forecasting of agricultural product prices based 
on recurrent neural networks and its evaluation method

Koichi Kurumatani1 

Received: 8 March 2020 / Accepted: 18 July 2020 / Published online: 27 July 2020 
© The Author(s) 2020  OPEN

Abstract
We propose a time series forecasting method for the future prices of agricultural products and present the criteria by 
which forecasted future time series are evaluated in the context of statistical characteristics. Time series forecasting of 
agricultural products has the basic importance in maintaining the sustainability of agricultural production. The prices 
of agricultural products show seasonality in their time series, and conventional methods such as the auto-regressive 
integrated moving average (ARIMA or the Box Jenkins method) have tried to exploit this feature for forecasting. We 
expect that recurrent neural networks, representing the latest machine learning technology, can forecast future time 
series better than conventional methods. The measures used in evaluating the forecasted results are also of importance. 
In literature, the accuracy determined by the error rate at a specific time point in the future, is widely used for evalua-
tion. We predict that, in addition to the error rate, the criterion for conservation of the statistical characteristics of the 
probability distribution function from the original past time series to the future time series in the forecasted future is 
also important. This is because some time series have a non-Gaussian probability distribution (such as the Lévy stable 
distribution) as a characteristic of the target system; for example, market prices on typical days change slightly, however 
on certain occasions, change dramatically. We implemented two methods for time series forecasting based on recurrent 
neutral network (RNN), one of which is called time-alignment of time point forecast (TATP), and another one is called 
direct future time series forecast (DFTS). They were evaluated using the two aforementioned criteria consisting of the 
accuracy and the conservation of the statistical characteristics of the probability distribution function. We found that 
after intensive training, TATP of LTSM shows superior performance in not only accuracy, but also the conservation com-
pared to TATP of other RNNs. In DFTS, DFTS of LSTM cannot show the best performance in accuracy in RMS sense, but it 
shows superior performance in other criteria. The results suggest that the selection of forecasting methods depends on 
the evaluation criteria and that combinations of forecasting methods is useful based on the application. The advantage 
of our method is that the required length of time series for training is enough short, namely, we can forecast the whole 
cycle of future time series after training with even less than the half of the cycle, and it can be applied to the field where 
enough numbers of continuous data are not available.
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1 Introduction

Time series forecasting of agricultural products play a 
major role in the sustainability of agricultural produc-
tion. Providing price forecasting information would help 
in decision making for managing agricultural supplies 
and helping to improve purchasing behaviors of con-
sumers. In addition to the seasonality in production side 
caused by year-round cycle climate change, the prices 
are affected by the users’ preferences to products and 
suppliers’ trading strategy and behavior. These human 
factors do not always have seasonality but they could 
be represented as relations between events in past and 
the current status.

Currently, forecasts are being carried out using the 
conventional Box-Jenkins method [1]. In this paper, we 
propose forecasting methods based on the recurrent 
neural network (RNN) [2] for forecasting future com-
modity prices. There is seasonality in commodity mar-
kets that bring about cyclic value changes depending 
on the season. Conventional approaches in time series 
forecasting by auto-regressive integrated moving aver-
age (ARIMA) have tried to exploit this seasonality among 
other dependencies for neighboring points observed in 
the original past sequences by linear modeling [1].

The latest machine learning technologies, including 
the RNN, are expected to extract hidden relations in 
target systems, and demonstrate a higher performance 
than the conventional methods because (1) RNN enables 
non-linear modeling of the target sequence, (2) the gate 
mechanism in long short-term memory (LSTM) [3] and 
gated recurrent unit (GRU) [4] families provide a way of 
modeling the direct relations between a specific past 
time point and the current time point.

We implemented two methods for time series fore-
casting based on RNN, one of which is called time-align-
ment of time point forecast(TATP), and the other one is 
called direct future time series forecast (DFTS).

The criteria for evaluating the forecasted results are 
also important. We used three types of evaluation cri-
teria: two types of accuracy by error measurements of 
root mean square (RMS) and mean absolute (MA), and 
the conservation performance of probability distribution 
function (PDF). We found it insufficient to only use the 
forecast error on the time point to evaluate the perfor-
mance of the forecasting method, because time series 
of large complex systems, such as social systems, show 
macro-behaviors that cannot be characterized by time 
point errors.

This study is organized as follows: after reviewing pre-
vious literature in Sect. 2, Sect. 3 shows the data set used 
in this study which includes the agricultural product 

price history. After describing our time series forecast-
ing method in Sect. 4, the forecasted results are shown 
in Sect. 5. The evaluation accuracy results are given in 
Sect. 6 and the conservation performance of statistical 
characteristics are provided in Sect. 7. After comparing 
proposed methods in Sect. 8 and discussing the findings 
of the study in Sect. 9, we conclude the study in Sect. 10.

2  Related work

One of the most important conventional methods for 
future time series forecasting methods is the Box-Jenkins 
method [1], which is based on a linear combination of 
weighted past values and the explicit introduction of sea-
sonality describing repeated value changes in seasonal 
cycles.

