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Abstract
The rainfall monitoring allows us to understand the hydrological cycle that not only influences the ecological and envi-
ronmental dynamics, but also affects the economic and social activities. These sectors are greatly affected when rainfall 
occurs in amounts greater than the average, called extreme event; moreover, statistical methodologies based on the 
mean occurrence of these events are inadequate to analyze these extreme events. The Extreme Values Theory provides 
adequate theoretical models for this type of event; therefore, the Generalized Pareto Distribution (Henceforth GPD) is 
used to analyze the extreme events that exceed a threshold. The present work has applied both the GPD and its nested 
version, the Exponential Distribution, in monthly rainfall data from the city of Uruguaiana, in the state of Rio Grande 
do Sul in Brazil, which calculates the return levels and probabilities for some events of practical interest. To support the 
results, the goodness of fit criteria is used, and a Monte Carlo simulation procedure is proposed to detect the true prob-
ability distribution in each month analyzed. The results show that the GPD and Exponential Distribution fits to the data 
in all months. Through the simulation study, we perceive that the GPD is more suitable in the months of September and 
November. However, in January, March, April, and August the, Exponential Distribution is more appropriate, and in the 
other months, we can use either one.

Keywords  Extreme value theory · Probability distribution · Rain amount · Inundation · Environmental concern

1  Introduction

Rainfall is vital for life on Earth [1], but its occurrence in 
high magnitude can cause damage and losses, usually 
causing flooding, destruction of buildings and crops, soil 
erosion, breaches of dikes and dams, among others [2, 3]. 
Damage in cities tends to be more severe because of the 
rapid urbanization and installation of complex infrastruc-
ture [4]. In addition, the frequency of extreme weather 
events has shown an increasing trend in various regions 
of the planet [2, 5]. In addition, the frequency of extreme 

weather events has shown an increasing trend in several 
regions of the planet [6–8], and the southern region of Bra-
zil has suffered from the occurrence of these events [2, 5].

To minimize negative impacts or avoid economic, social 
and environmental losses, it is necessary to plan activities 
and constructions based on the probabilistic forecast of 
the occurrence of maximum precipitation in a given loca-
tion [9]. For the forecasting process the fit of mathematical 
statistical models to the data, which can study the phe-
nomena with different approaches, as well as the occur-
rence of extreme values, temporal distribution, spatial 
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distribution, the intensity of the phenomenon, among 
others [10–12].

Statistical approaches based on the analysis of extreme 
values have shown promising results in the forecasting of 
these events in several areas of science [13–16]. One of the 
models extensively employed, for this purpose, in various 
scientific fields such as insurance, finance, meteorology, 
and the environment is the Generalized Pareto Distribu-
tion [17, 18].

Given the use of probabilistic models, assessing their 
goodness of fit is an equally important task. In the analysis 
of extreme events, this stage is practically not taken into 
account, even when it is a very consolidated methodol-
ogy. Goodness of fit tests such as Kolmogorov-smirnov, 
chi-squared, and likelihood ratio are widely used [17, 19, 
20]. However, as recommended by [21], the fit of the dis-
tributions using estimates of the parameters of the fitted 
distributions can lead to the occurrence of type II error, 
and, to circumvent this fact, proposes a simulation study. 
In general, these simulation studies are based on Monte 
Carlo procedures [22, 23].

Hence, the present work aims to fit the Generalized 
Pareto Distribution to the maximum monthly rainfall in 
the city of Uruguaiana, Rio Grande do Sul state, Brazil, as 
well as to calculate the probability of some extreme events 
occurring, calculate return levels of extreme rainfall events 
and its confidence intervals in periods of 2, 5, 10, 30, 50 
and 100 years.

2 � Methodology

The data set was obtained from the meteorological data-
base for teaching and research (BDMEP), from January 
1961 to April 2019, made available by the National Insti-
tute of Meteorology (INMET) and registered at the Uru-
guaiana—Rio Grande do Sul state weather station. The 
data are grouped in monthly periods and in each month 
the threshold method is used. Consequently, the highest 
values of rainfall above a sufficiently high threshold have 
been estimated according to the POT (peaks over thresh-
old) methodology. As a result, they are analyzed by Gen-
eralized Pareto Distribution.

