
Vol.:(0123456789)

SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1

Research Article

Pioneer dataset and automatic recognition of Urdu handwritten
characters using a deep autoencoder and convolutional neural
network

Hazrat Ali1  · Ahsan Ullah1 · Talha Iqbal2 · Shahid Khattak1

Received: 24 August 2019 / Accepted: 13 December 2019 / Published online: 3 January 2020
© Springer Nature Switzerland AG 2020

Abstract
Automatic recognition of Urdu handwritten digits and characters, is a challenging task. It has applications in postal
address reading, bank’s cheque processing, and digitization and preservation of handwritten manuscripts from old
ages. While there exists a significant work for automatic recognition of handwritten English characters and other major
languages of the world, the work done for Urdu language is extremely insufficient. This paper has two goals. Firstly,
we introduce a pioneer dataset for handwritten digits and characters of Urdu, containing samples from more than 900
individuals. Secondly, we report results for automatic recognition of handwritten digits and characters as achieved
by using deep auto-encoder network and convolutional neural network. More specifically, we use a two-layer and a
three-layer deep autoencoder network and convolutional neural network and evaluate the two frameworks in terms of
recognition accuracy. The proposed framework of deep autoencoder can successfully recognize digits and characters
with an accuracy of 97% for digits only, 81% for characters only and 82% for both digits and characters simultaneously.
In comparison, the framework of convolutional neural network has accuracy of 96.7% for digits only, 86.5% for charac-
ters only and 82.7% for both digits and characters simultaneously. These frameworks can serve as baselines for future
research on Urdu handwritten text.

Keywords  Autoencoder · Convolutional neural network · Urdu · Text recognition

1  Introduction

Handwritten text recognition is an interesting task due to
its tremendous applications such as to convert handwrit-
ten documents into a digital format, reading house num-
bers automatically, postal address reading and robotics
[1–5]. Unlike a typical text in one single font, handwritten
text recognition is challenging due to the fact that writing
styles vary from person to person.

The Urdu language carries extreme importance as one
of the largest languages of the world and the national lan-
guage of Pakistan. Urdu text shares similarities with Arabic

and Persian text. This work presents a framework for auto-
matic recognition of Urdu handwritten letters. The task is
less explored for Urdu. One primary reason that there has
been no dataset available for Urdu handwritten text. To
address this, we introduce a new dataset of Urdu hand-
written digits and characters. The motivation comes from
the fact that a standard dataset of Urdu handwritten text
does not exist, which may serve as a baseline for research
work. Urdu is one of the largest languages of the world,
being the first language of more than 60 million people
(and more than 329 million people if combined with Hindi
as the two languages are greatly the same in spoken form).

 *  Hazrat Ali, hazratali@cuiatd.edu.pk; Ahsan Ullah, engr.ahsan86@gmail.com; Talha Iqbal, t.iqbal1@nulgalway.ie; Shahid Khattak,
skhattak@cuiatd.edu.pk | 1Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus,
Abbottabad, Pakistan. 2Lambe Institute of Translational Research, National University of Ireland, Galway, Ireland.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1914-1&domain=pdf
http://orcid.org/0000-0003-3058-5794

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1

Unfortunately, there seems to be very less or no work on
Urdu language processing mainly due to unavailability of
language resource. Besides, a standard dataset would help
out the research community as unlike English and many
other languages, Urdu text recognition is more challeng-
ing due to the presence of diacritics. Similar (but not the
same) diacritics are found in Arabic and Persian languages,
and thus, any research development on Urdu text recogni-
tion would eventually ease out progress in research work
on handwritten text recognition of many more languages.
While there has been the UCOM dataset [6] reported for
Urdu text, several differences exist between the UCOM
dataset and our dataset. Firstly, the UCOM offline data-
set has been developed for continuous text of Urdu. Our
dataset is for isolated characters of Urdu hand-written text.
Secondly, the UCOM dataset, as described by the authors
in [6], contains text for 600 pages of Urdu text and the
number of different individuals who have written the text
is limited to 100, while our dataset contains text from 900
individuals. Thirdly, The UCOM dataset contains text in
Nasta’liq style only while our dataset contains hand-writ-
ten samples in different styles and variations, thus cover-
ing a more diverse range of writing (font) styles.

Deep learning (a sub branch of machine learning) algo-
rithms have been popular for automatic recognition of dig-
its and characters of different languages. Deep networks
can be trained in supervised fashion requiring labels, or in
an unsupervised way without requirements of labels [7–9].
In this work, we use an autoencoder network and a convo-
lutional neural network (CNN) trained with 85% portion of
the dataset and tested with the remaining 15% of the data.
Moreover, these models are evaluated for configuration
with two hidden layers and three hidden layers.