From previous literature on combining machine learn-
ing and Box-Jenkins method, improvements on the Box-
Jenkins and its related methods (autoregressive [AR], 
autoregressive integrated moving average [ARIMA], 
SARIMA) have been proposed through addition of artificial 
neural network (ANN) to capture the non-linearity in the 
target system [5–8]. The most used method in this direc-
tion is sequential hybrid approach that can be refined in 
the sense of accuracy by introducing weighted sequen-
tial hybrid methodology [9]. It is important to clarify the 
structure of a forecasting method as the combination of a 
conventional linear method and an ANN, which improves 
the easiness of training of ANN. There is a possibility of 
improving the accuracy by introducing gate mechanism 
of latest non-linear neural networks.

About the improvement of forecasting accuracy by neu-
ral networks, a method for controlling the influences from 
past sequences, by using two convolutional neural networks 
(CNN) for AR and the so-called offset for influence control, 
has been proposed and has displayed high accuracy [10]. 
Improved versions of LSTM such as Phased LSTM [11], Aug-
mented LSTM [12], a temporal convolution-based algorithm 
called WaveNet [13], and a new reinforcement learning-
based prediction algorithm [14], have also been proposed. 
DeepAR [15] is a framework to handle forecasting future val-
ues as probability distribution. The basic forecasting method 
is based on linear autoregressive models. LSTNet [16] is a 
hybrid network consisting (1) convolutional layer, (2) recur-
rent layer, and (3) fully-connected autoregressive (AR) output 
integration, the advantage of which is to clarify the role of 
each part and to make the training easier. The representation 
power is, however, equal to temporal convolution [13] and 
autoregressive model. Although these methods have dis-
played high accuracy in forecasting values at a specific point 
in the future, the statistical characteristics of the forecasted 
future time series have not been evaluated. The aim of our 
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research is to establish forecasting methods that satisfy both 
high accuracy and natural statistical characteristics that is 
shown in the original time series.

In order to overcome the shortcomings of conventional 
autoregressive methods about the limitation of numbers 
to be simultaneously forecasted, matrix factorization-
based method [17], unsupervised scalable representation 
learning [18], DeepGLO that combines a global matrix fac-
torization and a local temporal network [19] have been 
proposed. These methods explore the huge space of train-
ing data consisting of higher dimensions of variables and 
temporal duration. About the problem of forecasting agri-
cultural product price at a nation level, we have to carry 
out the forecasting based on limited numbers of sampled 
data that has missing part of duration and/or product 
item, where these methods cannot be directly applied.

There are a couple of approaches to agricultural prod-
uct price by machine learning, Introducing simple RNN 
(they call it “Time-Delay Neural Network”) in agricultural 
product price forecasting [20] sometimes improves the 
accuracy. There are approaches to introduce (1) Fuzzy 
and SVM [21] and (2) Naïve Baysian Algorithm [22], where 
the evaluation methods are limited and the advantages 
against conventional methods are unclear.

The aim of this research is to establish a method with 
the following characteristics.

(1) It can enable the selection of basic forecasting mech-
anism such as simple RNN, LSTM, GRU, and so on, 
according to the specified criteria such as time-point 
accuracy, global accuracy, and statistical characteris-
tics of generated future time series.

(2) For the selection, it clarifies the effectiveness and limi-
tation of controlling the influence between a specific 
past time point and the present using the gate (such 
as forget, peephole) mechanism in LSTM and GRU.

(3) The algorithm we propose must fit the limitation of 
relatively small numbers of training data that has 
missing part of temporal duration and product.

In literature, there is an approach to compare the accu-
racies of multi-step ahead forecasting by multiple-output 
and single-output neural networks [23]. Our basic idea of 
selecting suitable forecasters has the same essence of their 
approach, although our approach includes latest improve-
ments of neural networks such as gate algorithms and new 
evaluation methods.

3  Data of agricultural product price

We have considered the price of agricultural products as 
our example because they are indispensable commodi-
ties for human life, and also because their price is affected 
by several aspects including past price sequence, sales, 
supply amount, consumer preference, weather, and so on 
(in Fig. 1). We describe the first step in the forecast mecha-
nism, which is forecasting future price values by the past 
price history only.

The restriction on forecasting agricultural product price 
at a nation level is the limited amount of data, in contrast 
with international agricultural product markets. We need 
to develop algorithms that work with less amount of data 
with controlling the quality of forecasted results from 
multiple-points of view.

We used the Japanese government price movement 
data of agricultural products. The price data are collected 
by the Ministry of Agriculture, Forestry, and Fisheries, 
which are open to the public [24]. We focused on the rep-
resentative types of agricultural products, especially the 
types of vegetables that are indispensable and popular 
in daily life. The coverage and the system of collecting the 
government data are as follows: the price of the target 
vegetable is measured at a total 470 retail stores, with 10 
stores in each of the 47 prefectures in Japan (the earlier 
data was obtained from 460 stores in 46 prefectures). 
The frequency of measurement is once per week. These 
470 price values measured in a specific week are arith-
metically averaged and the obtained price information is 
published on a website. The price data starting from the 
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Fig. 1  Whole forecasting framework. Upon receiving the past 
price time series, sales and supply amount, consumer preference, 
weather, and so on, the forecast model generates the future values. 
In this paper, we only worked with market price data shown in red 
color
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week beginning April 12, 2010 onwards is available. There 
is missing data for some periods due to the disruption by 
the Great East Japan Earthquake (on March 11, 2011) in 
Tohoku area and policy changes.

