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Abstract
This manuscript proposes a robust fixed time terminal sliding mode prototype for trajectory tracking of the nonlinear 
dynamics of an under-actuated air cushion vehicle. Nonlinearity, external disturbances, internal uncertainties and unmod-
eled dynamics are the main difficulties that an amphibious vehicle is faced with in its maneuver. The main contribu-
tion of the proposed methodology is to overcome these problems based on both the guaranteed stability in sense of 
Lyapunov and the fixed time tracking error even if the initial values are changed. Robustness against uncertainties and 
disturbances, fixed time convergence of tracking error to zero are other merits of the proposed approach. The simulation 
results demonstrate the effectiveness and superiority of suggested scheme.
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1  Introduction

1.1 � Background and motivations

Air cushion vehicle (ACV) is an under-actuated electrome-
chanical system. The amphibious hovercraft is located on 
air cushion therefore, it can move on every surface and 
consequently its used in many applications [1], but the 
control of hovercraft is so complex, because of low friction, 
high speed, second order nonholonomic constraint which 
makes its motion restrict, actuators generate forces only in 
heading path, dynamic coupling exist among states, exter-
nal disturbances can affect its motion and directly com-
pensate for side-external disturbance is impossible [1, 2]. 
Therefore, controller must be designed so that overcome 
aforementioned challenges. Sliding mode control (SMC) 
has been widely used to control various systems in recent 
decades [3–7], this methodology of control has some 
notable merits for control engineers such as robustness 
against disturbances, uncertainties and parameter varia-
tions, high accuracy, fast dynamic response, simplicity of 

computations, significant transient performance and guar-
anteed stability [8, 9]. The main disadvantages of SMC are 
chattering effect due to discontinues control action and 
infinity settling time. Chattering phenomena can hurt 
the system actuators and sensors. These problems can be 
solved by high order SMC [10–13]. Trajectory tracking con-
trol is one of the most attractive and challenging tasks of 
control for a long time [14–16].

The question may be inspired control engineers, how 
can do tracking control and stabilizing hovercraft in a 
fixed time, whether initial values are changed despite all 
of aforementioned SMC merits.

1.2 � Brief survey

ACV is a high performance and high usage vehicle, but 
control of ACV is difficult, the main problems of ACV con-
trol are point stabilization, path following and trajectory 
tracking [17]. Two control methods have been applied on 
hovercraft so far, classic and intelligent.
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In [18–21] fuzzy controllers derived on hovercraft, 
although the methods are simple, fuzzy method has 
problems with systematic analysis and design. In [22] the 
controller has been designed based on a neural network 
and applied to a hovercraft dynamic in which the actuator 
has not been modeled, and the use of the neural network 
has not led to a globally stability, it can’t follow the desired 
path completely. In [23] a radial basis function neural net-
works controller has been implemented in a number of 
hovercraft coordinates. The effect of external disturbances 
and friction have not taken into account and the dynamic 
model is a simple model, and also the time delay of com-
munication between devices has been ignored. There-
fore, it can generally be noted that intelligent controllers, 
are very complex decision making processes and fuzzy 
rules are based on the knowledge of experts, which is not 
always available. In addition, great set of rules need great 
time to compute and adjust.

The classical control methods that carried out on 
hovercraft so far include a Proportional, Integrated, 
Derivative(PID), adaptive, backstepping, open loop con-
trol, linear and nonlinear Lyapunov-based, linear regulator 
controllers, in which the effect of external disturbances 
and frictions are ignored, and also they are not robust 
against them [24–28]. Other controllers such as feedback 
linearization, state feedback, etc. don’t have high accuracy 
for this kind of extreemly nonlinear dynamics and may not 
be applicable because of the existance of discountinus 
functions in the dynamics [29–33].

Human-centered tracking system for a hovercraft based 
on terminal sliding mode control is applied in [34] the 
chattering-free and full order TSM has solved chattering 
and singularity problems then its combined with radial 
basis function neural networks to deal with the nonlinear-
ity and uncertainty of hovercraft’s model and it can con-
vergs velocities and position tracking errors at finite-time.

The path following and trajectory tracking tasks in a 
hovercraft physical model are controlled by the backstep-
ping controller in [35], the friction coefficients and distur-
bance dynamic estimators are introduced, global practical 
stability is achieved and actuations are remained bounded 
with respect to the position error.