The rest of the paper is organized as follows. Section 2
provides literature review on existing work done for Urdu
text recognition. In Sect. 3, we describe the dataset devel-
oped, source of the data, pre-processing and segmenta-
tion steps. We describe the use of a deep autoencoder net-
work and CNN in Sect. 4. Results are presented in Sect. 5
and finally; the paper is concluded in Sect. 6.

2 � Literature review

For character recognition, machine learning techniques
such as deep neural network and CNN have been used.
Arnold et al., used neural networks for character recog-
nition [10]. Similarly in [11, 12], CNN has been used for
Chinese characters recognition. A stacked denoising
autoencoder has been used in [13] for offline Urdu char-
acter recognition. However, the work in [13] is limited to

optical character recognition of Nastaliq fonts only. Hus-
sain et al., proposed an offline OCR system to recognize
only eight Arabic handwritten characters with accuracy
rate of 77.25% [14]. The framework proposed by Elenwar
et al. [15] used Arabic characters database containing 1814
characters for training and 435 characters for testing. The
database used in [16] is prepared by only four writers lead-
ing to low generalization. A database for Arabic characters
is presented in [17] in which the authors performed pre-
processing steps to avoid noise in the printed database.
Another database for Arabic characters consists of 28
thousand characters of Arabic language written by 100
different writers [18]. A similar work has been reported by
[18] as they target online recognition of Urdu characters
collected from 100 writers for recognition of seven char-
acters only. This review shows that most of the work done
in the field of Urdu character recognition is for small data-
sets and with very limited generalization capability. Some
progresses on Urdu script recognition are also presented
in [17, 18], but those are for printed text (typically popular
with OCR applications) while we are developing an algo-
rithm for handwritten Urdu text recognition.

To the best of our knowledge, there is no dataset avail-
able for Urdu handwritten digits and characters. We pre-
sent a new dataset consisting of handwritten digits and
characters of Urdu, written by 900 different individuals.
This dataset goes through different pre-processing stages
like RGB to grey-scale conversion, noise removal and seg-
mentation. Furthermore, we use an unsupervised algo-
rithm called autoencoder and CNN for recognition of Urdu
handwritten characters, a task not explored before to the
best of our knowledge.

3 � Data collection and pre‑processing stage

3.1 � Data acquisition

We collected the data from 900+ individuals of different
age group following a tabular format as shown in Fig. 1.
After data cleaning and pre-processing, we retain the
data of 900 individuals while discarding the remaining
samples due to inconsistency in writing quality or missing
entries. The individuals belong to different age groups in
the range of 22 to 60 years. The writers are a mix of native
and non—native speakers of Urdu, however, this has no
direct impact on the writing style. Hence, this factor has
not been considered in selection of writers. The dataset
contains samples for ten digits and 40 characters, as can
be seen in Fig. 1. As expected, the writing style differs for
different individuals, thus introducing diverse writing style

Vol.:(0123456789)

SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1	 Research Article

into the dataset. The writing samples were then scanned
and stored in a computer.1

3.2 � Pre‑processing of dataset

Pre-processing of dataset included scanning of dataset
of Urdu digits and characters written by different writers,
removing noise by thresholding, segmentation and finally
compression of each image to 28 × 28 pixels.

3.3 � Segmentation

In segmentation process, the group of digits and charac-
ters are segmented into individual digits and characters
as shown in Fig. 2.

In our case we have 900 samples of images and each
image consists of 10 digits and 40 characters. We divide
each sample of image into 50 small images of size 28 × 28
pixels thus saving each individual digit and character as a
separate image. After segmentation process and removal
of selected noisy samples, we get a total of 45 thousand
individual images. Out of these, the training and test sets
are selected randomly with a ratio of 85% and 15% respec-
tively. To avoid any bias in the training model, the training/
test split is subject-independent as none of the samples
in training and test sets is from the same individual. This
fulfills the requirements of completely independent train-
ing and test sets.

4 � Proposed model

The proposed framework is based on a deep autoencoder
network and a convolutional neural network. Specifically,
we train two-layer and three-layer networks and compare
the results.

4.1 � Deep autoencoders

An autoencoder neural network is an unsupervised learn-
ing algorithm that uses backpropagation to set the target
value to be equal to the inputs [19, 20]. An autoencoder
model is popular for its ability to learn important fea-
tures by reconstructing the input at the output. During
the reconstruction process, the autoencoder tries to learn
useful representations of the (raw) input. An autoencoder
consists of three or more layers: an input layer; some num-
ber of hidden layers, which form the encoding; and an out-
put layer, whose dimension is the same as input layer. In
order to get useful representation of input, the number of
neurons in the hidden layer is kept smaller than the input.
For example, if the input has 784 neurons, the number of
neurons in the next layer is less than 784 to get a com-
pressed representation of the input. By compressing the
input, the auto encoder tends to learn the best representa-
tion (features) from the input from which the input can be
reconstructed easily and efficiently at the output [19–22].

