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Abstract
This paper analyses the onset of buoyancy-surface tension driven forces on rotating electro-thermal-convection in a 
dielectric fluid-saturated porous layer under the influence of different basic temperature gradients. The lower surface is 
rigid-isothermal, and the upper surface is stress-free and flat at which the Robin-type of thermal boundary condition is 
invoked. The principle of exchange of stability is valid and the stability eigenvalue problem is solved numerically using the 
Galerkin method. The parameters influencing the stability characteristics of the system are the thermal Rayleigh number 
( R

t
 ), electric Rayleigh number ( R

e
 ), Marangoni number ( Ma ), Taylor number ( Ta ), Darcy number ( Da ), Biot number ( Bi ) 

and the viscosity ratio ( � ). The onset of convection is delayed for a nonlinear temperature profile when compared to the 
linear temperature profile. It is observed that the strength of surface tension force and an AC electric field is to hasten the 
onset. The system is found to be more stable with increasing Bi , Ta and � as well as decrease in Da . The surface tension 
and electric forces complement each other and always observed to be Ma

c
< R

ec
.

Keywords Electro-thermal-convection · Dielectric fluids · Porous medium · Cubic temperature profiles · Rotation · 
Weighted residual method

1 Introduction

Electrohydrodynamics (EHD) is a phenomenon which 
occurs in several areas of engineering ranging from aircraft 
and space vehicles to micro-fluidic devices [1]. One practi-
cal application of using an electric field is to pump liquids 
in micro-channels since it will not persuade mechanical 
noises. When an external electric field is applied across a 
fluid layer, the Maxwell stress could instigate flow insta-
bility in the liquid layer with spatial changes in electrical 
properties. In earlier studies, the instability of flow in the 
design of engineering devices is basically considered to 

be triggered by an electric field due to abrupt changes [2, 
3]. Of late, two intangible designs have been found with 
applications in the laptops cooling systems [4] and tools 
on a flight in space [5].

Thermal convective instability problems are studied in 
the presence of a uniform vertical electric field, called elec-
tro-thermal-convection (ETC). This mode of ETC has been 
studied by Taylor [6]. Turnbull and Melcher [7] described 
moderately simple laboratory-type experiments which 
can be expected to model the essential features of ETC 
to validate the theoretical prediction. Roberts [8] treated 
this problem in the presence of temperature gradients and 
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electric potential differences across the fluid layer. Turnbull 
[9] carried out theoretical investigations on dielectropho-
retic force effect on ETC, and subsequently many research-
ers [10–31] reviewed some related experimental and the-
oretical studies. Shivakumara et al. [32] studied ETC in a 
rotating dielectric fluid layer under a uniform vertical AC 
electric field. Of late, Ashwini et al. [33] investigated theo-
retically the effect of boundary conditions on penetrative 
ETC due to internal heating in a dielectric fluid-saturated 
porous layer. The abundant literature on this topic is avail-
able in the book by Nield and Bejan [34].

If the upper surface of the fluid layer is open to the 
atmosphere then the instability may also arise due to sur-
face tension driven force, known as Marangoni convection. 
The convective instability may also be due to both buoy-
ancy and surface tension forces called Bénard–Marangoni 
convection and studied extensively in an incompressible 
fluid layer (see [35, 36] and references therein). Char and 
Chiang [37] treated Bénard-Marangoni problem in AC elec-
tric field regime. Douiebe et al. [38] carried out theoretical 
investigations on Bénard-Marangoni ETC in the presence 

of rotation. Hennenberg et al. [39] was the first to discuss 
theoretically in detail the buoyancy-surface tension driven 
convection in a wetting liquid saturated porous medium, 
while Rudraiah [40] studied on the effect of Brinkman 
boundary layer on the onset of electroconvection in a 
porous medium giving an insight to the manufactures of 
smart materials.

The effect of Joule heating caused by passing AC elec-
tric field through electrolyte may cause non-uniform tem-
perature distribution. The present paper deals with theo-
retical aspects of the problem of Bénard-Marangoni ETC in 
a rotating dielectric fluid-saturated porous layer. Moreover, 
the study of non-uniform basic temperature gradients on 
the onset is interesting as it paves the way to understand 
control of convective instability. The following different 
types of non-dimensional basic temperature gradients, 
f (z) namely,

1. Linear temperature profile (model 1): f (z) = 1

2. Cubic 1 temperature profile (model 2): f (z) = 3(z − 1)2

3. Cubic  2  temperature  prof i le  (model  3 ) : 
f (z) = 0.66 + 1.02 (z − 1)2

are considered in the discussion. The eigenvalue prob-
lem is solved numerically using the Galerkin method over 
a large range of governing physical parameters. The model 

2 offers more stabilizing effect on the system and the sys-
tem is found to be least stable for model 1.