According to Coles [24], as well as Generalized Extreme 
Values (Henceforth GEV) distribution is the limit distribu-
tion of the block maxima, and the GPD appears as the par-
ametric form for limit distribution for threshold excesses, 
whose probability density function is given by

The distribution function is given by

where u is the threshold, � is the scale parameter and � the 
shape parameter. In priori, the threshold should be known 
and it is described in Sect. 2.1. The parameters � and � 
must be estimated from the data and it is described in 
Sect. 2.2. Through the GPD distribution, three classes of 
standard distributions can be obtained: Type I: Exponential 
( lim
�→0

F(x|�, �, u ) ), Type II: Pareto ( 𝜉 > 0 ) and Type III: Beta or 

ordinary Pareto ( 𝜉 < 0).

2.1 � Threshold selection

To choose the appropriate threshold value, an explora-
tory graphical tool was used based on the linearity of the 
mean excesses function. This plot consists of the mean 
excesses above several thresholds with the threshold 
itself (Fig. 1). This plot is also known as mean residual 
life plot [25].

On the other hand, the mean residual life plot can be 
difficult to interpret as a threshold selection method. A 
complementary technique is employed, and it is based 
on fitting the GPD at a variety of thresholds, and on look-
ing at the stability of the parameter estimates [24]. This 
plot is known as threshold choice plot (Fig. 2).
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Fig. 1   Mean residual life plot for choosing a threshold
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The choice of the very high threshold may result in a 
small number of observations, influencing the variance 
of the estimators. However, a threshold that does not 
satisfy the theoretical assumptions may result in dis-
torted estimates. Thus, one should choose the threshold 
that makes the mean residual life plot and the functions 
of the parameters � and � more or less linear [26].

2.2 � Parameter estimation

After selection of the threshold, the GPD parameters were 
estimated by the maximum likelihood method. The maxi-
mum likelihood estimators maximize the log-likelihood 
function. Suppose y1,… , yk are the k excesses of a thresh-
old u [24]. For � ≠ 0

where (1 + 𝜎−1𝜉xi) > 0 for i = 1,… , k  ;  in other way, 
l(�, �) = −∞ . In the � → 0 case, the log-likelihood func-
tion is given by

The maximum likelihood estimators of parameters � and 
� are obtained through the solution of the homogeneous 
equations, given by partial derivatives of log-likelihood 
with respect each parameter. The estimation of � and � 
requires the use of a numerical maximization, usually any 
method for this works, like Newton–Raphson, Simulated 
Annealing, Fisher’s scoring or its variations [27].
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2.3 � Hypothesis testing

With the parameters estimated, goodness of fit criteria of 
the GPD model were evaluated. The Kolmogorov Smirnov 
(KS) test was used to compare the theoretical cumulative 
distribution and the empirical cumulative distribution [28]. 
The Ljung Box (LB) independence test, whose statistics are 
compared with the �-th quantile of the chi-squared distribu-
tion with one degree of freedom. The Mann-Kendall test was 
used to determine if the series has a statistically significant 
time trend [29]. When very small values of p-value are found, 
it indicates evidence in favor of the alternative hypothesis, 
that is, there is some tendency to modify the behavior of the 
analyzed series.

For the maximum likelihood estimates, one can test if � 
is statistically null. Then, to test the null hypothesis that the 
extremes distributions is exponential, we use the likelihood 
ratio test (LT), whose test statistic is

where l(𝜎̂) and l
(
𝜎̂, 𝜉

)
 represent the log-likelihoods respec-

tively using the Exponential and GPD densities with the 
respective maximum likelihood estimates [26]. Thus, the 
null hypothesis that � = 0 is rejected if Λ is greater than the 
�-th quantile of the chi-squared distribution with 1 degree 
of freedom. Alternatively, if the p-value of the test is less 
than the significance level, the null hypothesis is rejected. 
For all tests we adopt 1% as significance level

2.4 � Probability of excesses and return levels

According to Eq. 2 in the � ≠ 0 case, to estimate the prob-
ability of occurrence of precipitation above a threshold, we 
have that