The hidden layer and the output layer perform the
important tasks in autoencoder, as the hidden layer
encodes the input, and the output layer decodes it to get
the original form of the input data. Moreover, another
good thing about autoencoder is that the hidden layer
can be configured to reduce the dimension or size of the
input. This characteristic of an autoencoder is one of the

Fig. 1   Sample of dataset of
Urdu (digits and characters)

Fig. 2   Segmentation of dataset

1  The dataset is available for non-commercial research use and can
be obtained on written request to the corresponding author.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1

many ways to learn useful features of the input data as
shown in Fig. 3.

The standard way to train an autoencoder is to use back
propagation to reduce the reconstruction error, but it is
generally very difficult to optimize non-linear autoencod-
ers with multiple hidden layers having hundreds of thou-
sands of parameters. That is why autoencoder is trained
in a greedy layer wise manner, i.e., we train one layer at a
time, which can find a good set of parameters quickly, even
in deep networks with millions of parameters and many
hidden layers [23]. Autoencoder is extensively used in dif-
ferent areas of solving deep learning problems in an effi-
cient way. Denoising autoencoder is used to reconstruct
corrupted data of input in order to get good efficiency
[24]. Sparse autoencoder approach is used to automati-
cally learn features from unlabeled data [25]. Examples of
similar work for recognizing digits appear on reading house
numbers from street level photos in [26].

In our case, we use autoencoders with two and three
hidden layers respectively with different numbers of neu-
rons in each layer to gain high accuracy. Furthermore,
we use the scaled conjugate gradient back-propagation
algorithm, which is a network training function to update
weight and bias values. Further, we use L2 weight regu-
larization to control the influence of regularization. The
autoenoder mainly serves as an unsupervised model.
However, at the final layer of the model, we use the soft-
max classification which turns the overall model into a
semi-supervised learning model, an approach most com-
mon for classification tasks. The hyper-parameters are opti-
mized by using a grid search approach and training several
models to identify the best choice for our task.

Overall training process of an autoencoder consists of
the following steps:

•	 Pre-training step: Autoencoders are trained in a greedy
manner, one layer at a time using unsupervised data.

•	 Softmax layer/last layer: Supervised data is used to train
the last layer.

•	 Fine-tuning: To fine tune, we use back-propagation
using supervised data to get the optimal accuracy rate.

The hyper-parameters are optimized by using a grid
search approach and training several models to identify
the best choice for our task.

4.2 � Convolutional neural network

CNN is inspired from biological processes [19]. The con-
nectivity pattern of the neurons resembles the organiza-
tion of our visual cortex. CNN requires less pre-processing
as compared to other image classification algorithms as
it uses variation of multilayer perceptions [27]. CNN has
become popular in many applications such as in recom-
mender system, image and video recognition and natural
language processing [28–30]. Like an ordinary neural net-
work, neurons having some learnable weights and biases
are the basic building blocks of a CNN. Each neuron per-
forms dot product on the input given to it. Then a non-
linearity is applied to the output of the dot product [29].
Overall, a convolution layer performs convolution using
image patches and uses kernels with learnable weights.
The output of a convolution layer becomes the input of a
pooling layer and this goes on depending upon the num-
ber of layers in the network. The last layer of CNN is fully
connected layer and performs the classification task. The
whole network gives us a probability score for each class at
the output. CNN is different from a simple neural network
in a sense that it makes explicit assumption about the
input i.e., input is always an image. With this assumption,
we are able to encode some certain properties into our

Fig. 3   A basic two layer
autoencoder architecture.
For our model, the number
of nodes in the final layer is
equal to the number of distinct
characters. After experimenta-
tion, we choose 100 nodes in
the first hidden layer and 100
nodes in the second hidden
layer. These nodes are fully
connected

Vol.:(0123456789)

SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1	 Research Article

architecture, which in turn helps us to reduce amount of
parameters in the neural network. Low level convolutional
layers extracts low level information from the image like
edges and corners while as we move further deeper into
the network, convolution layer extracts high level informa-
tion such as a complete character or number.