2  Governing equations

A dielectric fluid-saturated horizontal porous layer of 
depth d in the presence of gravity acting vertically down-
ward in the presence of a uniform vertical AC electric field 
is considered as presented in Fig. 1. The porous layer is 
rotating about the vertical axis with a constant angular 
velocity �⃗� = (0, 0,𝛺) . The rigid lower boundary z = 0 and 
the upper stress-free non-deformable boundary z = d are 
maintained at constant temperatures T = T0 and T = T1 , 
respectively. At the upper free surface, surface tension 
force acts which varies linearly with temperature in the 
form �m = �0 − �T (T − T0) , where �T = −��m∕�T .

The basic equations under the Oberbeck-Boussinesq 
approximation are (see [8, 17, 19, 37])

where q⃗ = (u, v,w) is the velocity, T  is the temperature, 
E⃗ = (Ex , Ey , Ez ) is the electric field, � is the porosity of the 
porous medium, � is the electric potential, � is the thermal 
expansion coefficient, g⃗ is the gravitational acceleration, k1 

(1)∇ ⋅ q⃗ = 0

(2)𝜌0

[
1

𝜑

𝜕q⃗

𝜕t
+

1

𝜑2

(
q⃗ ⋅ ∇

)
q⃗

]
= −∇P + 𝜌g⃗ + �̃�f ∇

2q⃗ −
𝜇f

k1
q⃗ −

2

𝜑
(𝛺k̂ × q⃗) −

1

2
(E⃗ .E⃗) ∇𝜀

(3)A
𝜕T

𝜕t
+ (q⃗ ⋅ ∇)T = 𝜅∇2T

(4a, b)∇ ⋅

(
𝜀E⃗

)
= 0, ∇ × E⃗ = 0 or E⃗ = −∇𝜙

(5)� = �0

[
1 − �

(
T − T0

)]

(6)𝜀 = 𝜀0

[
1 − 𝜂

(
T − T0

)]
(𝛼, 𝜂 > 0)

Fig. 1  Physical configuration
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is the permeability of the porous medium, � is the dielec-
tric constant, � is the thermal diffusivity, � is the thermal 
expansion coefficient, � is the dielectric constant expan-
sion coefficient, �f  is the fluid viscosity, �̃�f  is the effective 
viscosity, A is the ratio of heat capacities, �0 and �0 are the 
reference density and dielectric constant, respectively at 
T = T0.

The basic state is quiescent and taken as

In the basic state, we have

As propounded by Nield [41], it is also not our inten-
tion to treat here the full problem of temperature profiles 
depending explicitly on time. Instead, we introduce a 
simplification in the form of a quasi-static approximation 

which consists of freezing the basic temperature distribu-
tion Tb(z, t) at a given instant of time. This simplification 
is justified so long as the disturbances are growing faster 
than the basic profile is evolving (Nield and Bejan [34]). 
Under the circumstances, the basic state temperature dis-
tribution admits a solution of the form

where f (z) is the basic temperature gradient such that

On solving Eq. (10), we get

(7)

[
q⃗, T , p, 𝜌, E⃗ , 𝜀

]
=
[
0, Tb(z, t), pb(z), 𝜌b(z), E⃗b(z), 𝜀b(z)

]

(8)1

�0

dpb

dz
−

�b

�0

g +
E2
b

2

d�b

dz
= 0

(9)A
�Tb

�t
= �

�
2Tb

�z2

(10)∇ ⋅

(
𝜀bE⃗b

)
= 0.

(11)−
dTb

dz
= f (z)

(12)

d

∫
0

f (z) dz = ΔT∕d.

where

In the basic state Eq. 4(b) yields

where E0 =
−�1�ΔT∕d

log(1+�ΔT )
 is the externally imposed AC electric 

field at z = d.