In [36–42], some combinations of sliding mode with 
other controllers on hovercraft and other systems are 
presented. Although they are robust against disturbances, 
they haven’t been able to stabilize system at a fixed time.

1.3 � Contribution

Motivated by mentioned considerations, this manuscript 
proposed a controller which is robust against disturbances 
and uncertainties, reduces chattering, converges track-
ing error to zero and guarantees the overall close loop 

stability. The control law is designed based on lyapunove 
stability. The main innovations of this paper in comparison 
with the related references which applied on hovercraft 
are as follows:

•	 A robust fixed time terminal nonlinear SMC scheme is 
designed for tracking control of the ACV, which isn’t 
designed in this methodology for the ACV before.

•	 To get the fixed time stability even if the initial values 
are changed, the sliding surface is designed in new 
form, which isn’t used in sliding mode control algo-
rithms of the hovercraft.

•	 The chattering reduction is done by using the sigmoid 
function.

•	 The dynamical model structure which is used in this 
paper induces lateral forces on the ACV depending 
on the torque. In other models, thrust and torque are 
independent. Therefore, the nonlinearity properties 
of hovercraft dynamic are fully modeled based on its 
interaction.

1.4 � Paper organization

The remainder of this paper is structured as follows, 
Sect. 2 describes some preliminaries such as notations 
which are used in this paper, problem formulation which 
demonstrates vehicle modeling contains a description of 
nonlinear model for hovercraft and some lemmas which 
are required for controller design and express the rest of 
the paper. Section 3 presents fixed time terminal sliding 
mode control design and its structure. Simulation results 
are presented in Sect. 4. Finally, Sect. 5 provides a brief 
conclusion.

2 � Preliminaries

2.1 � Notations

This section is represented for easy access and better 
description of equations and also avoidance of repetition. 
Table 1 shows this paper symbols and their descriptions.

2.2 � Problem formulation

To better comprehension of the problem first of all, the 
following lemma [43] should be expressed.

Lemma 1  Consider a system such as

(1)ẋ = − 𝛼x
m

n − 𝛽x
p

q , x(0) = x0



Vol.:(0123456789)

SN Applied Sciences (2020) 2:98 | https://doi.org/10.1007/s42452-019-1866-5	 Research Article

where �, �  are positive, m, n, p, q > 0 and odd which 
m > n, p < q, therefore, the equilibrium point of (1) is fixed 
time stable and fixed time upper bound is as follows

And it is independent of initial states.

The ACV model (Fig. 1) is considered as a rigid body 
in a 2-D space and the following equations are used as 
kinematics and dynamics [45]. 

The parameters of (3) are described in Table 1. Velocity 
errors can be defined as

(2)Tmax =
1

�

n

m − n
+

1

�

q

q − p

(3)

⎧⎪⎪⎨⎪⎪⎩

ẋ = cos 𝜃 u − sin 𝜃 v

ẏ = sin 𝜃 u + cos 𝜃 v

u̇ = −m−1du0sign u −m−1duu +m−1bTTcos 𝜃 + vr

v̇ = −m−1dv0sign v −m−1dvv +m−1bTTsin 𝜃 − ur

ṙ = −J−1dr0sign r − J−1drr − J−1a bTTsin 𝜃

where ud and vd are desired longitudinal and lateral veloc-
ity, and the time derivative of (4) by substituting (3) is 
obtained as

The ud and vd are considered as

where kx , ky , lx , ly > 0 and xe = x − xd , yd = y − yd

Theorem 1  If the errors of velocity eu and ev in (6) converge 
to zero, then it is ensured that the errors of position tracking 
(xe,ye) asymptotically converge to origin [15].

Proof  From kinematics equations in (3), the following 
equation is obtained.

With substituting (6) and (7) to (4) velocity errors are 
obtained as

If velocity errors (eu, ev) converge to zero, thus Eq. (9) is 
obtained, because rotational matrix isn’t singular.