A simple CNN can be thought of as a sequence of layers
and each layer uses functions differentiable almost every-
where, to transform output of one layer to another [30–33].
Main building layers are: Convolutional layer (CONV) with
activation function (ReLU), pooling layer (POOL) and fully-
connected (FC) layer. We stack these layers to make archi-
tecture of convolutional neural network, as in Fig. 4. Each
of these layers is elaborated below:

•	 Input holds image raw pixel values in shape of width,
height and color channels.

•	 CONV layer computes dot product of weights and a
small connected region of the input volume to give us
output of neurons.

•	 ReLU is activation function that is applied element-
wise. ReLU function performs thresholding at zero i.e.,
given input x, it selects max(0, x).

•	 POOL layer is used for down-sampling the spatial
dimensions i.e. width and height, so that we have
reduced volume for further processing.

•	 FC layer is the last layer and it computes each class
probability score. In this layer, as the name implies,
every neuron in each layer is connected to all the neu-
rons in previous layer.

In this way, the CNN transforms the input image layer by
layer using pixel values to final class probability scores. CNN
is independent from the use of prior knowledge and human
effort in feature designing, which is its major advantage.

5 � Simulation results

The available dataset is divided into training and test set
with a ratio of 85% and 15% respectively. All the experi-
ments were performed on a core i5 CPU with 3 GHz

processor capacity. Experiments were carried out for differ-
ent combinations of the hyper-parameters of the autoen-
coder and convolutional neural network (such as the
number of neurons, number of hidden layers, and size of
hidden layers). More specifically, we run the experiments
for three different settings:

•	 Digits from ١ to ٩.
•	 Characters from Alif (ا) to Yaa (ے)
•	 Both digits and characters from 1 (١) to Yaa (ے).

We obtain the experiment for these three settings and
discuss the results one by one.

5.1 � Training an autoencoder

The autoencoder model is trained for two and three hid-
den layers and the result for each digit is shown in Tables 7
and 8 in “Appendix”. Result for each character is shown in
Tables 9 and 10 in “Appendix”. Tables 11 and 12 in “Appen-
dix” show the results when autoencoder is trained on over-
all dataset i.e. on digits as well as characters using 2 and 3
hidden layers, respectively.

Most importantly, from the results of individual char-
acters, it can be noticed that the accuracy rate is higher
for those characters which have no similarity with other
characters. It is found that similarities between characters
like alif (١) and digit 1 reduce the accuracy rate i.e., for digit
1, accuracy rate is 61.8% and for alif, accuracy rate is 51.8%
as shown in Table 11 in “Appendix”.

Table 1 shows the training parameters used in our
model training in order to get optimal results. It includes
the number of neurons in each layer of an autoencoders,
time taken for each layer for training process, number of
iterations and learning rate.

Figure 5, 6, 7 and Fig. 8 show some of the training per-
formances in which error rate is a function of number of
iterations. After analysis, it is found that as we increase the
number of iterations and number of hidden layers, the
error rate decreases.

Fig. 4   Basic Convolutional
Neural Network Framework

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1

Table 1   Training parameters
for deep autoencoder

All experiments performed on a core i5 CPU with 3 GHz processor

Training type 1st layer itera-
tions = 350 learn-
ing rate = 0.15

2nd layer itera-
tions = 300 learn-
ing rate = 0.1

3rd layer itera-
tions = 350 learn-
ing rate = 0.1

Neurons Time Neurons Time Neurons Time

Digits with 2 hidden layers 100 6:04 50 0:37 – –
Digits with 3 hidden layers 100 6:45 100 0:41 50 0:39
Characters with 2 hidden layers 100 21:32 50 2:25 – –
Characters with 3 hidden layers 100 21:32 100 3:30 50 2:36
Digits and characters with 2 hidden layers 100 32:08 50 2:45 – –
Digits and characters with 3 hidden layers 100 32:08 100 3:35 50 2:30

Fig. 5   Behavior of error rate reduction for autoeconder training on
digits for 87 epochs. After analysis, it is found that as we increase
the number of iterations, the error rate decreases

Fig. 6   Behavior of error rate reduction for CNN training on digits for
149 epochs. After analysis, it is found that as we increase the num-
ber of iterations, the error rate decreases

Fig. 7   Behavior of error rate reduction for autoeconder training
on characters for 29 epochs. After analysis, it is found that as we
increase the number of iterations, the error rate decreases

Fig. 8   Behavior of error rate reduction for CNN training on charac-
ters for 62 epochs. After analysis, it is found that as we increase the
number of iterations, the error rate decreases

Vol.:(0123456789)

SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1	 Research Article

Table 5 shows compendium of the results for 2 and 3
hidden layers. It is obvious that addition of third layer has
resulted in increasing the accuracy.