3  Linear instability analysis

To study the instability of the system, the dependent vari-
ables are perturbed over their equilibrium counterparts 
in the form

where the primed quantities are the perturbed ones and 
considered to be very small in comparison with the basic 
state quantities. Substituting Eq.  (15) into Eqs.  (2)–(4), 
using the basic state solution, linearizing the equations, 
eliminating the pressure from the momentum equation by 
operating curl twice and retaining the vertical component 
lead finally to arrive at the following governing stability 
equations

where � = �v∕�x − �u∕�y is the z-component of vorticity 
vector and ∇2

h
= �

2∕�x2 + �
2∕�y2.

The lower boundary is rigid-isothermal, while the 
upper boundary is stress-free at which the surface ten-
sion force acts is non-deformable and a Robin-type of ther-
mal boundary condition is invoked. Hence, the relevant 

(13)�bEbz = �0E0 = constant (say),

(14)Ebz =
E0

1 + �ΔT z∕d
.

�b =
−E0d

�ΔT
log(1 + �ΔT z∕d)

(15)
[
q⃗, p, E⃗ , T , 𝜌, 𝜀

]
=
[
q⃗�, pb + p�, Eb + E⃗�, Tb + T �, 𝜌b + 𝜌

�, 𝜀b + 𝜀
�
]

(16)
[
1

𝜑

𝜕

𝜕t
−

�̃�f

𝜌0

∇2 +
𝜇f

𝜅𝜌0

]
∇2w = 𝛼g∇2

h
T −

2𝛺

𝜑

𝜕𝜉

𝜕z
+ 𝜀0E0𝜂f (z)

[
∇2

h

(
𝜕𝜙

𝜕z

)
+ E0𝜂∇

2
h
T

]

(17)
[
A
�

�t
− � ∇2

]
T = f (z)w

(18)∇2
� = −�E0

�T

�z

(19)
1

𝜑

𝜕𝜉
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𝜌0

∇2
𝜉 =

2𝛺

𝜑
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boundary conditions on velocity and temperature are [39, 
40, 42, 43]:

where ht is the heat transfer coefficient and kt is the effec-
tive thermal conductivity. In the case of finite electric sus-
ceptibility of the boundaries, the scalar electric potential 
satisfies the following boundary conditions

At the lower rigid boundary (z = 0) , T = 0 and the limit 
a → ∞ gives the condition � = 0 , while at the upper free 
surface (z = d), T ≠ 0 and in the limit when �e → ∞ it is 
noted that D� − T = 0 which is used as a boundary con-
dition. Thus, we have used the following boundary condi-
tions on electric potential

The normal mode solution is assumed in the form

where, ax and ay are the wave numbers in the x and y direc-
tions, respectively, � (real or complex) is the growth term, 
while W  , � , � and � are the perturbed velocity field, tem-
perature, electric potential and vorticity respectively. By 
substituting Eq. (21) into Eqs. (16)–(19) yields

(20a)w =
�w

�z
= 0, T = 0, � = 0, at z = 0

(20b)

w = �f

�
2w

�z2
+ �T∇

2
h
T = 0, kt

�T

�z
= htT ,

��

�z
= 0 at z = d

(20c)

��

�z
−

a

1 + �e

� − T = 0 at z = 0

��

�z
+

a

1 + �e

� − T = 0 at z = d.

(20d)
� = 0 at z = 0

��

�z
− T = 0 at z = d.

(21)
[w, T , �, �] = [W(z), �(z), �(z), � (z)] exp

[
i(axx + ayy) + �t

]
,

(22)
[
𝜔

𝜑
−

�̃�f

𝜌0

(D2 − a2) +
𝜇f

𝜅𝜌0

]
(D2 − a2)W = −𝛼ga2𝛩 −

2𝛺

𝜑

𝜕𝛶

𝜕z
+ 𝜀0E0𝜂f (z)

[
a2(D𝛷) + E0𝜂a

2
𝛩
]

Here, D stands for d∕dz and a =
√

a2
x
+ a2

y
 is the overall 

horizontal wave number. In order to carry out the analysis, 
it is expedient to non-dimensionalize the equations as fol-
lows (an asterisk ‘ ∗ ‘ denotes a dimensionless quantity):

Substituting Eq. (26) into Eqs. (22)–(25) and dropping 
the asterisks for simplicity, we obtain

Here, Rt = � gΔT d3∕� � is the thermal Rayleigh num-
ber, Re = �

2
�0E

2
0
(ΔT )2d2∕�� the electric Rayleigh number, 

𝛬 = �̃�f∕𝜇f  the viscosity ratio, Da = k1∕d
2 the Darcy num-

ber, Pr = �∕�� the Prandtl number and Ta = 4�2d4∕�2 the 
Taylor number. The non-dimensional temperature gradi-
ent is taken as

where a1, a2 and a3 are constants chosen as in Table 1 
such that ∫ 1

0
f (z) dz = 1 . For the case of a1 = 1, a2 = 0 

(23)
[
A� − �(D2 − a2)

]
� = f (z)W

(24)
(
D2 − a2

)
� = −�E0 D�

(25)

[
𝜔

𝜑
−

�̃�

𝜌0

(D2 − a2) +
𝜇

𝜅𝜌0

]
𝛶 =

2𝛺

𝜑
DW .