The selection of target agricultural products varies 
depending on the period of measurement. The most 
representative products are chosen and measured for 
specified periods. We selected three vegetables in the 
data—cabbage, tomato, and lettuce—for this experi-
ment, because (1) these vegetables are popular in daily 
life, (2) their sale volumes is high, and (3) their data is read-
ily available (covering a maximum of 270 weeks in total) 
in the whole surveillance data. For the training of learning 
mechanism, we used price data from the week beginning 
April 12, 2010 to the week beginning February 5, 2018. The 
forecasting and evaluation of the results for unknown test 
data were carried out for the period between February 12, 
2018 and February 11, 2019.

4  Method of time series forecasting

In this paper, we only worked with discrete time series. The 
time series forecasting can be expressed mathematically 
as a mapping (function) from a past sequence that is an 
ordered set of vector values {xi} consisting of past values 
to a future sequence that is also an ordered set of vector 
values {yj}, where a sequence is a part of the whole time 
series.

There are two ways to generate the future sequence 
{yj} from a past one {xi} by RNN depending on the type of 
combining generating functions. The first one is by com-
bining time point forecast results into a future sequence. In 
this method, first, a forecast mechanism generates a value 
independently for each point in the future, and next, the 
generated values are aligned in a sequence for the future 
sequence. We call this method TATP. The second way is by 
forecasting the future sequence as a whole by setting the 
future sequence itself as the output data for learning. We 
call this method DFTS. The structure of TATP and DFTS are 
shown in Fig. 2.

4.1  Basic forecaster of TATP

The basic forecaster of TATP means an ANN that is trained 
by the past time series and provides the value of a specific 
time point in future. A basic forecaster receives an n-step 
past sequence (time series of past values) and returns the 
value at ‘k-step after’.

The basic idea is as follows: we prepare basic fore-
caster p(n, k) that receives an n-step length of past price 
sequence and returns the price after k-steps in the future. 
A basic forecaster can be applied for any n-step length part 

of a past sequence sj
p. The predicted price value at ‘k-step 

after’ the past sequence sj
p by using a basic forecaster 

pi (n, k) is denoted as pi (n, k)(sj
p).

Each pi (n, k) is an ANN that is trained to forecast ‘k-step 
after’ from an n-step past sequence. We used LSTM, GRU, 
and simple recurrent neural network (SRNN) to generate 
the networks. The duration of prediction of k varied from 
1 to k_max. Because the past data was available on weekly 
basis, we set the duration of the forecasting time step to 
be 1 week.

In this study, we fixed the duration of the past sequence 
n to be 20. This means that basic forecasters were trained 

Fig. 2  Time series forecasting frameworks of TATP and DFTS
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by the data of the previous 20 weeks. The first reason why 
we chose the duration of 20 is for evaluation purposes. 
Agricultural product prices have seasonal cycles mean-
ing that the price changes according to the season, and 
the longest seasonal cycle is 1 year. By setting the train-
ing period to be shorter than 1 year, we could evaluate 
the ability of forecasting mechanism in the case where the 
data is available for less duration than the longest cycle. 
In our case, the duration 20 weeks is about one-third of 
a year. The second reason is for data availability. Because 
there are missing periods and missing values in the origi-
nal data set and it is unsuitable to insert interpolated val-
ues, we need to select a relatively shorter period for data 
preparation.

Using this method, we prepared 175 training data for 
RNNs from the past time series. The duration of future fore-
casting, k_max was fixed at 53. This value was to obtain 
future forecasting results of about 1 year.

Forecasting of ‘k-step after’ week was carried out with 
RNNs (LSTM, GRU, and simple RNN), each of which was 
trained by a set of past sequence and the price value at 
‘k-week after’ where k is an integer value in [1, 53]. RNN 
with one middle layer of 50 units was trained with stochas-
tically chosen 90% training data (153 samples) from the 
past price sequence, and the rest 10% (17 samples) was 
used for validation. The total number of original sequences 
was 312 weeks, and continuous parts were chosen for 
training and validation data. The optimizer was Adam [25].

Back-propagation learning converged to stability for 
approximately 200 to 300 epochs for all types of RNNs. 
We trained for up to 10,000 epochs and found that GRU 
overfitted after 200 epochs and SRNN overfitted after 300 
epochs. LSTM showed improvement during the training 
up to 10,000 epochs and showed the highest performance 
in the latter part of the epochs.

LSTM with a gate mechanism connecting a certain time 
point in the past to the present succeeded in finding sharp 
convex (peaks) that correspond to a sudden rise or fall in 
changes in the values in the time series, even for the long-
term prediction 15 weeks after, reported in [26]. However, 
GRU cannot capture such sharp changes embedded in the 
original time series. In this previous work [26], TATP-based 
forecasting and its results within less than 1-year cycle was 
described. In this paper, both TATP and DFTS within just 
1-year cycle and their results are studied.