(4)

{
eu = u − ud
ev = v − vd

(5)

{
ėu = −m−1du0sign u −m−1duu +m−1bTT cos 𝜃 + vr − u̇d
ėv = −m−1dv0sign v −m−1dvv +m−1bTT sin 𝜃 − ur − v̇d

(6)

�
ud
vd

�
=

�
cos𝜃 sin𝜃

−sin𝜃 cos𝜃

�⎡⎢⎢⎣
ẋd + lx tanh

�
−kx

lx
xe

�

ẏd + ly tanh
�

−ky

ly
ye

�
⎤⎥⎥⎦

(7)

[
u

v

]
=

[
cos 𝜃 sin 𝜃

−sin 𝜃 cos 𝜃

][
ẋ

ẏ

]

(8)

�
eu
ev

�
=

�
cos 𝜃 sin 𝜃

−sin 𝜃 cos 𝜃

�⎡⎢⎢⎣
ẋe − lx tanh

�
−kx

lx
xe

�

ẏe − ly tanh
�

−ky

ly
ye

�
⎤⎥⎥⎦

Table 1   Symbol table Symbol Description Symbol Description

u Longitudinal velocity bT Force scaling coefficient
v Lateral velocity k1, k2 Switching gain
� Rudder angle eu, ev Velocity errors
r Angular velocity ud , vd , xd , yd Desired parameters
T Trust force

{
du0 , dv0 , dr0 , du, dv , dr

}
Friction coefficients

m Mass of hovercraft lx , ly Saturation constants
J Inertia moment kx , ky Controller gains
a The arm length from the center of 

mass to the rudder surface

[
cos � sin �

−sin � cos �

]
Rotational matrix

xe , ye Position tracking error

Fig. 1   Sketch of ACV model
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To prove the convergence position errors to zero, the 
Lyapunov function is considered as

The time derivative of V1 is

As tanh is an odd function and controller and saturation 
coefficients are positive therefore,V̇1 is negative and posi-
tion errors converge to zero.

The model and the control conditions make the follow-
ing assumptions.� □

Assumption 1  For simplicity, the explicit time depend-
ence of position and uncertainties is omitted.

Assumption 2  The states of the system are fully 
measureable.

3 � Controller design methodology

This section presents the proposed design of fixed time 
terminal sliding mode controller, the main target of this 
part is to design robust control laws for the surge and 
sway velocity therefore, the position of the ACV can track 
a desired target. Figure 2 depicts a diagram of the ACV 
tracking control design phases.

(9)

⎧
⎪⎨⎪⎩

ẋe = lx tanh
�

−kx

lx
xe

�

ẏe = ly tanh
�

−ky

ly
ye

�

(10)V1 =
1

2
x2
e
+

1

2
y2
e

(11)

V̇1 = xeẋe + yeẏe = −lxxetanh

(
kx

lx
xe

)
− lyyetanh

(
ky

ly
ye

)

3.1 � Controller structure

The target of the paper is trajectory tracking and fixed time 
stability even though initial conditions are changed. There-
fore, the sliding surfaces are considered as follows.

where m > n, 0.5 <
p

q
< 1 and m, n, p, q are integers which 

are positive, �, � , � are positive.
To obtain finite time terminal sliding mode, the time 

derivative of sliding surfaces should be constrained by the 
following conditions.

By equalizing the time derivative of (12) to (13), one 
obtains

From Lemma 1 and the Eqs. (13) and (14), the conver-
gence conditions of sliding surfaces and errors to the origin 
in a fixed time are obtained.

Control inputs are proposed as [44] and (9) that consist 
of two sections, Ueq shows the equivalent term to eliminate 
the certain term and Ur demonstrates the reaching one to 
decrease the uncertainties [45].

(12)

{
S1 = eu + � ∫ t

0
sign(eu)

||eu||
m

n d� + � ∫ t

0
sign(eu)

||eu||
p

q d�

S2 = ev + � ∫ t

0
sign(ev)

||ev||
m

n d� + � ∫ t

0
sign(ev)

||ev||
p

q d�

(13)

{
Ṡ1 = −𝛼sign(S1)

||S1||
m

n − 𝛽sign(S1)
||S1||

p

q

Ṡ2 = −𝛼sign(S2)
||S2||

m

n − 𝛽sign(S2)
||S2||

p

q

(14)

{
ėu = −𝛼sign(eu)

||eu||
m

n − 𝛽sign(eu)
||eu||

p

q

ėv = −𝛼sign(ev)
||ev||

m

n − 𝛽sign(ev)
||ev||

p

q

(15)� = �eq + �r

Fig. 2   A block diagram of the ACV’s tracking controller design
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Equivalent thrust control input can be selected as follows

And rudder angle is obtained as

Reaching inputs in order to traditional symbolic function 
considered as sigmoid which can reduce chattering effect 
[42]

The defenition of sigmoid function is

where � , � are positive constant.