(26)
(x, y, z) = d(x ∗, y ∗, z ∗), W = (�∕d)W ∗, � = (ΔT )� ∗, � = (� E0 ΔT d)� ∗,

� = (�∕d2)� ∗, f (z) = (ΔT∕d) f (z) ∗, � = (�∕d2)� ∗ .

(27)

�
�(D2 − a

2) − 1∕Da − � Pr
�
(D2 − a

2)W − a
2
R
t
�

−
√
TaD� − a

2
R
e
f (z) (� + D�) = 0

(28)
[
D2 − a2 − �

]
� + f (z)W = 0

(29)(D2 − a2)� + D� = 0

(30)
�
�(D2 − a2) − 1∕Da − � Pr

�
� +

√
TaDW = 0.

f (z) = a1 + 2a2(z − 1) + 3a3(z − 1)2.

Table 1  Reference steady-state temperature gradients

Model Reference steady-
state temperature 
gradient

f (z) a
1

a
2

a
3

1 Linear 1 1 0 0
2 Cubic 1 3 (z − 1)2 0 0 1

3 Cubic 2 0.66 + 1.02 (z − 1)2 0.66 0 0.34



Vol.:(0123456789)

SN Applied Sciences (2020) 2:146 | https://doi.org/10.1007/s42452-019-1904-3 Research Article

and a3 = 0 , we recover the classical linear basic state tem-
perature distribution (see Table 1).

The boundary conditions now become

w h e re  Bi = ht d∕kt  i s  t h e  B i o t  n u m b e r  a n d 
Ma = �TΔTd∕�f� is the Marangoni number. The condition 
Bi = 0 corresponds to the case of constant heat flux or adi-
abatic boundary condition, while Bi → ∞ corresponds to 
the case of isothermal boundary condition.

4  Method of solution

Equations (27)–(30) constitute an eigenvalue problem and 
solved using the Galerkin method (Finlayson [44]). Accord-
ingly, the unknown variables are expanded as follows:

where Am, Bm , Cm , Dm are constants, and Wm,�m , �m , �m 
are trial (basis) functions and they are assumed in the fol-
lowing form

(31a)W = DW = 0, � = 0, � = 0, � = 0 at z = 0

(31b)W = �D2W + a2Ma� = 0, D� + Bi� = 0, D� − � = 0, D� = 0 at z = 1

(32)W =

N∑
m=1

AmWm(z), � =

N∑
m=1

Bm�m(z), �

N∑
m=1

Cm�m, � =

N∑
m=1

Dm�m(z),

(33)Wm =
(
zm+1 − zm+2

)
T ∗
m
, �m =

(
2zm − zm+1

)
T ∗
m
, �m = �m = (3 zm+1 − 2zm+2)T ∗

m
,

where T ∗
1
, T ∗

2
,…… T ∗

m
 are modified Chebyshev poly-

nomials of second kind. The trial functions are chosen 
satisfying the respective boundary conditions except 
�D2W + a2Ma� = 0 , D� + Bi� = 0 and D� − � = 0 at 
z = 1 but the residual from these conditions are included 

as a residual from Eqs. (27)–(30). Substituting Eq. (32) into 
Eqs. (27)–(30), multiplying resulting Eqs. (27), (28), (29) and 
(30), respectively by Wn(z) , �n(z) , �n(z) and �n(z) , and inte-
grating from z = 0 to z = 1 and thereby with the help of 
Eqs. (31a, b), the following equations are obtained:

(34)

⎡
⎢⎢⎢⎣

Enm Fnm Gnm Hnm

Inm Jnm 0 0

0 Knm Lnm 0

Pnm 0 0 Qnm

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

An

Bn

Cn

Dn

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎦
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where

Equation (34) has the determinant of coefficient matrix, 
vanishes resulting in a non-trivial solution. That is,