However, in equation 6 it calculates the probability of 
occurrence of a given maximum precipitation that is 
higher than the adopted threshold. It is desired to calcu-
late the probability of occurrence of precipitation above 
a maximum value. Therefore, equation 6 is simplified in

where 𝜆 = Pr [X > u] . Hence, the level xm that is exceeded 
on average once every m observations is the solution of
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Fig. 2   Threshold choice plot for scale and shape estimated param-
eters
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Therefore, the equation  8 leads to the m-observation 
return level. For representation, it is often more conveni-
ent to give return levels on an annual scale, so that the 
N-year return level is the level expected to be exceeded 
once every N years. If there are nx observations per year, 
this corresponds to the m-observations return level, where 
m = N × nx [24]. Hence, the N-Year return level is defined 
by

where nx is the number of days to be analyzed. We ana-
lyzed monthly rainfall data, so nx = 31, 30, 28 days, accord-
ing to month. If � → 0 , the return level is defined by

For the estimates of return level, we need to know the 
estimates of the parameters of the GPD. As a result, to 
estimate the probabilities and return level, the maximum 
likelihood estimates will be used, as described in the previ-
ous sections. Thus, an estimate for � is required, which has 
the following natural estimator

corresponding to the proportion of the sample points 
exceeding u. In addition to the return level estimates, 
the confidence intervals with confidence coefficient 
(1 − �) × 100% , associated with the return periods of 2, 5, 
10, 30, 50 and 100 years, were constructed using the delta 
method, as described in Coles [24]. Since the number of 
excesses of u follows a binomial distribution, 𝜆̂ is also the 
maximum likelihood estimate of � . The confidence inter-
vals for ẑN can be obtained by the delta method, but the 
uncertainty in the estimate of 𝜆̂ should also be included in 
the calculation. From the standard properties of the bino-
mial distribution, Var

(
𝜆̂
)
≈ 𝜆̂

(
1 − 𝜆̂

)
∕n , then the complete 

variance-covariance matrix is approximately

where vi,j , represents the term (i, j) of the variance-covari-
ance matrix of �̂ and �̂  . Thus by the delta method,
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evaluated in 
(
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)
 . Therefore, the confidence interval 

(1 − �) × 100% for ẑN is given by

where z �

2

 is the �
2
-th quantile of the standard normal 

distribution.

2.5 � Simulation study to evaluate goodness of fit 
for extreme values distributions

A computational simulation study was conducted with 
the purpose of evaluating the performance of the distri-
butions in each month. For this, the Monte Carlo simula-
tion method was used, which consists of making several 
achievements of a phenomenon according to pre-estab-
lished parameters. At the end of these simulations, we 
can calculate the mean and standard deviation of the 
simulations and these represent measures of accuracy 
and precision, respectively [30, 31]. For each month, the 
data series was divided into a training series, comprising 
30 years (1961–1991), and a test series, comprising 29 
years (1992–2019). Thus, two scenarios are considered: 
(1) the first scenario generates samples of the Exponen-
tial distribution with the estimated parameters, and (2) 
the second scenario generates samples of the GPD with 
the estimated parameters.

Each scenario [(k = (1), (2)] is repeated 10000 times, 
according to the Monte Carlo simulation procedure, fol-
lowing the steps described below: 

(i)	 With the training sample, generate a sample of the 
same size (n) according to the probability distribution 
of scenario k;

(ii)	 Estimate the parameters of the Exponential and GPD 
distributions using the maximum likelihood method, 
described in Sect. 2.2;

(iii)	 Perform the likelihood ratio test of step (ii);
(iv)	 For the return periods of 2, 5, 10, 15, 20, 25, 28 years, 

calculate the respective return level with the prob-
ability distributions and their respective parameters 
estimated in step (ii);

(v)	 With the test sample, obtain the observed return lev-
els for the return periods of 2, 5, 10, 15, 20, 25, 28 
years. Calculate the Mean Absolute Percentage Error 
(MAPE) and the Root Mean Squared Error (RMSE), 
given by equations 16 and 17 , respectively. 
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Steps from (i) to (v) are repeated 10000 times. After 
that, we obtain the Monte Carlos average from MAPE 
and RMSE. In addition, the following were calculated: 
the proportion of which the LT, in step (iii), resulted in a 
p-value higher than the significance level of 1% , denoted 
by p̂LT  ; the proportion of which the MAPE of the GPD is 
greater than the MAPE of the Exponential distribution, 
denoted by p̂MAPE ; and the proportion of which the RMSE 
of the GPD is greater than the RMSE of the Exponential 
distribution, denoted by p̂RMSE . It should be noted that 
the adopted return times, 2, 5, 10, 15, 20, 25, 28 years, 
nz = 7 , comprise the time of the test series.