3.2 � Stability and convergence time analysis

Theorem 2  Consider hovercraft dynamics given in (3) sat-
isfying Assumptions 1 and 2. Then the sliding surface men-
tioned in Eq. (12) and control inputs proposed as (17) to (20) 
makes the closed loop system asymptotically stable, tracking 
errors and sliding surface converge to zero furthermore all 
signals in the closed loop system will be bounded.

Proof  To prove the stability of closed loop system, the Lya-
punov function candidate is as follows.

The time derivative of Lyapunov function should be 
satisfied following inequality.

with time derivative of (12) and substituting (3) in it

(16)T = Teq + Tr

(17)

Teq =
1

m−1bT

(
m−1du0signu +m−1duu − vr + u̇d − 𝛼sign(eu)

||eu||
m

n

−𝛽sign(eu)
||eu||

p

q − 𝛼sign(S1)
||S1||

m

n − 𝛽sign(S1)
||S1||

p

q

)

(18)𝜃eq =
1

m−1bTT

(
m−1dv0signv +m−1dvv + ur + v̇d − 𝛼sign(ev)

||ev||
m

n

−𝛽sign(ev)
||ev||

p

q − 𝛼sign(S2)
||S2||

m

n − 𝛽sign(S2)
||S2||

p

q

)

(19)�r = −k1sig(S1)

(20)Tr = −k2sig(S2)

(21)sig(S) =
1

1 + exp(−�(S − �))

(22)V2 =
1

2
S2
1
+

1

2
S2
2

(23)V̇2 = S1Ṡ1 + S2Ṡ2 ≤ −𝜂1
||S1|| − 𝜂2

||S2||

By substituting control inputs (17–20) in (24) and con-
sidering (13) then substituting in time derivative of Lyapu-
nov function therefore, Eq. (25) is obtained.

Then (25) can be rewritten as

By some math manupulation Eq. 26 can be rewritten as

It’s clear that (26) is negative and an � is exists which 
can satisfy inequality (23), therefore stability of fixed 
time sliding mode control is proven. This completes the 
proof.� □

Theorem 3  Consider the ACV model (3), with the control 
inputs selected as (15) and (16), then the states converge to 
origin in fixed time and for each sliding surfaces upper bound 
of settling time (Ts) obtain as equation [43, 44].

Proof  The time which is set for Eq. (24) is T (S (0)), from 
Lemma 1. The time which system (3) can reach the sliding 
surface satisfies:

Therefore, the system reaches the sliding surfaces in a 
fixed time which the upper bound of it is T ′

max
.

To present the upper bound of state errors, Lyapunov 
stability of errors should be proven, thus Lyapunov func-
tion candidate considered as follows

(24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ṡ1 = −m−1du0sign u −m−1duu +m−1bTTcos𝜃 + vr − u̇d

+ 𝛼sign(eu)
��eu��

m
n

+ 𝛽sign(eu)
��eu��

p

q

Ṡ2 = 𝜆
�
−m−1dv0sign v −m−1dvv +m−1bTTsin𝜃 − ur − v̇d

�

+ 𝛼sign(ev)
��ev��

m
n

+ 𝛽sign(ev)
��ev��

p

q

(25)
V̇2 = S1

(
−𝛼sign(S1)

||S1||
m

n − 𝛽sign(S1)
||S1||

p

q

)

+ S2

(
−𝛼sign(S2)

||S2||
m

n − 𝛽sign(S2)
||S2||

p

q

)

(26)V̇2 = −𝛼||S1||
m

n
+1

− 𝛽||S1||
p

q
+1

− 𝛼||S2||
m

n
+1

− 𝛽||S2||
p

q
+1

(27)V̇2 ≤ −AV
m+n

2n

2
− BV

p+q

2q

2
≤ −AV

𝛿1
2

− BV
𝛿2
2

(28)lim
S1,2(0)→∞

T (S1,2(0)) ≤
1

A(�1 − 1)
+

1

B(1 − �2)
≤ T �

max
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The time derivative of (29) is

