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Abstract
Fluid dynamics combined with double diffusive phenomenon in a deformable channel of peristaltically moving walls is 
investigated in this paper. The variable gap between heated walls is filled with nanofluids. The purpose is to examine the 
combined effects of surface deformation and peristaltic movement of the walls on the nanofluid flow along with coupled 
double diffusion analysis in a channel. We emphasized on the behavior of peristaltic flow with heat/mass transfer for 
nanofluid in the deformable channel whose walls are permeable and contracting or expanding in the normal direction. 
Nanofluids are widely utilized in industrial processes to boost the thermal diffusivity and conductivity. We have analyzed 
the effects of different involved parameters such as Reynolds number, surface deformation parameter, Prandtl number, 
wave number, Brownian and thermophoretic diffusion parameters on the flow fields, pressure distribution and concen-
tration with the help of graphs. The results are shown graphically and discussed physically. It is noted that deformation 
increases the axial velocity and temperature of the fluid. For special cases, the current simulation and its solution are 
exactly matched with the classical models of viscous flow in a deformable channel of peristaltically moving walls.
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List of symbols
u, v	� Axial and normal components of velocity
T ,C	� Temperature and concentration of the fluid
T1,C1	� Upper wall temperature and concentration
T0,C0	� Lower wall temperature and concentration
x, y	� Cartesian coordinates
t 	� Time
vw	� Suction/injection velocity
2a(t)	� Channel width
DB,DT	� Brownian diffusion and thermophoresis diffu-

sion coefficients
p	� Pressure
�	� Wavelength

b	� Amplitude
A	� Suction/injection coefficient
k, cp	� Thermal conductivity and specific heat
Pr, Le	� Prandtl and Lewis numbers
�,�	� Non-dimensional temperature and 

concentration
�	� Wall expansion ratio
�	� Wave number
Re	� Reynolds number
�	� Density
�	� Non-dimensional y-coordinate
�	� Kinematic viscosity
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�	� Fluid viscosity
c	� Wave speed

1  Introduction

Channel flows are of particular importance and widely 
used in vibrating environments such as drilling oil wells, 
surgical operations during blood flow in the production, 
generation and preparing of food and paper, oil investi-
gation and paper manufacturing. In science, it has appli-
cations for displaying respiratory functions in the lungs, 
modeling biochemical/clinical laboratories for analyzing 
chemicals/blood, etc. Channel flow with permeable walls 
was considered by Berman [1]. The properties of a fluid 
flow mechanism have been analyzed for 2D steady flow 
in rectangular cross sectional channel with porous walls. 
The Navies Stokes equations are simplified and solved ana-
lytically. He found the analytic solution subject to the no-
slip and symmetric boundary conditions. Due to increas-
ing interest in many applications, number of studies are 
undertaken to address various situations of small and large 
suction/injection velocities [2–6].

Deformable channel is a geometry with expanding/
contracting porous walls. The flow of viscous fluid inside 
a semi-infinite, impermeable and contracting/growing 
pipe was early studied by Uchida and Aoki [7], in which 
the momentum equations were transformed by using 
similarity analysis both in space and time. In afterward 
investigation by Goto and Uchida [8], the similarity was 
recurring for a constricting tube with porous walls. Simi-
larly flow among contracting or increasing parallel per-
meable walls was considered by Dauenhauer and Majda-
lani [9, 10]. They studied the two-dimensional unsteady, 
laminar and incompressible flow between parallel plates, 
which are expanding or contracting. They treated full 
Navier–Stokes equations and do not consider the bound-
ary layer approximations. They have taken two types of 
porosities at the porous surfaces of the channel, one is 
because of the expansion or contraction of the plates and 
the alternative is the common porosity. A strong math-
ematical relation is established between the two porosities 
in such a way they introduced an advanced parameter, 
which is called injection coefficient. It quantifies poros-
ity of the plates and works as a control parameter in the 
ultimate solution. The study is further extended to applied 
problems in biomechanics with the assumptions of small 
cross flow Reynolds number (Re) and surfaces deforma-
tion rate ( � ). Berman is based on one physical parameter 
which is cross flow Reynolds number, while Majdalani et al. 
[11] are dealing with two limitations the Reynolds num-
ber and the plate expansion rate. They presented variables 
which reduces the NS equations into a nonlinear ODEs and 

solved the problem numerically. Later on, they give ana-
lytic solution of problem by using double perturbation 
procedure and the solutions are valid for small effects of 
both suction/injection parameter and wall expansion ratio. 
Most recent investigations of the channel flow problems 
with deformable walls are presented in [12–21]. The heat 
transfer phenomenon in a deformable porous channel 
was also discussed by Asghar et al. [22]. They provided 
homotopy solutions to the problem and compared the 
analytic results with the numerical solutions computed 
by RK method coupled with shooting technique.