Finalizing the proposed methodology, we used the R 
software [32] and the evd package [33].

(17)MAPE =
1

nz

nz∑
i=1

|||||
zNi

− ẑNi

zNi

|||||
× 100

3 � Discussion and results

Table 1 shows that in all months the exponential distribu-
tion ( � → 0 ) performs better by the likelihood ratio test. 
The Mann-Kendall test indicated no trend in all months 
of the year, since the p-values showed results higher 
than 0.01. That is, there are statistical indications that 
each series of monthly rainfall ceilings does not have a 
trend over the years. Furthermore, the series of monthly 
highs are independent, with 1% level of significance. We 
should highlight that we have used these tests to verify 
the assumptions of the Extreme Value Theory models, 
but that they could be used for other interests, such as 
[2, 29, 34] in the trend analysis of hydro-climatic series. In 
addition, the Kolmogorov-Smirnov test states that both 
distributions were fitted in all months and the QQ plots 
corroborate the results (Fig. 3). Satisfactory adjustment 
of the GPD distribution was also found by Lazoglou [35], 
Salleh and Hassan [36], Wan et al. [37], Zahid et al. [38].

From the fit of the exponential distribution, we ver-
ify, in Table 2 that in the months of October to February 
and April to May, amounts of rainfall above 50 mm are 
recorded, with a probability of occurrence greater than 

Table 1   Threshold ( ̂u ) selected 
by procedure described in 
Sect. 2.1, parameter estimates 
and Hypothesis tests (p-value) 
of the Generalized Pareto 
(GPD) and Exponential 
distributions for monthly 
maximum rainfall data of the 
city of Uruguaiana, RS, Brazil

Month Probability 
distribution

û 𝜎̂ 𝜉 LT KS LB Mann Kendall

January Exponential 40 24.1319 – 0.883 0.774 0.242 0.7413
GPD 40 24.6996 −0.0239 0.762

February Exponential 40 27.875 – 0.773 0.772 0.821 0.4654
GPD 40 29.2355 −0.0486 0.723

March Exponential 35 27.7219 – 0.377 0.717 0.266 0.0555
GPD 35 31.9006 −0.1463 0.459

April Exponential 50 29.7306 – 0.376 0.951 0.374 0.4456
GPD 50 35.3042 −0.1832 0.9

May Exponential 45 30.9034 – 0.941 0.602 0.288 0.5735
GPD 45 30.3336 0.019 0.637

June Exponential 30 20.4484 – 0.051 0.113 0.222 0.1738
GPD 30 14.1875 0.3039 0.527

July Exponential 35 13.3269 – 0.788 0.848 0.099 0.0291
GPD 35 12.2025 0.087 0.889

August Exponential 35 16.8577 – 0.179 0.083 0.021 0.7407
GPD 35 12.977 0.227 0.039

September Exponential 23 20.0213 – 0.216 0.378 0.675 0.2254
GPD 23 24.3738 −0.2069 0.181

October Exponential 40 21.7176 – 0.482 0.478 0.27 0.6963
GPD 40 19.4466 0.1053 0.752

November Exponential 40 20.4262 – 0.578 0.526 0.758 0.0415
GPD 40 21.9398 −0.0755 0.684

December Exponential 40 21.1594 – 0.973 0.665 0.763 0.6555
GPD 40 21.0502 0.0052 0.677
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60%. The table also shows that the probability of rainfall 
above 150 mm is higher in April and May than in other 
months of the year.