According to Lemma1 and (30), Time of error function 
converging to origin can be expressed as

From (28) to (31) the upper bound of system’s settling 
time satisfies

The Eq. (32) presents that states of system (3) converge 
in a fixed time which it’s upper bound is 2T ′

max
 . This time 

can be set based on problem requirements.� □

4 � Simulation results

As an illustration of this paper suggested method, the ACV 
is simulated using friction coefficients and parameters of 
[44, 46]. The mass of ACV is 0.585 (kg), length of the arm 
is 0.14 (m) and inertia is 0.01 (kg m2). Table 2 presents the 
controller parameters.

As it is explained before m > n, 0.5 <
p

q
< 1 and m, n, p, q 

are integers which are positive, �, � , � kx , ky , lx , ly ,� , � are 
positive constant therefore, the best values for better con-
troller behavior are obtained using the trial and error 
method.

(29)V3 =
1

2
(e2

u
+ e2

v
)

(30)

V̇3 = euėu + ev ėv = −𝛼(||eu||
m

n
+1

+ ||ev||
m

n
+1
) − 𝛽(||eu||

p

q
+1

+ ||ev||
p

q
+1
)

≤ −AV
𝛿1
3

− BV
𝛿2
3

(31)lim
eu,v (0)→∞

T (eu,v(0)) ≤
1

A(�1 − 1)
+

1

B(1 − �2)
≤ T �

max

(32)

lim
eu,v (0)→∞

S1,2(0)→∞

Ts ≤ lim
eu,v (0)→∞

S1,2(0)→∞

(T (eu,v(0)) + T (S1,2(0)))

≤
2

A(�1 − 1)
+

2

B(1 − �2)
≤ 2T �

max

Control laws which are mentioned before, applied to 
the model and following figures are the results. The time 
value of simulation is around 100 s for the ordinary PCs. 
It should be noticed that a linear system with sinusoidal 
input is given to the controller as the desired tracking 
system.

The sliding surfaces of controller are depicted in Fig. 3.
Both Sliding surfaces in a short times converge to ori-

gin. Now in following figures ACV states and the desired 
values are displayed. According to Eq. (6), desired values 
defined for x, y, u and v only, therefore tracking simulation 
is shown for them (Fig. 4).

By the reference system which is considered for track-
ing, the steady state velocity components values are in 
range [− 0.1,0.1] (Fig. 5).

Table 2   The controller parameters

Parameter Value Parameter Value

p 2 β 2
q 3 k1 10
m 3 k2 0.1
n 2 λ 0.9
α 4 ψ 1
kx 16 σ 1
ky 64 lx 8
ly 32

Fig. 3   Sliding surfaces

Fig. 4   Velocities tracking of desired references
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As it’s clear from simulation results, the performance 
of the proposed method of tracking is amazing, after split 
seconds system can track desired reference (Fig. 6).

The tracking errors of position and velocity before 1 s 
converge to zero (Fig. 7).

As it is expressed before, a linear system with sinusoidal 
input considered as the desired tracking system of control-
ler, then at the split time the controller could make system 
asymptotically stable and sliding surfaces and states track-
ing errors converge to the origin.

5 � Conclusion

In this paper, fixed time terminal sliding mode controller 
is designed ACV to track the predefined trajectories. This 
technique is robust against disturbances and uncertainties 

but the main target of the paper is to persuade the ACV 
to track the desired reference and stabilizing at the fixed 
time even if the initial conditions are changed. The settling 
time can be estimated in advance and the chattering is 
reduced easily. Asymptotic stability of overall close loop 
system is proven and by making velocity error to zero, ACV 
tracks desired path and position tracking error converges 
to zero too. Simulation results demonstrate efficiency and 
superiority of proposed method. In this research states are 
assumed accessible, in future works it is better to design 
a neural observer for estimating inaccessible states, dis-
turbance and uncertainties. The boundedness of stability 
time may cause the enhancement of control effort there-
fore, it is better to have a trade-off between settling time 
and energy. The extension of this method to higher order 
systems can be considered for future studies.
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