Accuracy of validation data was less than 0.01 for all 
basic forecasters, which means that they showed high 
performance for 10% validation data in the original past 
sequence.

After the training, 30 best results with lowest valida-
tion loss were selected among the trained ones, that is, 
i_max was 30. As a result, we obtained a set of 1590 basic 

forecasters {pi (n, k)| i in [1, 30], n = 20, k in [1, 53]} for each 
RNN, that is, LSTM, GRU, and SRNN.

4.2  TATP: construction of time series forecaster

We construct a time series forecaster by the time align-
ment of basic forecasters as follows. For each k, after 
obtaining enough number of i_max sets of basic forecast-
ers pi (n, k) (i in [1, 2, …, i_max]), we sort the basic fore-
casters in the order of their performance (in terms of root 
mean square error [RMSE]). After collecting the best fore-
casters from each k between 1 and k_max, we construct 
the sequence of the forecasters in the order of k:

Similarly, the sequences constructed by the second and 
third best performer is denoted by Sf(2), Sf(3), respectively. 
In this way, we obtain Sf(i) (i = [1, 2, …, i_max]). The for-
casted sequence values in the future from the past 
sequence sp

j
 is denoted by Sf (i)(sp

j
).

4.3  DFTS

The second forecasting method is called DFTS, in which 
the time series in the future itself is directly forecasted by 
an ANN that has been trained by the set of past time series 
sequences as input of RNN and the future sequences as 
the output. The forecasted future sequence is denoted as

where Sf(1) is the best forecast performer with the best 
performance (in terms of RMSE), and Sf(1), Sf(2), …, Sf(i) for 
the second one, and so on.

The best TATP and DFTS forecasters are not identical. In 
TATP, each basic forecaster is trained to achieve the high-
est performance for a specific point in the future, that is, 
the performance with the least error for the specific time 
point. In contrast, the DFTS forecaster is trained to simul-
taneously decrease the error for all points in the future 
sequence. Therefore, forecasters obtained by TATP and 
DFTS from the same data set behave differently.

The details of learning settings of DFTS are the same as 
those for TATP. For DFTS of all types of RNNs (LSTM, GRU, 
and SRNN), the learning converges approximately 1000 
epochs. Loss of validation is 0.000902481, 0.001141842, 
and 0.000888557 for LSTM, GRU, and SRNN, respectively.

(1)Sf (1) =
[
p(n, 1), p(n, 2),… , p(n, k_max)

]
.

(2)Sf (1) =
[
v1, v2,… , vn

]
,
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(a) TATP of LSTM 300 epochs (b) TATP of GRU 200 epochs

(c) TATP of SRNN 300 epochs (d) TATP of LSTM 10000 epochs

(e) DFTS of LSTM 1000 epochs (f) DFTS of GRU 1000 epochs

(g) DFTS of SRNN 1000 epochs 

Fig. 3  Forecasted prices 53 weeks into the future



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1434 | https://doi.org/10.1007/s42452-020-03225-9 Research Article

5  Forecasted future time series by TATP, 
DFTS

Examples of forecasted future time series by TATP and 
DFTS are shown in Fig. 3. All RNNs were trained by the 
same time series before February 12, 2018. In the figures, 
the first 20-week data represents the ground truth data 
(real values) before February 12, 2018. A solid line repre-
sents ground truth data (real values) for 53 weeks from 
February 12, 2018 to February 11, 2019. A broken line rep-
resents forecasted values for the same period.

Regarding the TATP of GRU and SRNN, learning con-
verged at the early stages. The results by forecasters after 
200 (GRU) and 300 (SRNN) epochs training are shown in 
Fig. 3b, c, respectively. For TATP of LSTM, learning pro-
gresses after 300 epochs, and it seems to converge at 
about 10,000 epochs. The results by forecasters after 
300 and 10,000 epochs training are shown in Fig. 3a, d, 
respectively.

TATP of all types of RNNs are able to capture long-term 
tendency (seasonality) of value changes in 53  weeks. 
For week 1 up to week 15, the separation between the 
real and forecasted values was substantially larger than 
other weeks for lettuce and tomato. All the types of RNNs, 
however, showed a similar tendency that forecasted val-
ues were higher than the real values. Therefore, there is a 
possibility that the real price was lower than usual in the 
previous years.

When LSTMs were compared for within 300 (LSTM-300) 
and within 10,000 (LSTM-10k) epochs, LSTM-10k showed 
higher accuracy at many points in the sequence, but not 
at all of them.

For DFTS, all three types of LSTM, GRU, and SRNN con-
verged within 1000 epochs. We can qualitatively estab-
lish the tendency of DFTS results in comparison with that 
of TATP results. The first tendency is that the forecasted 
results of DFTS are smoother than those of TATP mean-
ing that the value differences between two adjacent time 
points are smaller compared with those of TATP. The rea-
son is that since in TATP, the value at a future time point 
is learned independently from that at other future time 
points, there are no direct relations between the values in 
the forecasted future time series. In contrast, in DFTS, all 
the values at future time points are learned simultaneously 
and the direction of back-propagation is determined so as 
to simultaneously decrease the loss of all values equally. 
This simultaneousness seems to put relations between 
adjacent or neighboring points closer. These characteris-
tics of smoothness will be discussed in the context of PDF 
in Sect. 7.