Rain volumes between 100 mm and 180 mm in a few 
hours can lead to landslides and flooding. One example 
occurred in the city of Rolante, metropolitan region of 

Fig. 3   Q-Q plots of the best fitted distribution showed by the com-
parison of Tables 4 and 5 for monthly maximum rainfall data of the 
city of Uruguaiana, RS, Brazil. Dashed lines represent the 95% con-

fident interval, the points represent the empirical return level and 
estimated by the fitted model, solid line represent the 1 to 1 rela-
tion by return levels
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Porto Alegre, which has an average rainfall of 180 mm 
accumulated. landslides caused by a flood reached an area 
of 230 hectares and more than 6,600 inhabitants, and mud 
were dragged by the river, causing a cutoff of the water 
supply in eight municipalities of the region [39].

Herrmann [40] reported that in November 1991 there 
was precipitation in only two days with accumulated 
above 400 mm in São José / SC. There were numerous 
landslides and deaths in the eastern mountain range of 
Santa Catarina since houses crashed down and several sec-
tions of the highway BR 101 were blocked by the collapse 
of barriers. In December 1995, heavy rainfall resulted in 
29 deaths, causing 29 municipalities in the mesoregion 
of southern Santa Catarina to declare a state of calamity.

Table 3 presents estimates of maximum rainfall return 
levels for periods of 2 to 100 years for each month. We 
monitored that by means of the fit of the GPD and expo-
nential distributions, that the precipitation estimates 
increase as the time of return increases. This fact is already 
expected and is in agreement with Zahid et al. [38].

In the period from September to May, rainfall above 
50 mm is recorded, which depending on the hourly inten-
sity may cause erosive processes in the soil, which can 

become harmful in order to contribute to the removal of 
essential nutrients for the development of the crop [25].

In March, it is expected that the maximum rainfall 
return level of 154.01 mm is exceeded once in 50 years 
by the Exponential distribution. Medeiros et al. [41] found 
for the same month a return level of 124.33 mm by the 
Gumbel distribution in the municipality of Jataí-Goiás and 
report that high levels of precipitation daily can cause 
intense rainfall and that estimates of precipitation in dif-
ferent return periods can be useful for assist professionals 
involved with planning and execution of hydraulic struc-
ture projects in decision making in control of floods.

Zahid et al. [38] conducted a study on temperatures 
return levels in concluded that extreme temperatures can 
affect yields. The crops are very sensitive to temperature 
variations in the order of 1 ◦ C, according to Hatfield & Prue-
ger [42]. Every harvest has a certain temperature tolerance 
limit. When the temperature exceeds this limit, the yield 
of the harvest is drastically reduced. The same goes for 
extreme rainfall.

The results indicate that the month of April presented 
the highest rainfall return levels, whose expected level is 
156.96 mm in an average period of 50 years. As a way of 
providing greater precision in the results, Beijo et al. [43] 

Table 2   Probability ( % ) of 
rainfall occurrence by the 
probability distributions for 
monthly maximum rainfall 
data of the city of Uruguaiana, 
RS, Brazil

Month Probability Distri-
bution

Amount of precipitation (mm)