Enm =

1

∫
0

�
� [D2WnD

2Wm + 2a2DWnDWm + a4WnWm] + (Da−1 + �

−1

Pr)[DWnDWm + a2WnWm]

�
dz,

Fnm = −a2

1

∫
0

[Rt + Re f (z)]Wn�m dz + a2MaDWn(1)�m(1),

Gnm = −a2Re

1

∫
0

f (z)WnD�mdz,

Hnm = −
√
Ta

1

∫
0

WnD�m dz,

Inm = −

1

∫
0

f (z)�nWm dz,

Jnm =

1

∫
0

�
D�nD�m + (a2 + �)�n�m

�
dz + Bi�n(1)�m(1),

Knm = −

1

∫
0

D�m�n dz,

Lnm = −
1

4
+

1

∫
0

�
D�nD�m + a2�n�m

�
dz,

Pnm = −
√
Ta

1

∫
0

�nDWm dz,

Qnm = �

1

∫
0

�
D�nD�m + a2�n�m

�
+

1

∫
0

�
Da−1 + �

−1

Pr

�
�n�mdz.

The eigenvalues are extracted from Eq.  (35) for 
m = n = 1 which gives the characteristic equation:

(35)

|||||||||

Enm Fnm Gnm Hnm

Inm Jnm 0 0

0 Knm Lnm 0

Pnm 0 0 Qnm

|||||||||
= 0.

(36)
Ma =

4(15�3 + 2�)

a215⟨�f (z)W⟩

�
(�1 + �

−1

Pr �2) +
7Ta

20(315�5 + 13� Pr−1)

�
−

a2Rt

30

− a2Rea

�
⟨�f (z)W⟩ + ⟨Wf (z)D�⟩

20�4

�
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where

To study the stability of the system, we take � = i�i in 
Eq. (36) and clear the complex quantities from the denomi-
nator which yields

where

Since Ma being the physical quantity it must be real. 
Hence, from Eq. (37) it implies �i = 0 or Δ = 0 ( �i ≠ 0 ) and 
‘accordingly the condition for the steady onset ( �i = 0 ) 
is obtained. The steady onset occurs at Ma = Mas , where

The condition Δ = 0 gives an expression for �2
i
 in the 

form

where �1 =
21�5

13�3
 and �2 =

�1

15�2�3
.

Substituting the value of �2
i
 from Eq. (40) into Eq. (38) 

by noting Δ = 0 yields the condition for the onset of oscil-
latory convection to occur at Ma = Ma0 , where

�1 = �

�
4 +

a4

105
+

4a2

15

�
+ Da−1

�
2

15
+

a2

105

�
,

�2 =
2

15
+

a2

105
,

�3 =
2a2

15
+

1

3
+

Bi

4
,

�4 = −
1

4
+

2

15
+

13 a2

315
,

�5 = �

�
13a2

315
+

2

15

�
+ Da−1

13

315
,

⟨⋯⟩ =
1

∫
0

(⋯) dz.

(37)
Ma =

4

a215⟨�f (z)W⟩

��
15�1�3 Pr−2�

2
i
�2

�
Pr

+
7Ta Pr

�
4725�3�5 Pr+26�

2
i

�

20
�
99225 �2

5
Pr2 +169�2

i

�
�
−

4Rt

30

− 4Rea⟨�f (z)W⟩ − Rea⟨Wf (z)D�⟩
5�4

+ i�iΔ

(38)Δ =
4

a215⟨�f (z)W⟩

��
15�2�3 + 2�1 Pr

�
Pr

+
7Ta Pr(630 Pr �5 − 195�3)

20
�
99225 �2

5
Pr2 +169�2

i

�
�
.

(39)

Ma
s =

4

a215⟨�f (z)W⟩

�
15�

1
�
3
+

Ta (4725�
3
�
5
)

283500 �
2

5

�

−
4R

t

30
− 4R

ea

�
⟨�f (z)W⟩ + ⟨Wf (z)D�⟩

20�
4

�
.

(40)�
2
i
= −

(99225�2
2
Pr)2

169
+

7Ta Pr2

260�2

[
1 − 2�1 Pr

1 + 2�2 Pr

]

with

Imposing the condition 𝜔2
i
> 0 , we note that

(41)
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a215�
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−
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�1 = 4725�3�5 −
2579850 Pr

169
,

�2 =

[
15�1�3 +

198450�2 Pr

169

]
+

7Ta Pr

130
,

�3 = −
7Ta�2 Pr

(1690)
and

�4 =
195�3 − 630�5 Pr

15�2�3 + 2�1 Pr
.