The second tendency in the forecasted time series is the 
similarity in the capability of all algorithms to capture the 

macro-behavior of time series, meaning that all the algo-
rithms can capture the value changes in long term cycles. 
For instance, although the real-observed price value of 
tomato (red line) is highest at approximately week 50 in 
the graph, the forecasted values by all algorithms were 
much lower than those observed. This suggests that all the 
algorithms succeeded in capturing the long-term cyclic 
behavior in the past time series and forecasted the future 
precisely only when the tendency is still effective in this 
test case. In other words, the real tomato price in this test 
case might be higher than the usual prices in the past his-
tory due to some special reasons for this year.

The forecasting system was implemented using Keras, 
TensorFlow, and Python on Windows 7 and Linux.

6  Evaluation in accuracy

Our time series forecasting method, TATP and DFTS on 
LSTM, GRU, and SRNN can generate future time series. 
However, the problem is how to evaluate the forecasted 
results in the context of comparison with real values.

We need an accurate and effective method to evaluate 
these forecasted results when compared with real values. 
In this section, we evaluate the forecasted future time 
series based on accuracy.

6.1  Time point accuracy

The accuracy for time series should be measured in two 
contexts. The first is ‘time point accuracy’ that is measured 
at a specific future time point and is used to analyze the 
microscopic tendency. The second is ‘over-all accuracy’ that 
is measured as the average of the time point accuracies 
and is used to assess global performance.

The time point accuracy for all seven types of algo-
rithms is shown in Fig. 4a; it is measured as the RMS of 
relative error, that is, the absolute error divided by the 
real value | pp − pr |/pr, where pp and pr means predicted 
and ground truth (real) values, respectively, for three 
types of vegetables i. In Fig. 4b, the representative—the 
best three—results in the over-all accuracy described in 
Sect. 6.2.

There is a distinguished tendency of TATP of LSTM and 
GRU in the earlier weeks of the first third of a year before 
the 17th week, that is, they produce results with substan-
tially high error rates at some time points, although they 
show high performance on average. In contrast, TATP of 
SRNN and all DFTSs perform mostly well on average. These 
results suggest that the gate mechanism in LSTM and GRU, 
that captures the direct relations between a specific time 
point in past to the current, requires sufficient duration 
and/or attentiveness in training.
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Because DFTS forces the loss of all values to decrease 
equally, value changes in timeline are smoother than that 
of TATP.

6.2  Over‑all accuracy

We used two kinds of error rates to evaluate the over-all 
accuracy (global performance) and to compare forecasted 
results with real-observed values. When calculating the 
over-all error by time point errors, RMS error is widely 
used. In addition, we use mean absolute (MA) error to 
estimate the results without over-estimation of RMS, i.e., 
amplifying the relatively bigger error by square calcula-
tion. As described in the previous section, relative error is 
used instead of absolute error. The definition of the error 
estimation is as follows:

root mean square percentage error (RMSPE);

mean absolute percentage error (MAPE);

where fi and yi denote forecasted and real-observed val-
ues, respectively, and i denotes the number of time points 
of forecasted results. We omitted the multiplication by 100 
that is used for expressing percentages. The error rates of 
the seven types of algorithms are shown in Fig. 5.

For TATP, LSTM-300 and GRU-200, which were not suffi-
ciently trained, showed lower performance than the linear 
model (simple RNN) within 300 epochs. GRU did not show 
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Fig. 4  Time point accuracy of 
forecasted future time series

(a) Time point accuracy of all seven types of forecasting algorithms. 

(b) Time point accuracy of TATP-LSTM-10k, DFTS-LSTM, and DFTS-SRNN. 
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improved performance even after deeper learning up to 
10,000 epochs suggesting that it was over-fitted.

However, LSTM can be trained with higher number of 
epochs. TATP of LSTM within 10,000 epochs, a combina-
tion of the best time point forecaster selected among the 
10,000 epochs, showed the highest global performance in 
the measurement of both RMSPE and MAPE.

For DFTS, when measured by RMSPE, SRNN showed a 
higher performance than that of both LSTM and GRU. The 

performance, however, differs significantly, when meas-
ured by MAPE. LSTM outperformed SRNN and GRU. This 
is because through RMSPE, a relatively higher error rate, 
which occasionally occurs, is amplified by the square cal-
culation. In contrast, all the errors are equally averaged by 
MAPE. When LSTM is compared with SRNN, LSTM showed 
a higher performance on average than that of SRNN, but 
LSTM occasionally produced a high-error forecast than 
that of SRNN.

Fig. 5  Over-all accuracy
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To conclude the evaluation based on accuracy, the 
global over-all accuracy was shown to be useful in evalu-
ating the total performance of the algorithms, but we also 
need to establish the time point accuracy at the micro-
level to investigate the details of the performance, espe-
cially when analyzing the microscopic trends.

We conclude the following regarding the evaluation on 
error rate (accuracy):

(1) LSTM, after enough training, shows a higher perfor-
mance on average than that of SRNN both in the case 
of TATP and DFTS.