50 75 100 125 150

January Exponential 66.07 23.45 8.32 2.95 1.05
GPD 66.58 23.65 8.19 2.76 0.9

February Exponential 69.86 28.49 11.62 4.74 1.93
GPD 70.83 29.13 11.51 4.35 1.57

March Exponential 58.21 23.62 9.59 3.89 1.58
GPD 61.44 25.03 8.9 2.63 0.6

April Exponential 100 43.13 18.6 8.02 3.46
GPD 100 46.84 19.4 6.78 1.84

May Exponential 85.06 37.88 16.87 7.51 3.35
GPD 84.83 37.54 16.82 7.63 3.5

June Exponential 37.6 11.07 3.26 0.96 0.28
GPD 30.93 10.85 4.91 2.59 1.52

July Exponential 32.45 4.97 0.76 0.12 0.02
GPD 31.1 5.59 1.26 0.34 0.1

August Exponential 41.07 9.32 2.12 0.48 0.11
GPD 35.83 9.66 3.52 1.55 0.78

September Exponential 25.96 7.45 2.14 0.61 0.18
GPD 28.42 5.99 0.6 0.01 0

October Exponential 63.1 19.96 6.31 2 0.63
GPD 60.61 19.24 6.91 2.74 1.18

November Exponential 61.29 18.02 5.3 1.56 0.46
GPD 62.89 18.27 4.67 1.02 0.18

December Exponential 62.34 19.13 5.87 1.8 0.55
GPD 62.22 19.1 5.9 1.84 0.58
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calculated the maximum rainfall return levels in Lavras, 
Minas Gerais state, by type I extreme values distribution 
(Gumbel), and found that for an average period of 50 years, 
expected level is 148 mm and with a 95% confidence that 
varies between 131 mm and 164 mm. These authors also 
recommend that, in the analysis of maximum precipita-
tion, if the interest is in the maximum extreme event, it is 
suggested that the upper limit of the interval be used as a 
reference value. In this sense, the Fig. 4 shows the behavior 
of the return levels and their 95 % confidence intervals.

Rain shall be considered erosive and individual as long 
as they are greater than or equal to 10 mm or greater or 
equal to 6.0 mm, provided that they occur in a maximum 
of 15 minutes and separated from each other by a period 
of at least six hours with a rainfall of 1.0 mm or less [44].

As seen in Table 1, the likelihood ratio test attests that 
the Exponential distribution is sufficient to model rainfall 
data and in a few months the Kolmogorov Smirnov test 
indicated that the GPD distribution is more appropriate, 
by comparing its p-values. If two probability distributions 
from the same family fit a set of data, the one with the least 
number of parameters is preferable [45]. This fact is impor-
tant when there are problems in estimating the param-
eters of models, which can occur in methods based on 

likelihood [13, 46, 47]. In our study, this fact did not occur, 
which allows us to conduct the simulation study referred 
to in the Sect. 2.5. We conclude that there are months in 
which the Exponential distribution is more adequate, as 
in the months of January, March, April and August, since 
most of the comparison criteria used are favorable to this 
distribution. In September and November, most criteria 
indicated that the GPD distribution is more appropriate 
(Tables 4 and 5 ).

In the months of February, May, June, July, October 
and December, the result was inconclusive, as there was 
no unanimity between the two distributions in the two 
scenarios evaluated (Tables 4 and 5). In that case, we can 
use any of the distributions. We should emphasize that the 
Exponential distribution is expected to present a better 
result in the first scenario and GPD in the second scenario. 
When this does not occur, there is a strong indication that 
the true distribution in that month is that which was unan-
imously elected by the adopted criteria.

Regarding simulation studies involving distributions of 
extreme values, Xavier et al. [48] have reported in their sim-
ulation studies involving the generalized extreme values 
distribution, in the presence of covariates to model trend 
or temporal effect. The one that is more parsimonious is 

Table 3   Return Levels 
estimates (mm) by the 
probability distributions for 
monthly maximum rainfall 
data of the city of Uruguaiana, 
RS, Brazil

Month Probability 
distribution

Time of return (years)

2 5 10 30 50 100

January Exponential 56.01 78.12 94.85 121.36 133.69 150.41
GPD 56.27 78.28 94.73 120.24 132.01 148.07

February Exponential 67.97 93.51 112.83 143.46 157.69 177.02
GPD 68.65 93.58 111.76 139.79 152.49 171.05

March Exponential 64.78 90.18 109.39 139.85 154.01 173.23
GPD 66.73 90.18 105.82 127.88 136.67 149.79

April Exponential 61.26 88.5 109.11 141.77 156.96 177.57
GPD 62.94 90.69 109.09 133.4 143.2 155.29

May Exponential 49.55 77.86 99.28 133.23 149.02 170.44
GPD 49.46 77.58 99.22 133.71 149.47 173.03

June Exponential 34.11 52.85 67.02 89.49 99.94 114.11
GPD 32.94 48.88 64.2 96.2 114.48 131.16

July Exponential 35.63 47.84 57.08 71.72 78.52 87.76
GPD 35.57 47.25 56.73 72.96 80.89 92.18

August Exponential 35.88 51.33 63.01 81.53 90.14 101.83
GPD 35.68 49.05 61.19 84.6 97.89 117.3