5.2 � Training convolution neural network

We kept all the parameters same as those used for auto-
encoder except the number of epochs for CNN i.e. 20
epochs (see Table 2). The optimal parameters are chosen
through empirical results and are shown in Table 3. The
convolution neural network model is trained for two,

three and four hidden layers. The results for autoencod-
ers and CNN are reported in Tables 4 and 5. Loss function
is categorical cross-entropy, batch size is 16 while num-
ber of epochs are kept 20. The optimizer for this model
is rmsprop. It is obvious from the results that adding a
third layer improves the overall accuracy but note that
by adding fourth layer accuracy for digits and characters
decreases while overall accuracy remains same.

5.3 � Training traditional machine learning classifier

In order to provide an insight into the performance of tra-
ditional machine learning classification models, we adopt
a heuristic approach with no major optimization and
report accuracy of these models for Urdu digits classifica-
tion. These include results for logistic regression classifier,
kNN classifier, a neural network classifier, Gaussian NB, a
decision tree model, and an SVM classifier. The accuracy
results are reported in Table 6 in the paper.

Table 2   Training parameters for convolutional neural network

Training type 1st layer. Iterations = 20 learn-
ing rate = 0.15

2nd layer. Iterations = 20 learn-
ing rate = 0.1

3rd layer. Itera-
tions = 20 learning
rate = 0.1

Neurons Neurons Neurons

Digits with 2 hidden layers 100 50 –
Digits with 3 hidden layers 100 100 50
Characters with 2 hidden layers 100 50 –
Characters with 3 hidden layers 100 100 50
Digits and characters with 2 hidden layers 100 50 –
Digits and characters with 3 hidden layers 100 100 50

Table 3   Optimal parameters
used in simulation for
autoencoder and CNN

Layer num-
ber

L2 weight regularization Sparsity regularization Sparsity

Autoencoder CNN Autoencoder CNN Autoencoder CNN

1 0.004 0.09 4 6 0.15 0.1
2 0.002 0.06 4 6 0.1 0.3
3 0.002 0.06 4 6 0.1 0.3

Table 4   Summary of Results for autoencoder

Type of autoencoder Accuracy (%)

Characters Digits Overall

2 layered 77.6 96.8 80
3 layered 81.2 97.3 82

Table 5   Summary of Results
for auto-encoder and CNN
models

Training type Accuracy (2 hidden
layers)

Error (2 hidden
layers)

Accuracy (3 hidden
layers)

Error rate (3 hidden
layers)

Auto
encoder
(%)

CNN (%) Auto
encoder
(%)

CNN (%) Auto
encoder
(%)

CNN (%) Auto
encoder
(%)

CNN (%)

Digits (1–9) 96.8 95.6 3.2 4.4 97.3 96.7 2.7 3.3
Characters 77.6 69.4 22.4 30.6 81.2 86.6 18.8 13.4
Digits/characters 80 76.3 20 23.7 82 82.8 18 17.2

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1

6 � Conclusion

In this paper, we have presented a dataset for Urdu hand-
written characters and digits, suitable for automatic recog-
nition task. The dataset consists of hand-written samples
from 900 individuals. The dataset is randomly divided into
train and test sets. The dataset would be made available
for free for academic and research use and could be used
as baseline as no such dataset is available for Urdu to
the best of our knowledge. Further, we have presented
a framework for automatic recognition of the hand-writ-
ten characters and digits. The framework is composed
of a three layer autoencoder network and a three layer
convolutional neural network trained in a greedy layer-
wise fashion. The training has been performed for three
different settings of the data namely, for digits only, for
characters only and for digits and characters both. For
digits recognition, the proposed framework has achieved
accuracy up to 97.3% and 96.7%, respectively. For digits
and characters, the accuracy is 82% and 82.8%, respec-
tively. Experimental results have shown that using a three
layer network results in better recognition performance.
These results can act a good baseline for future research
and development on Urdu handwritten characters recog-
nition. While it is possible to evaluate many other machine
learning algorithms, particularly deep learning algorithms,
the use of a variety of algorithms has not been the aim
of this paper. Machine learning algorithms such as deep
neural networks and generative adversarial networks can
be used in future work.

Acknowledgements  The authors are grateful to Emmanouil Benetos
from Queens Mary University London for useful comments on this
work. This work is supported by the higher education commission
Islamabad Pakistan under grant SRGP 21-790.

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

Appendix

See Tables 7, 8, 9, 10, 11 and 12.