Peristalsis is the train of sinusoidal waves resulting 
from contraction and expansion of an extensible channel 
propagate along the length of the channel. The mecha-
nism is accountable for fluid transport in many physiolog-
ical systems such as ureter push urine from kidney into 
bladder, contraction and expansion of muscle that occur 
throughout the digestive system. Peristaltic mechanism is 
fairly popular amongst the modern researchers due of its 
applications in engineering and physiological problems 
e.g. chyme wave in gastrointestinal tract, worm’s locomo-
tion, sanitary fluid transport, swallowing of food through 
esophagus and many others. Latham [23] has initiated 
the pioneering work on peristaltic transport for the first 
time in his MS Thesis. Several investigations of practical 
importance are presented since the pioneering work of 
Latham [23]. Some of these studies are given in [24–34]. 
Khan Marwat and Asghar [35] studied the peristaltic flow 
in deformable channel. They combined the peristaltic 
transport phenomenon with deformation in channels 
and found the perturbation solutions of the transformed 
problem.

The word nanofluid was introduced for the first time by 
Choi [36] and presented at occasion of ASME winter yearly 
conference. It is new class of heat transfer in fluids which 
contains nano-particles and fluid. To improve the perfor-
mance of heat transfer in base fluids, it is experimented 
to include additives in the fluids. Nanofluids increase the 
convective heat transfer and thermal conductivity of the 
base fluids performance. In common liquids nanofluid is 
deferral of nano-particles. The classical conductivity theory 
of solid–fluid suspensions is used when the suspensions 
contain large-size particles. The theory cannot clarify that 
why nanoparticles of short concentrations can make better 
heat transfer of base liquids considerably bigger than the 
predication of model. Later Buongiorno [37] studied the 
convective heat transport in nanofluids in which he con-
cluded that the Brownian and thermophoresis process will 
be imperative. Khanafer et al. [38] studied the buoyancy 
driven heat transfer effects in a channel with nanofluids. 
Letter on Buongiorno et al. [39] studied the experimental 
analysis of the nanofluid. Angayarkanni and Philip [40] 
presented a review on the thermal properties of nanofluid 
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with some current developments. Several studies has been 
carried out for nanofluid inside parallel walls [41–52].

There are numerous agents who cause fluid movement in 
which some are more outstanding and conspicuous such as 
the pressure difference, the concentration difference, tem-
perature difference, solid body movement and many more. 
In this work, the main focus on fluid movement, heat/mass 
transfer inside the peristaltic channel of deformable walls. 
The sources which will governs the fluid movement are the 
pressure gradient and movements of the rigid walls. The 
purpose of this study is to scrutinize the combined effects 
of the deformation and peristaltic movement of walls on 
fluid motion with heat/mass transfer effects in a channel. 
We have considered the nanofluid inside the channel walls, 
which are contracting/expanding in the normal direction 
and a sinusoidal wave is moving in the axial direction. The 
analytic solution of the non-linear problem have been pre-
sented by using perturbation technique. The outcomes are 
shown graphically and discussed physically.

in which � is wavelength and b is amplitude. The governing 
equations are:

in which (ū, v̄) represents velocities in the axial and normal 
directions (x̄, ȳ) , p̄ is pressure, � is density, T̄  is temperature 
of the fluid, C̄ is concentration, DT  is thermophoresis dif-
fusion coefficient and DB is Brownian diffusion coefficient. 
In order to transform the equations from laboratory frame 
into wave frame, we define the following new variables:

Using the transformations (7) into Eqs. (2)–(6), we get

(1)h̄
(
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(
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)
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𝜕ȳ
=

−1

𝜌

𝜕p̄

𝜕ȳ
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(7)
x̂ = x̄ − ct̄, ŷ = ȳ, û = ū − c, v̂ = v̄, p̂ = p̄, T̂ = T̄ , Ĉ = C̄ .
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𝜕ŷ
+ 𝜐

(

𝜕2v̂

𝜕x̂2
+

𝜕2v̂

𝜕ŷ2
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𝜕Ĉ

𝜕x̂
+

𝜕T̂

𝜕ŷ
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Fig. 1   Schematic problem

2 � Modelling

Dynamics of nanofluid in semi-infinite channel having 
width 2a is considered. One end is closed by nonporous 
elastic sheet, which shrinks/expands as the walls are 
deformed. The heated walls are expanding/contracting 
in the normal direction and sinusoidal wave of speed c 
is generating on the surface of walls in the longitudinal 
direction, so the width between walls is function of time. 
The concentration and temperature on the lower and the 
upper plates are T0 , C0 and T1 , C1 . The physical model is pre-
sented in Fig. 1.