(2) LSTM seems to have a tendency of producing rela-
tively larger error data than that of SRNN occasionally.

(3) DFTS shows a higher performance than that of TATP 
on average both in the case of LSTM and SRNN.

(4) In DFTS, LSTM can learn faster than TATP, that is, 
LSTM shows a high performance in smaller epochs of 
approximately 1000 epochs, which is the same dura-
tion needed for the training of SRNN and GRU.

(5) GRU shows a lower performance than that of LSTM 
and even SRNN in many cases.

(6) To evaluate the performance, MAPE has equal impor-
tance to that of RMSPE.

(7) The representative three algorithms (TATP LSTM-
10k, DFTS LSTM, and DFTS SRNN) are the top three 
algorithms with the least error rates and they have a 
nearly equal ability of capturing global tendency, as 
shown in Fig. 4b.

(8) Comparing TATP and DFTS, DFTS always overcomes 
TATP for any basic forecaster when evaluated by 
MAPE. This fact matches the results reported in [23], 
i.e., multiple-output approaches (such as DFTS) are 
invariably better than single-output approaches 
(such as TATP). Our experiment suggests that their 
result could hold even for the neural networks with 
gate mechanism of LSTM and GRU.

7  Conservation of statistical characteristics

In this section, we describe another evaluation measure 
for forecasting algorithms in the context of the ability to 
conserve the statistical characteristics of the time series.

By conservation of statistical characteristics, we mean 
the ability of the time series forecasting algorithm to con-
serve the statistical characteristics of the original past 
time series in the forecasted future time series, or in other 
words, whether the same characteristics are observed in 
the generated future time series.

In social systems, including the market mechanisms, the 
time series observed in the systems does not always follow 
the Gaussian distribution. For instance, as shown in litera-
ture [27], many financial price movements in short-term 
trade do not follow the Gaussian distribution, but rather 
the Lévy stable distribution.

Compared with the Gaussian distribution, the Lévy 
stable distribution characterizes the nature of the target 
system more closely. For instance, market price changes 
slightly on usual days, but also occasionally changes 
dramatically. This tendency matches our feelings for the 
markets. In terms of mathematical features, (1) it has a 
sharp peak at the average value, and the probability is 
less than the Gaussian around the average value, and (2) 
it has a long or fat tail especially outside 3-sigma (three 
times the standard deviation) region, although the prob-
ability decreases rapidly outside 3-sigma in the Gaussian 
distribution.

Market price is the results of huge numbers of agent 
interactions in the society. The statistical characteristics of 
its PDF is expected to work as a kind of “finger print” of the 
target system, which we try to use as a way of evaluation.

First, we investigated the statistical characteristics of the 
original past time series that was used to train the forecast-
ing algorithms. The data used was for a total of 302 weeks 

d = ax – 1.6

r = 1.6

Fig. 6  PDF of real-observed past time series. a Left: linear-log plot. b Right: log–log plot
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wherein the price data of all three kinds of products were 
simultaneously available.

Figure 6 shows the result of the analysis of the original 
past time series represented as a PDF. In Fig. 6a, the prob-
ability distribution is plotted in linear-log scale. Horizontal 
axis is the value change in the time series normalized by 
standard deviation, and the vertical axis is the existence 
probability of the value. A solid black line represents the 
Gaussian distribution for comparison.

From the findings, there are many data points outside 
the Gaussian curve especially outside 3-sigma region. In 
a Gaussian distribution, there is a very limited number of 
data points outside the 3-sigma region (≤ 0.27% of the 
data points). Additionally, the function seems to have a 
sharp peak at the average value, and less number of data 
exists around the average value. These findings show that 
the target time series follows the Lévy stable distribution 
rather than the Gaussian distribution.

To investigate further, we examined the log–log plot 
of the PDF (Fig. 6b). The Lévy stable distribution follows 
the power law that is represented by a straight line in a 

log–log plot outside approximately the 1-sigma region. 
Therefore, we can confirm the Lévy stable distribution by 
observing the log–log plot of the distribution. As shown in 
Fig. 6b, the data follow the power law with the coefficient 
1.6. Although the linearity outside 3-sigma is broken, this 
might be caused by the limited number of samples. We 
conclude that the original past time series follows the Lévy 
stable distribution with a coefficient of 1.6.

Our objective is to assess whether the stylistic charac-
teristics of the Lévy stable distribution was conserved by 
the transformation of the forecasting mechanism, that is, 
whether the generated future time series also followed the 
original Lévy stable distribution or not.

To examine the performance of conservation of statisti-
cal characteristics, we analyzed the PDF of the generated 
time series. For each forecasting algorithm, the best 10 
forecasters, in order of accuracy, were selected. Each of the 
forecasters generated 53 weeks forecast results based on 
the ground truth (real) data observed for 54 weeks. Thus, 
a total of 28,620 data points of value differences were 
obtained. There is no problem with gathering the best 10 

d = ax – 1.6

r = 1.6

Fig. 7  PDF of time series by TATP of LSTM 300 epochs

d = ax – 1.6

r = 1.6

Fig. 8  PDF of time series by TATP of GRU 200 epochs
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forecasters, because the obtained distribution automati-
cally forms a stable distribution, when stable distributions 
(such as Lévy distribution) have been gathered and added 
[28].