September Exponential 45.29 63.64 77.51 99.51 109.74 123.62
GPD 47.24 63.4 73.73 87.43 92.8 99.41

October Exponential 56.28 76.18 91.24 115.1 126.19 141.24
GPD 55.18 75.43 92.09 120.66 134.59 152.27

November Exponential 51.14 69.85 84.01 106.45 116.88 131.04
GPD 51.72 70.37 83.64 103.28 112.03 123.35

December Exponential 60.54 79.93 94.6 117.84 128.65 143.32
GPD 60.49 79.93 94.6 117.85 128.65 143.32
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preferable and that according to the subject of study, the 
method used to select models is an important issue. In 
the same sense, Kim et al. [49] have showed by Monte 

Carlos simulation that the model comparison methods 
behave differently in the evaluation of stationary and 
nonstationary GEV models. For the nonstationary case, 

Fig. 4   Return level plot (in years) and confidence intervals for 
monthly maximum rainfall data of the city of Uruguaiana, RS, Bra-
zil. Dashed lines represent the 95% confident interval and solid line 

represent estimated return level by the best distribution showed by 
the comparison of Tables 4 and 5
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the Akaike information criteria showed better results and 
in the stationary case the likelihood ratio test was superior 
in detecting the most appropriate model. Our study used 
stationary GPD and we showed by Monte Carlo simulation 
that there are months when the most adequate distribu-
tion is different from that chosen in the Table 1. We intend 
to extend this study to other probability distributions.

Beijo et al. [50] stresses the importance of obtaining 
accurate estimates for rainfall. From a practical point of 
view, accuracy is important in terms of safety and econ-
omy, because when, in a shorter period, there is greater 
rainfall than expected, this can cause serious damage. In 
the case of the construction of a contour line, it would not 
support the volume of water and, consequently, would 
cause soil erosion and burial of plantations, causing seri-
ous damage to the environment and to the owners. Thus, 
and in accordance with the results of the Tables 4 and 5 
, we provide the QQplots and confidence intervals for 

return levels according to the most accurate probability 
distribution.

4 � Conclusions

The Generalized Pareto distribution was satisfactorily fit-
ted in all months and can be used to provide maximum 
rainfall extreme levels. No positive trend and temporal 
dependence of monthly maximum rainfall was found.

The rainfall estimates from January to December were 
calculated for the return periods of 2, 5, 10, 30, 50 and 100 
years. The highest estimate was observed in April (with 
rainfall above 170 mm every 100 years and with 95% con-
fident interval of 140 mm to 220 mm, approximately) and 
the lowest return level was in July (with rainfall near from 
90 mm every 100 years).

Table 4   Results of scenario 
1 for the Monte Carlo 
simulation in 10000 replicates 
for each month of the year 
for the Exponential and GPD 
distributions of monthly 
maximum rainfall data in 
Uruguaiana-RS

∗Probability distribution in italic indicates that the Exponential distribution is better in respect month. 
Probability distribution in underline indicates that the GPD is better in respect month, MAPE Mean 
absolute percentage error, RMSE Root mean squared error. p̂

LT
 ; proportion of which the LT resulted in 

a p-value higher than the significance level of 1% , p̂
MAPE

 ; proportion of which the MAPE of the GPD is 
greater than the MAPE of the Exponential distribution, p̂

RMSE
 ; proportion of which the RMSE of the GPD 

is greater than the RMSE of the Exponential distribution

Month Probability 
distribution∗

MAPE RMSE p̂
MAPE

(%) p̂
RMSE

(%) p̂
LT

(%)