Mathematically, the wall geometry is described as:
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The transformations and non-dimensional variables are

The pressure terms are eliminated from Eqs. (9) and (10) 
by cross differentiation and subtracting and using Eq. (13), 
we get the vorticity equation.

in which ∇2 = �2
�2

�x2
+

�2

�y2
. Substituting Eq. (13), into the 

above system of equations, Eq. (8) is identically satisfied 
and Eqs. (9)–(12) become under the assumption that the 
small parameter � remains the constant and let the stream 
function � varies with � instead of t  [8], we get:
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,

with boundary conditions:

In above boundary condition

where Q is the non-dimensional mean flow rate in the 
laboratory frame and

where h = 1 + � sin x. Note that � is expansion/contraction 
parameter, the Reynolds number Re represents suction/
injection, the Prandtl number Pr , the wave number � , the 
Brownian and the thermophrosis parameter Nb and Nt are 
defined as:

Equations (15)–(19) with conditions (20) can be solved 
by perturbation method and assumed that all the param-
eters are of the same order. Note that the perturbation 
solutions are valid for small value of all the governing 
parameters and they are accurate up to the order of �2 
and �2 . Moreover, we get the following form for stream 
function, temperature and concentration:
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(20)
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where �1 =
3F0+h

2h
 , �2 =

F0+h

2h3
 , �7 =

1

h
 and �8 =

1

h
.

Note that the solution in Eq. (26) is exactly matched 
with the published results of Khan Marwat and Asghar [35] 
whereas the modeled problem presents a viscous flow in 
a deformable channel of peristaltically moving walls. The 
current formulation enhances flow heat and mass transfer 
of nanofluids in such channels.

3 � Graphical results and discussion

This section presents analysis of different quantities on 
the velocity, the temperature and the concentration pro-
files, pressure gradient and pressure rise per wavelength. 
The problem in Eqs. (23)–(26) is solved with the help of 
perturbation method and the series solution is found. The 
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.

perturbation solutions are effective for small values of 
involved parameters in the problem. The existing solution 
are confirmed and validated by comparing it with the pub-
lished results for specific values of the governing param-
eters. In Fig. 2, axial velocity profiles are plotted against 
the dimensionless variable y for diverse values of wall 
expansion ratio � . The velocity is increased with increas-
ing of � . The axial velocity profiles are parabolic in nature 
and symmetrical about the center line of the channel. The 
gape among different profiles is maximum at the center 
whereas it is almost zero near both walls. This fluid velocity 
is not zero at the walls because both the walls are moving 
with the velocity of wave speed c . Similarly in Fig. 3 effects 
of wave number � are seen on the axial velocity and it is 
increased with increasing values of �. In Fig. 4, the effects 
of Reynolds number Re are shown on the axial velocity. 

Fig. 2   The axial velocity u(x, y) is graphed against y for different 
and small values of wall expansion ratio

Fig. 3   The axial velocity u(x, y) is graphed against y for different 
and small values of wave number
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Fig. 4   The axial velocity u(x, y) is graphed against y for different val-
ues of suction injection parameter

Fig. 5   The temperature distribution �(x, y) is graphed against y for 
diverse and small values of Nb

Fig. 6   The temperature distribution �(x, y) is graphed against y for 
diverse and small values of Nt

Fig. 7   The temperature distribution �(x, y) is graphed against y for 
different and small values of wall expansion ratio

Fig. 8   The temperature distribution �(x, y) is graphed against y for 
diverse and small values of wave number

Fig. 9   The temperature distribution �(x, y) is graphed against y for 
diverse values of Prandtl number
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For the case of suction, i.e. for negative values of Reynolds 
number, the velocity near the boundaries decreases while 
it surges in the center of the channel.

In Figs. 5, 6, 7, 8 and 9, the effects of Nb, Nt, �, � and Pr 
are seen on temperature distribution. Note the heat flow is 
discussed in the upper half of the channel. Figure 5 shows 
effects of Nb are observed on the profiles of temperature. 
For Nb = 0 , the profile is exactly linear and temperature is 
increased with the increasing of Nb . The profiles for Nb > 0 
are of curved shape and changed uniformly. This variation 
in temperature is actually caused by Brownian motion of 
molecules and it is the arbitrary motion of particles sus-
pended in the fluid which results from their collision with 
the fast-moving molecules in the fluid. The more energetic 
is the Brownian motion of molecules, the higher the tem-
perature that we sense. More specifically, absolute temper-
ature is relative to kinetic energy of the Brownian motion 
of molecules per unit mass. If we raise the temperature, 
Brownian motion becomes more energetic. On the other 