Pr <
13

2

[
2a2 + 5 + 3.75Bi

13a2 + 42 + 13𝜎2

]
and Ta >

283500𝜂2𝜂
2
5

13

[
1 + 2𝛽2 Pr

1 − 2𝛽1 Pr

]
.

Thus it is clear that oscillatory convection is possible 
provided Pr < 1 and the Taylor number Ta exceeds a thresh-
old value as observed in the classical viscous liquids. For 
dielectric fluids, the value of Prandtl number is greater 
than unity (for example, Pr = 100 for silicone oil [45], 10,000 
for caster oil [46] and 480 for corn oil [47]. Under the cir-
cumstance, we restrict ourselves to the case of steady 
onset.

5  Results and discussion

The solution of the eigenvalue problem can be expressed 
symbolically as

(42)f
(
Rt , Re, Bi, Ta, Da−1, �, Ma, a, a1, a2, a3

)
= 0
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where in the minimum of Rt or Re or Ma is found with 
respect to the wave number ‘a’ for any chosen set of 
parametric values. The critical values (Mac , ac) for Rt = 0 
(absence of buoyancy force) and (Rtc , ac) for Ma = 0 
(absence of surface tension force) computed numerically 
are in line with those published previously. Our values 
of Mac and the corresponding ac obtained for different 
Ta when Re = Da−1 = 0 , � = f (z) = 1 and Bi = 103 com-
pare very well with those of Pradhan [48] (see Table 2). 
The obtained Rtc and ac values for different Da when 
Re = Ma = Ta = 0 , � = 1 and f (z) = 1 for isothermal-lower 
rigid and insulated-upper surface are compared in Table 3 
with those of Lebon and Cloot [49] and an excellent agree-
ment is found. The results of Char and Chiang [37] are 
exhibited along with our obtained results in Fig. 2 for lower 
rigid-isothermal and upper free-insulated to temperature 
perturbations when Ta = Da−1 = 0 , � = 1 and Ma = 0 for 
f (z) = 1 . It is seen that the results complement each other 
showing the accuracy of the numerical computation.

Figure 3a, b give the variation of Mac and Rtc with Bi 
for the case of cubic 1, cubic 2 and linear temperature 
profiles when � = 1 , Ta = 10 and Da−1 = 0 . For the case 
of Bi = 0 , an insulated surface retains more energy within 
the porous layer and thus the system is less stable. How-
ever, increase in Bi is to increase Rtc and Mac indicating their 
effect is to delay electro-thermal convection (ETC). This 
may be credited that an increase in Bi leads thermal distur-
bances to dissipate easily into the ambient surroundings 
due to a better convective heat transfer co-efficient at the 
top surface and thus higher heating is required to make 
the system unstable. It is also apparent that the dielectric 
fluid-saturated porous layer under an AC vertical electric 
field becomes more stable with an increase in Bi.

Figure  4 shows the values of Rtc ( Ma = 0 ) and Mac 
( Rt = 0 ) as a function of Taylor number Ta for different 

values of Re when � = 1 , Bi = 2 , Da−1 = 0 and different 
forms of f (z) . It is found that Rtc and Mac increase with 
increasing Ta . Thus the Coriolis force has a stabilizing effect 
on the system for different forms of basic temperature gra-
dients. The system is found to be more stable for cubic1 
temperature gradient when compared to cubic2 and least 
stable for a linear temperature profile.

Figure 5 shows Rtc and Mac against Da−1 when Bi = 2 , 
� = 1 and Ta = 10 . Increase in Da−1 results in the decrease 
of permeability of the porous medium which in turn hin-
ders the fluid flow in porous media and hence higher val-
ues of Rtc are required for the onset of ETC. Figure 6 shows 
Rtc and Mac versus � for Bi = 2 , Da−1 = 0 and Ta = 10 . 
Increase in the value of � amounts to increase in the vis-
cous diffusion which retards the fluid flow resulting in 
higher heating requirement for the onset of ETC. Moreo-
ver, from Figs. 3, 4, 5 and 6 it is evident that increase in Re 
leads to decrease in Mac and Rtc , in general. That is, higher 
the strength of the electric field is to hasten the onset due 
to an increase in the destabilizing electrostatic energy to 
the system. In other words, the presence of electric field 
facilitates the transfer of heat more effectively and hence 
accelerates’ ETC at a lower value of Mac or Rtc . This result is 