Table 6   Summary of results different traditional classification mod-
els

Sr. no Name of algorithm Test accuracy (%)

1 Logistic regression 86
2 KNN classifier 92.09
3 Neural network 91.98
4 Gaussian NB 69.93
5 Decision tree 82.00
6 SVM 95.79

Table 7   Accuracy rates for digits using 2 hidden layers

Digits Accuracy rate
(%)

Digits Accu-
racy rate
(%)

١ 100 ٦ 96.0
٢ 94 ٧ 97.3
٣ 95.2 ٨ 99.3
٤ 90.3 ٩ 99.3
٥ 100 – –
Total accuracy

rate
Total error rate

Table 8   Accuracy rates for digits using 3 hidden layers

Digits Accuracy rate
(%)

Digits Accu-
racy rate
(%)

١ 100 ٦ 100
٢ 92.2 ٧ 98.0
٣ 96.0 ٨ 99.3
٤ 92.1 ٩ 98.6
٥ 100 – –
Total accuracy rate Total error rate

Vol.:(0123456789)

SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1	 Research Article

Table 9   Characters recognition
results with two hidden
layers—autoencoder
framework

Character Accuracy
rate (%)

Character Accu-
racy rate
(%)

Alif ا 96.3 Swad ص 61.7
Mad آ 86.5 Zwad ض 75
Baa ب 79.4 Twa ط 1.7
Paa پ 81.5 Zwaa ظ 74.3
Taa ٹ 78.1 Ayn ع 80
Tey ت 61.3 Ghain غ 71.6
Seey ث 65.1 Faa ف 86.1
Jeem ج 52.2 Qaaf ق 79.8
Cheey چ 72.3 Kaaf ک 76.7
Haa ح 67.2 Gaaf گ 83.1
Khaa خ 94.9 Laam ل 85.1
Daal د 80.3 Meem م 92.7
Zaal ذ 78.2 Noon ن 66.1
Dhal ڈ 85.9 Gunna ں 71.2
Raa ر 75.7 Wow و 84
Zaa ز 60 Haaw 2 ھ 76.1
Zaa 2 ژ 63.2 Haaw 3 ہ 84
Rhaa ڑ 64.3 Hamza ء 80.2
Seen س 90 Choti yaa ی 78.8
Sheen ش 87.4 Bari yaa ے 96.5
Total accuracy rate for

2 hidden layers
Total error rate for 2

Hidden layers

Table 10   Characters
recognition results for three
hidden layers—autoencoder
framework

Character Accuracy
rate (%)

Character Accu-
racy rate
(%)

Alif ا 93.7 Swad ص 71.8
Mad آ 87.5 Zwad ض 86.3
Baa ب 82.7 Twa ط 90.2
Paa پ 84.9 Zwaa ظ 77
Taa ٹ 73.6 Ayn ع 83.6
Tey ت 69 Ghain غ 75.8
Seey ث 78.4 Faa ف 93.5
Jeem ج 53.4 Qaaf ق 80.2
Cheey چ 74.3 Kaaf ک 77.4
Haa ح 64.5 Gaaf گ 83.9
khaa خ 98.3 Laam ل 87.4
Daal د 83.2 Meem م 93.8
Zaal ذ 81.1 Noon ن 66.7
Dhal ڈ 87.9 Gunna ں 79.6
Raa ر 84.5 Wow و 82.2
Zaa ز 70.1 Haaw 2 ھ 83.8
Zaa 2 ژ 68.7 Haaw 3 ہ 88
Rhaa ڑ 71.6 Hamza ء 89.1
Seen س 94.6 Choti yaa ی 81.6
Sheen ش 91.1 Bari yaa ے 92.4
Total accuracy rate for

3 hidden layers
Total error rate for 3

hidden layers

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1

Table 11   Digits and characters
recognition result for 2
hidden layers—autoencoder
framework

Character Accuracy
rate (%)

Character Accu-
racy rate
(%)

1 ۱ 61.8 Zaa 2 ژ 63.5
2 ۲ 90.8 Rhaa ڑ 67
3 ۳ 92.1 Seen س 77.1
4 ٤ 88 Sheen ش 86.1
5 ۵ 100 Swad ص 81.8
6 ٦ 94.7 Zwad ض 71.1
7 ٧ 95.4 Twa ط 89.6
8 ۸ 95.8 Zwaa ظ 83.3
9 ۹ 98 Ayn ع 79.8
Alif ا 51.8 Ghain غ 81.9
Mad آ 91.1 Faa ف 78.4
Baa ب 81.4 Qaaf ق 82.6
Paa پ 82.8 Kaaf ک 71.5
Taa ٹ 76.7 Gaaf گ 69.2
Tey ت 64.8 Laam ل 88.3
Seey ث 68.8 Meem م 84.3
Jeem ج 58.5 Noon ن 92.9
Cheey چ 75.5 Gunna ں 73.7
Haa ح 62.5 Wow و 80.2
Khaa خ 79.5 Haaw 2 ھ 87.6
Daal د 79.3 Haaw 3 ہ 84.5
Zaal ذ 72.7 Hamza ء 81
Dhal ڈ 82.3 Choti yaa ی 81.6
Raa ر 71.7 Bari yaa ے 96.5
Zaa ز 67.4 – – –
Total accuracy rate for 2 hidden layers Total error rate for 2 hidden layers