January Exponential 23.99 37.11 54.31 54.31 94.42
GPD 24.05 37.23

February Exponential 33.18 20.69 51.04 49.32 94.80
GPD 33.19 20.72

March Exponential 20.92 27.70 54.70 54.76 94.58
GPD 21.01 27.79

April Exponential 22.59 44.44 54.17 56.19 94.70
GPD 22.68 44.50

May Exponential 15.14 19.57 44.69 44.69 94.55
GPD 15.00 19.38

June Exponential 56.70 105.47 54.57 54.57 94.86
GPD 56.74 105.54

July Exponential 53.30 25.42 45.96 45.97 94.94
GPD 53.19 25.36

August Exponential 89.39 25.72 50.06 48.36 94.80
GPD 89.38 25.73

September Exponential 25.32 15.25 45.91 45.91 94.79
GPD 25.20 15.16

October Exponential 31.36 52.15 53.28 53.28 94.64
GPD 31.41 52.26

November Exponential 13.19 12.65 46.00 45.92 94.72
GPD 13.15 12.61

December Exponential 20.77 18.48 54.47 54.47 94.56
GPD 20.86 18.59
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By comparing the distributions by computer simula-
tion, it was possible to identify the true probability dis-
tribution of extreme values of the excess of a threshold. 
We chose three measures of fit quality to make the com-
parisons, and the measures p̂MAPE and p̂RMSE are obtained 
as a result. The proposed algorithm could be adapted for 
other measures of fit quality, such as the Akaike (AIC) 
information criterion, its corrected version (AICc), or 
Bayesian (BIC), among others. The length of the training 
and testing series is another issue that can be discussed. 
The original series should be as large as possible, but 
not less than 30 years. It is essential to have a balance 
between the sizes of the training and test series, so that 
if the training series is very long, the adjusted model can 
generalize well and, if the test set is long, the sample 
used to fit the model may be insufficient to reproduce 
the test series. In our work, for simulation, we divided 
the series into 30 years to adjust the model and 29 years 
to carry out the calculations of the appropriate quality 

measures, totaling 59 years of time series. The more 
extended set allows greater flexibility between the train-
ing and test series, and care has to be taken for short 
series, usually less than 30 years.

The results have practical implications for assessing 
the risk of extreme rain events in Uruguaiana, Brazil. The 
graphics are prepared to guide the local administration 
to support adaptations, such as the preparation of base-
line contingency plans to deal with the maximum rainfall 
based on the current climatology. Studies like this are not 
yet available in this municipality. Our results will contribute 
to regional planning and may also be useful for ongoing 
economic and environmental projects in southern Brazil, 
as well as for a better understanding of the Pampa biome.
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Table 5   Results of scenario 
2 for the Monte Carlo 
simulation in 10000 replicates 
for each month of the year 
for the Exponential and GPD 
distributions of monthly 
maximum rainfall data in 
Uruguaiana-RS

∗Probability distribution in italic indicates that the Exponential distribution is better in respect month. 
Probability distribution in underline indicates that the GPD is better in respect month. MAPE Mean 
absolute percentage error, RMSE Root mean squared error. p̂

LT
 ; proportion of which the LT resulted in 

a p-value higher than the significance level of 1% , p̂
MAPE

 ; proportion of which the MAPE of the GPD is 
greater than the MAPE of the Exponential distribution, p̂

RMSE
 ; proportion of which the RMSE of the GPD 

is greater than the RMSE of the Exponential distribution

Month Probability 
distribution∗

MAPE RMSE p̂
MAPE

(%) p̂
RMSE

(%) p̂
LT

(%)

January Exponential 24.03 37.19 77.86 77.87 89.19
GPD 24.46 37.88

February Exponential 33.17 20.68 22.36 16.95 76.05
GPD 32.90 20.41

March Exponential 20.15 26.97 100.00 100.00 1.26
GPD 22.88 28.96

April Exponential 22.45 44.30 100.00 100.00 0.06
GPD 25.64 45.86

May Exponential 15.16 19.61 65.69 65.68 92.11
GPD 15.61 20.23

June Exponential 63.92 117.87 11.86 11.86 73.48
GPD 63.58 117.32

July Exponential 53.59 25.56 97.94 97.95 39.20
GPD 55.74 26.91

August Exponential 89.19 25.66 70.84 91.60 0.20
GPD 89.49 26.25

September Exponential 25.85 15.63 0.00 0.00 0.01
GPD 20.31 10.93

October Exponential 31.34 42.09 1.09 1.09 26.54
GPD 30.03 49.72

November Exponential 13.14 12.61 1.69 1.34 48.83
GPD 11.72 11.54

December Exponential 20.77 18.48 48.16 48.16 94.71
GPD 20.74 18.45
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