Table 2  Comparison of Ma
c
 , R

tc
 

and a
c
 for different values of Ta 

when Da−1 = R
e
= 0 , � = 1 and 

Bi = 1000

Ta Pradhan [48] Present Study

R
t
= 0 Ma = 0 R

t
= 0 Ma = 0

a
c

Ma
c
 / Bi a

c
R
tc

a
c

Ma
c
 / Bi a

c
R
tc

0.0 3.01 32.073 2.68 1101.1 3.01 32.170 2.68 1099.12
6.25 3.03 32.227 2.68 1108.5 3.03 32.317 2.69 1106.2
31.25 3.09 32.795 2.70 1136.4 3.08 32.888 2.74 1133.87
62.50 3.16 33.467 2.79 1169.4 3.15 33.565 2.79 1167.16
187.5 3.36 35.835 2.972 1291.5 3.38 35.950 2.97 1289.19
625.0 3.96 41.829 3.39 1638.0 3.95 41.987 3.39 1635.64
1875.0 4.87 51.795 4.0 2357.2 4.86 52.037 4.01 2356.34
6250.0 6.35 68.348 4.926 4046.5 6.33 68.761 4.93 4042.54
18,750.0 8.22 89.38 6.0 7225.6 8.20 90.055 5.99 7223.81
62,500.0 11.02 120.67 7.422 14,513.7 10.99 121.810 7.41 14,504.5
187,500.0 14.46 159.11 9.0 28,392.0 14.42 160.01 8.98 28,391.0
625,000.0 17.27 220.69 11.06 60,746.8 19.46 220.051 11.07 60,745.91

Table 3  Comparison of Rtc and 
ac for different values of Da 
when R

e
= Bi = Ma = Ta = 0 

and � = 1

Da Lebon 
and Cloot 
[46]

Present 
study

R
tc

a
c

R
tc

a
c

10−9 27.3 2.30 27.34 2.33
10−6 27.3 2.29 27.34 2.33
10−3 28.5 2.28 28.47 2.34
∞ 669 2.08 669.0 2.08
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true for all the types of temperature profiles considered. 
That is, for different values of Re , it is found that

The locus of Rec and Mac for different Ta when � = 1 , 
Da−1 = 25 , Rt = 25 and Bi = 2 is shown in Fig. 7. For all 
types of temperature gradients considered, it is found 
that Rec and Mac increase as Ta increases and hence rota-
tion has a stabilizing effect on the system. Thus, when the 
electric force is predominant then the gravitational force 

(
Mac

)
linear < cubic2<cubic1

<
(
Rtc

)
linear < cubic2<cubic1

.

becomes negligible. This is true for all the temperature gra-
dients. The presence of electric field is to facilitate the heat 
transfer more effectively and hence hastens the onset of 
Bénard–Marangoni ETC. The system is found to be more 
stable for cubic 1 temperature gradient when compared to 
cubic 2 type of temperature gradient, and the least stable 
for the linear temperature gradient. That is,

(Mac or Rec)linear < (Mac or Rec)cubic 2 < (Mac or Rec)cubic 1
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Fig. 2  Comparison of R
tc

 as a function of Bi for different values of R
e
 

for Da−1 = Ta = 0 and � = 1
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6  Conclusions

The aforesaid findings give an outline to the entire explo-
ration for the effect of coupling of buoyancy, surface ten-
sion, electric, viscous, Coriolis forces and the effect of per-
meability on the onset of ETC in a liquid-saturated layer of 
porous medium. The principle of exchange of stability is 
found to be valid and the problem of eigenvalue is solved 
using the Galerkin method for different basic temperature 
gradients. The results may be summarized as follows:

• Increase in the Darcy number is to speed up the onset 
of Bénard- Marangoni ETC while the adverse trend is 
observed with increasing ratio of viscosities.

• The system is more stable with increasing Biot number 
Bi.

• As Taylor number increases the critical stability param-
eters increase indicating the Coriolis force has a stabiliz-
ing effect on the system.

• The system is more stable for temperature gradient of 
cubic 1 while the linear temperature gradient is the 
least stable. That is,

  
• The critical electric Rayleigh number Rec decreases with 

an increase in the Marangoni number Ma.
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