The results for all seven algorithms are shown in Figs. 7, 
8, 9, 10, 11, 12 and 13. Many observed future time series 
show non-Gaussian distribution characteristics, especially 
there are many observed data points outside the 3-sigma 
region.

Fig. 9  PDF of time series by TATP of SRNN 300 epochs

d = ax – 1.6

r = 1.6

Fig. 10  PDF of time series by TATP of LSTM 10,000 epochs

d = ax – 1.6

r = 1.6

Fig. 11  PDF of time series by DFTS of LSTM 1000 epochs
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In TATP of LSTM-300 and LSTM-10k (Figs. 7, 10), the dis-
tinct features of a Lévy stable distribution can be clearly 
observed in the linear-log plot, and the PDF can be repre-
sented as a straight line in the log–log plot with a coefficient 
1.6 that is equal to the original past time series. TATP of GRU 
also conserves the statistical characteristics of the probabil-
ity distribution (Fig. 8), but simple RNN seems not to have 
the ability to conserve the Lévy stable distribution feature 
as shown in Fig. 9. The generated sequence by simple RNN 
resembles a Gaussian distribution rather than a Lévy stable 
distribution.

For DFTS, all three types of algorithms, LSTM, GRU, 
and SRNN, show the characteristics of Lévy distribution, 
that is, a sharp peak at the average value, less probability 
density around the average value, and a long tail outside 
the 3-sigma region (Figs. 11a, 12a, 13a). The extent of the 

characteristics is, however, weaker in GRU and SRNN than in 
LSTM (Figs. 11b, 12b, 13b).

We have carried out another statistical analysis by sea-
sonal decomposition. When taking 53 weeks (about 1-year) 
cycle for originally observed real values and forecasted val-
ues by our methods. The results are shown in Fig. 14. There 

Fig. 12  PDF of time series by DFTS of GRU 1000 epochs
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r = 1.6

Fig. 13  PDF of time series by DFTS of SRNN 1000 epochs
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Fig. 14  Trends by seasonal decomposition when cycle is 53 weeks
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seem to be no significant differences between forecasting 
algorithms.

8  Comparison among algorithms

Seven kinds of forecasting algorithms show different 
behaviors in the three evaluation measures. The com-
parison of the behaviors of the forecasting algorithms 
can be summarized as follows.

(1) For TATP, the well-trained LSTM-10k shows superior 
performance in terms of accuracy, and it also seems 
to conserve the characteristics of the Lévy distribu-
tion better than SRNN-300 and GRU-200 forecasting 
algorithms.

(2) For DFTS, LSTM and SRNN show the highest perfor-
mance in MA and RMS, respectively, in terms of accu-
racy. All three kinds of DFTS algorithms LSTM, GRU, 
and SRNN seem to conserve the statistical character-
istics best in this order.

(3) To compare LSTM in TATP and DFTS, the accuracy 
of TATP is higher than that of DFTS when measured 
using RMS, and the accuracy of DFTS is higher than 
that of TATP when measured using MA. This implies 
that TATP tends to generate major errors occasionally. 
There is no significant difference in the conservation 
ability of statistical characteristics (Figs. 10b, 11b).

(4) When SRNN in TATP was compared with DFTS, DFTS 
shows higher performance than TATP both in the 
terms of accuracy (both in RMS and MA) and in the 
conservation ability of statistical characteristics. This 
conclusion is mathematically natural because SRNN 
with linear activation function is a polynomial func-
tion and DFTS puts an additional constraint among 
the variables, which helps to narrow the range of the 
variables.

To conclude the comparison study of algorithms, LSTM 
demonstrated a higher performance than that of GRU and 
SRNN based on the accuracy and the conservation ability 
of the statistical characteristics, but only when it is trained 
in the right direction with enough epochs, for the data set. 
The selection of TATP and DFTS differently influences the 
accuracy in the case of RMS and MA.

In contrast, SRNN behaves differently. When forecasted 
with a linear model of SRNN, it shows a higher perfor-
mance both in accuracy and in statistical characteristic 
conservation when a constraint by DFTS on the values is 
added.

9  Discussion

Whether RNNs outperform conventional linear methods 
has been under discussion. In the previous studies, LSTM 
has been shown to outperform ARIMA for several kinds 
of financial indices [29]. In contrast, RNNs have also been 
indicated to show poorer performance than that of the 
conventional methods [30].

We believe that this difference is caused by the selec-
tion of evaluation measures and the wrong handling of 
the forecasting methods, especially the way of learning 
of RNNs. The evaluation measures need to distinguish 
which attribute of time series should be focused on, that 
is, time point accuracy, over-all accuracy, or statistical 
characteristics. In many previous reports, the measure of 
evaluation is fixed, and other attributes of the time series 
are ignored. We think this is one reason for the varying 
analytical results of RNNs and conventional methods for 
time series forecasting.

In addition, there is a possibility that RNNs were not 
sufficiently trained in the previous studies concluding that 
RNNs showed poorer performance than that of the con-
ventional linear methods. As seen in Sect. 6, LSTM with 
less training epochs cannot show better performance than 
SRNN. It requires training with enough epochs in the right 
direction to become a high-performing forecaster both in 
TATP and DFTS.