Vol.:(0123456789)

SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1	 Research Article

References

	 1.	 Lee C, Leedham C (2004) A new hybrid approach to handwritten
address verification. Int J Comput Vis 57:107

	 2.	 Plötz T, Fink GA (2009) Markov models for offline handwriting
recognition: a survey. Int J Doc Anal Recognit 12:269

	 3.	 Latif A, Rasheed A, Sajid U et al. (2019) Content-based image
retrieval and feature extraction: a comprehensive review. Math
Probl Eng 2019, Article ID 9658350

	 4.	 Ratyal N, Taj IA, Sajid M et al (2019) Deeply learned pose invari-
ant image analysis with applications in 3D face recognition.
Math Probl Eng 2019, Article ID 3547416, 2019

	 5.	 Ali N, Zafar B, Iqbal MK, Sajid M, Younis MY, Dar SH, Mahmood
MT, Lee IH (2019) Modeling global geometric spatial information
for rotation invariant classification of satellite images. PLOS One
14(7):e0219833

	 6.	 Ahmed SB, Naz S, Swati S, Razzak MI, Khan AA, Umar AI (2017)
UCOM offline dataset—an Urdu handwritten dataset genera-
tion. Int Arab J Inf Technol (IAJIT) 14(2)

	 7.	 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444

	 8.	 Iqbal T, Ali H (2018) Generative adversarial network for medical
images (MI-GAN). J Med Syst 42:231. https​://doi.org/10.1007/
s1091​6-018-1072-9

	 9.	 Ali H, Tran SN, Benetos E, Garcez A (2018) Speaker recognition
with hybrid features from a deep belief network. Springer Neu-
ral Comput Appl 29(6):13–19

	10.	 Arnold R, Miklόs P (2010) Character recognition using neural
networks. In: 2010 11th international symposium on computa-
tional intelligence and informatics (CINTI). IEEE, pp 311–314

	11.	 Xiao X, Jin L, Yang Y, Yang W, Sun J, Chang T (2017) Building fast
and compact convolutional neural networks for offline hand-
written chinese character recognition. Pattern Recogn 72:72–81

	12.	 Li Z, Teng N, Jin M et al (2018) Building efficient CNN architecture
for offline handwritten Chinese character recognition. Int J Doc
Anal Recogn 21(4):233–240

	13.	 Ahmad I, Wang X, Li R, Rasheed S (2017) Offline Urdu Nastaleeq
optical character recognition based on stacked denoising
autoencoder. China Commun 14(1):146–157

	14.	 Hussien RS, Elkhidir AA, Elnourani MG (2015) ‘Optical character
recognition of arabic handwritten characters using neural net-
work. In: 2015 international conference on computing, control,
networking, electronics and embedded systems engineering
(ICCNEEE). IEEE, pp 456–461

	15.	 Elanwar RI, Rashwan MA, Mashali SA (2007) Simultaneous seg-
mentation and recognition of Arabic characters in an uncon-
strained on-line cursive handwritten document. Proc World
Acad Sci Eng Technol 23:288–291

	16.	 Khan KU (2014) Online urdu handwritten character recogni-
tion: Initial half form single stroke characters. In: 2014 12th

Table 12   Digits and characters
recognition result for 3 hidden
layers- autoencoder framework

Character Accuracy
rate (%)

Character Accu-
racy rate
(%)

1 ۱ 63.0 Zaa 2 ژ 69.4
2 ۲ 90.9 Rhaa ڑ 72.6
3 ۳ 90.8 Seen س 81.8
4 ٤ 85.3 Sheen ش 94.3
5 ۵ 98 Swad ص 81.8
6 ٦ 97.9 Zwad ض 94.6
7 ٧ 98.6 Twa ط 82.8
8 ۸ 97.1 Zwaa ظ 83.5
9 ۹ 96.7 Ayn ع 85
Alif ا 49.2 Ghain غ 70.4
Mad آ 89.4 Faa ف 91.8
Baa ب 86.5 Qaaf ق 79
Paa پ 77.2 Kaaf ک 72.1
Taa ٹ 80.8 Gaaf گ 85.8
Tey ت 65.4 Laam ل 86.1
Seey ث 72.3 Meem م 97.1
Jeem ج 60.9 Noon ن 73.9
Cheey چ 76.0 Gunna ں 84.2
Haa ح 72.2 Wow و 88.9
Khaa خ 79.5 Haaw 2 ھ 81.6
Daal د 80.7 Haaw 3 ہ 82.6
Zaal ذ 80.2 Hamza ء 80.7
Dhal ڈ 81.8 Choti yaa ی 84
Raa ر 77.5 Bari yaa ے 93.2
Zaa ز 69.6 – – –
Total accuracy rate for 3 hidden layers Total error rate for 3 hidden layers

https://doi.org/10.1007/s10916-018-1072-9
https://doi.org/10.1007/s10916-018-1072-9