hand, if Brownian motion is increasing then temperature 
will be increased. This confirms the direct relation between 
Brownian motion and temperature. Thermophoresis is 
the effective source produced by temperature difference 
between the hot gas and the cold surfaces. It also con-
trols the particulate movement towards the cold wall. It is 
noted that the temperature distribution is changed with 
the deviation of thermophoresis parameter. The graphs in 
Fig. 6 shows that temperature is increased with the grow-
ing of thermophoresis parameter Nt . For Nt = 0, the tem-
perature profiles are closed to linear and direct relation 
between Thermophoresis parameter Nt and temperature 
profiles is also confirmed. The effects of wall expansion 
ratio � are also studied on the temperature profiles in 
Fig. 7. It is decreased with the increasing of wall expansion 
ratio. The only possible reason for decreasing in tempera-
ture is the increasing gape between walls. The effects of 
wave number � are shown on the temperature profiles in 
Fig. 8. If wave number increases then temperature will be 
decreased. This means that temperature and wave number 

Fig. 10   �(x, y) is graphed against y for diverse and small values of 
Nb

Fig. 11   �(x, y) is graphed against y for diverse and small values of 
Nt

Fig. 12   The concentration distribution �(x, y) is graphed against y 
for diverse and small values of Le

Fig. 13   The axial pressure gradient dp∕dx is graphed against x for 
different and small values of wall expansion ratio
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are inversely proportional. It is noted that the temperature 
is more sensitive to Nb , Pr and Nt whereas the variation in 
its graphs with � and � is pronounced near the upper wall. 

In Fig. 9 the effects of Prandtl number are shown on the 
temperature distribution.

In Figs. 10, 11 and 12, the effects of Nb, Nt and Le are 
seen on concentration distribution. It is noted that by 
growing the Brownian motion Nb , increases the concen-
tration profile whereas, the increasing Thermophoresis 
parameter Nt , decreases the concentration profile. Thus 
greater concentration of nanoparticles corresponds to 
higher Nb , and lower thermophrosis diffusion Nt which can 
be seen from Figs. 10 and 11 respectively. The influence of 
Le on the concentration profiles are shown in Fig. 12 in the 
presence of wall expansion ration. It is clear that the con-
centration decreased with the increasing of Le . For Le = 0, 
the concentration profiles are linear.

In the next two figures, effects of wall deformation ratio 
� and wave number � are seen on axial pressure gradient. 
In Fig. 13, the axial pressure gradient is graphed against 
the axial distance for different values of wall deformation 
ratio. It is changed sinusoidally and increased with the 
increasing of � . The amplitude of the sinusoidal pressure 
(axial) gradient is rapidly changed with the increasing val-
ues of wall expansion ratio. However, it is decreased for 
increasing the wall contraction ratio. Similarly, the same 
pressure gradient is also plotted in Fig. 14 against the axial 
distance for different values of wave number and once 
again the sinusoidal behavior of the pressure gradient 
is observed. It is increased instantly with the increase of 
this parameter. For large values of � , the wave length and 
amplitude of each profile is greater than the other, which 
correspond to the smaller values. In Fig. 15 pressure rise 
per wavelength is evaluated and graphed against volume 
flow rate Θ for different and small values of the wall defor-
mation rate. The pressure drop against Θ is linear for each 
value of wall deformation rate. It is increased/decreased 
for increasing the wall expansion ratio 𝛼 > 0/wall contrac-
tion ratio 𝛼 < 0 . In Fig. 16 pressure rise per wavelength is 
evaluated and graphed against volume flow rate Θ for dif-
ferent and small values of wave number. The pressure drop 
against Θ is linear for each value of the wave number. The 
profiles in this figure are exactly matched with the classical 
profiles published in [35].

4 � Concluding remarks

Peristaltic flow with double diffusion of a nanofluid in a 
deformable channel of heated porous walls is investigated 
in this paper. Perturbation method provides a satisfactory 
solution for the field quantities in terms of the charac-
terizing parameters. The variation of these parameters 
describes the flow heat and mass transfer behavior in a 
deformable channel of heated and porous walls. The flow 
profiles and pressure gradient are calculated and effects of 

Fig. 14   The axial pressure gradient dp∕dx is graphed against x for 
different and small values of wave number

Fig. 15   The pressure rise per wavelength Δp� is graphed against Θ 
for diverse and small values of �

Fig. 16   The pressure rise per wavelength Δp� is graphed against Θ 
for diverse values of �
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the additional characterizing parameters are thoroughly 
investigated. These parameters in combination with the 
deforming parameter provide a useful analytical under-
standing of the flow heat and mass transfer behavior in 
deforming channels. The insight provided by the study will 
be useful both in applications of the deforming channels 
and tubes when the additional considerations of heat and 
mass transfer phenomena are incorporated besides the 
mathematical value of the analytical solution. A detailed 
impact of the characterizing parameters has been narrated 
in “Results and Discussion”.
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