Regarding the difference between TATP and DFTS, 
when applying SRNN, DFTS always performs better than 
TATP. This is because DFTS puts a constraint to the fore-
casted time series that forces the values of time series to 
change simultaneously. Since SRNN with linear activation 
is a polynomial function, this kind of constraint helps the 
forecasted time series to reduce errors.

In contrast, this type of constraint does not always work 
well for the non-linear methods such as LSTM and GRU. 
TATP shows a higher performance than that of DFTS in 
over-all accuracy when LSTM is applied. This is because 
in TATP, each forecaster for a specific point in future can 
concentrate on the specific time point, and it can pursue 
low forecast errors between generated and real observed 
values at the time point. This assumption seems to hold 
in this experiment.

To compare this research with other approaches, first, 
we provide a way to enable the selection of basic fore-
casting mechanism according to the specified criteria 
such as time-point accuracy, global accuracy, and sta-
tistical characteristics of generated future time series. 
Second, we clarified the effectiveness and limitation of 
controlling the influence using the gate mechanism. Gate 
mechanism seems to capture subtle relations embedded 
in time series, which possibly makes the accuracy and/
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or statistical characteristics better or worse occasionally. 
Third, the algorithm fits the limitation of small numbers 
of training data with missing part of temporal duration 
and product. Actually, it is possible to forecast 1-year cycle 
(53 week) after just training by 20 weeks that is less than 
the half number of the whole cycle.

One shortcoming of our method is the extensibility to 
higher dimensional variables of target time series. In this 
paper, the target is 3-dimentional vector. When forecast-
ing these three variables independently, the accuracy in 
RMSE sense decreases about 1 percent, which suggests 
that these three variables are almost uncorrelated. Exploit-
ing correlations between variables in our framework is left 
for future work.

The proposed method can be applied to a field where 
the statistical aspects of predicted time series are impor-
tant, for instance, to improve the simulation ability of eco-
nomic systems [31, 32], transportation indirect control at 
the macro-level [33, 34], and remote-sensing ability under 
noisy environments in the internet of things (IoT) [35].

10  Conclusion

We have implemented forecasting tasks of commodity 
price based on RNNs. Two methods of generating future 
times series, TATP and DFTS, are proposed, each of which 
use a unique kind of RNN including LSTM, GRU, or simple 
RNN as the basic forecaster.

The results were examined based on the accuracy (error 
rate in RMS and MA) and the conservation performance of 
the statistical characteristics by conformity to the power 
law in the stable distribution such as Lévy distribution.

The comparison studies among the algorithms showed 
that LSTM shows the highest performance in terms of 
accuracy (low error rate) and the conservation perfor-
mance of the statistical characteristic, only when it was 
well trained for enough epochs in the right direction. Sim-
ple RNN, as a generalized linear modeling method, shows 
better performance in error rate than GRU and LSTM with 
less numbers of learning epochs. LSTM after enough train-
ing, however, shows a better performance than the gener-
alized linear methods of SRNN.

When comparing TATP with DFTS, DFTS introduces 
additional constraint that force forecasted future values 
to simultaneously approach the real-observed value. This 
constraint works well for linear methods (simple RNN), 
because a linear method is a polynomial of coefficients 
and past value variables, and the polynomial can be eas-
ily optimized by the additional constraint. In contrast, this 
constraint does not always work well when non-linearity 
exists in the system such as gate mechanism in LSTM and 

GRU. TATP of LSTM searches the optimized value in an 
independent manner among variables, and it shows bet-
ter performance than DFTS based on the RMS error.

They were evaluated the forecasting algorithms based 
on the accuracy and the conservation ability of statistical 
characteristics. We found that LSTM, after sufficient train-
ing, shows a higher performance with regards to not only 
the error rate but also the conservation ability of a prob-
ability distribution compared to that of other RNNs, both 
in TATP and DFTS. These results suggest that the selection 
of the effective forecasting methods depends on the eval-
uation criteria and that the combinations of forecasting 
methods is useful depending on the intended application.

To conclude the comparison study, selecting the best 
algorithms depends on which aspects or attributes of 
the target systems we aim to focus on. The linear mod-
eling methods, such as SRNN with linear activation func-
tion used in this study, can forecast the future sequence 
with fewer epochs meaning that low computational costs 
are needed. Non-linear methods such as LSTM require 
enough epochs of learning in the right direction implying 
that there are cases when LSTM fails to find good solu-
tions even after long learning periods. However, once it 
is well trained, the non-linear methods (mainly demon-
strating gate mechanism) show improved performance 
in accuracy.

The LSTM forecasting method also demonstrates high 
conservation performance of the statistical characteristics 
of stable distribution functions such as Lévy distribution.

Future work includes constructing forecasting mecha-
nisms with rapid learning and preciseness by combining 
different types of basic forecasting methods. Second is the 
automatic selection of forecasting methods depending on 
the application need such as time-point accuracy, over-
all accuracy, and/or statistical characteristics of generated 
time series.
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