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:152 | https://doi.org/10.1007/s42452-019-1914-1

international conference on frontiers of information technol-
ogy (FIT). IEEE, pp 292–297

	17.	 Al-Ma’adeed S, Elliman D, Higgins CA (2002) A data base for
Arabic handwritten text recognition research. In: Proceedings.
Eighth international workshop on frontiers in handwriting rec-
ognition, 2002. IEEE, pp 485–489

	18.	 AlKhateeb JH (2015) A database for Arabic handwritten charac-
ter recognition. Procedia Comput Sci 65:556–561

	19.	 Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A (2010)
Stacked denoising autoencoders: learning useful representa-
tions in a deep network with a local denoising criterion. J Mach
Learn Res 11:3371–3408

	20.	 Ng A (2011) Sparse autoencoder. In: CS294A Lecture Notes, vol
72, no. 2011, pp 1–19

	21.	 Naz S, Hayat K, Razzak MI, Anwar MW, Madani SA, Khan SU
(2014) The optical character recognition of Urdu-like cursive
scripts. Pattern Recognit 47(3):1229–1248

	22.	 Ul-Hasan A, Ahmed SB, Rashid F, Shafait F, Breuel TM (2013)
Offline printed Urdu Nastaleeq script recognition with bidirec-
tional LSTM networks. In: 2013 12th international conference on
document analysis and recognition (ICDAR). IEEE, pp 1061–1065

	23.	 Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY (2011) ‘Read-
ing digits in natural images with unsupervised feature learning.
In: NIPS workshop on deep learning and unsupervised feature
learning, vol 2011, no 2, p 5

	24.	 Yang W, Jin L, Xie Z, Feng Z (2015) ‘Improved deep convolu-
tional neural network for online handwritten Chinese charac-
ter recognition using domain-specific knowledge. In: 2015 13th
international conference on document analysis and recognition
(ICDAR). IEEE, pp 551–555

	25.	 Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm
for deep belief nets. Neural Comput 18(7):1527–1554

	26.	 Baldi P (2012) ‘Autoencoders, unsupervised learning, and deep
architectures. In: Proceedings of ICML workshop on unsuper-
vised and transfer learning, pp 37–49

	27.	 Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY (2011) Read-
ing digits in natural images with unsupervised feature learning.
In: NIPS workshop on deep learning and unsupervised feature
learning 2011

	28.	 Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject inde-
pendent facial expression recognition with robust face detec-
tion using a convolutional neural network. Neural Netw
16(5–6):555–559

	29.	 Sermanet P, Chintala S, LeCun Y (2012) Convolutional neural
networks applied to house numbers digit classification. In: 21st
international conference on pattern recognition (ICPR), 2012.
IEEE, pp 3288–3291

	30.	 Collobert R, Weston J (2008) A unified architecture for natural
language processing: deep neural networks with multitask
learning. In: Proceedings of the 25th international conference
on Machine learning. ACM, pp 160–167

	31.	 Chen ZQ, Li C, Sanchez R-V (2015) Gearbox fault identification
and classification with convolutional neural networks. In: Shock
and vibration

	32.	 Ciresan DC, Meier U, Masci J, Gambardella LM, Schmidhuber
J (2011) Flexible, high performance convolutional neural net-
works for image classification. In: IJCAI proceedings-interna-
tional joint conference on artificial intelligence, vol 22, no. 1, p
1237

	33.	 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifica-
tion with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097–1105

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Pioneer dataset and automatic recognition of Urdu handwritten characters using a deep autoencoder and convolutional neural network
	Abstract
	1 Introduction
	2 Literature review
	3 Data collection and pre-processing stage
	3.1 Data acquisition
	3.2 Pre-processing of dataset
	3.3 Segmentation

	4 Proposed model
	4.1 Deep autoencoders
	4.2 Convolutional neural network

	5 Simulation results
	5.1 Training an autoencoder
	5.2 Training convolution neural network
	5.3 Training traditional machine learning classifier

	6 Conclusion
	Acknowledgements
	References

