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Abstract
In this work, the prediction methods of unbalance responses based on the surrogate models were studied, where the 
simulation data of vibration responses of a dual-rotor system with four disks and five supportings were involved. Firstly, 
based on the Latin hypercube sampling and random sampling with uniform distribution of unbalance distribution of 
the fan disc and the hyper-compressor disc, the input variables of the training samples and the testing samples were 
respectively obtained. According to the sampling results, the multi-body dynamics simulations were conducted to extract 
the vibration responses at the corresponding measuring points as the output variables of the sample space. Then, the 
algorithms of multivariate adaptive regression splines (MARS), radial basis function (RBF) and Kriging, were selected to 
respectively construct the response-predicted models of the rotor system. Finally, predicted vibration responses were 
figured out by surrogate models and the prediction accuracies were verified by comparison with output parameters in 
the testing samples. The results showed that the prediction methods of unbalance responses based on MARS, RBF and 
Kriging enjoyed high prediction accuracies according to the standards, which were proved to be feasible in theoretically.

Keywords  Dual-rotor system · Surrogate model · Latin hypercube sampling · Dynamic simulation · Accuracy test

1  Introduction

In the application and development of aero-engine, unbal-
ance force caused by unbalance mass in the multiple discs 
of the low-pressure fan section and the high-pressure 
compressor section will cause serious vibration, which is 
one of the most major vibration sources of aero-engine. 
However, the research on the unbalanced vibration 
response characteristics of aero-engine often faces the fol-
lowing problems and challenges. Firstly, complex structure 
and narrow internal space of the dual-rotor system make it 
difficult to place sensor. Secondly, it is the commonly used 
method in the field of engineering practice that obtaining 
a reliable response values in steady state of the system 
running through multiple start-stops, which costs a lot in 
time and economy.

At present, the researches of rotor unbalance are mainly 
the exploration of vibration characteristics. AL-Shudeifat 
et al. [1] numerically and experimentally found the change 
in the unbalance force angle with respect to the crack 
opening direction significantly altered the values of the 
critical whirl speeds and their corresponding peak whirl 
amplitudes in cracked rotor-bearing-disk systems for 
starting up operations. The research of Gao, P.’s revealed 
that the increasement of corresponding critical speeds 
and the vibration amplitudes of rotors happened, as the 
unbalances in LP and HP rotors mainly increased in a force 
model for the inter-shaft bearing with a local defect on the 
surface of the outer race or the inner race [2]. Cao et al. [3] 
analyzed quantitatively the effect of angular speed fluctu-
ation on vibration responses of the unbalanced rotor, the 
result of which showed the speed fluctuation produced 
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apparent frequency modulation, phase distortion and 
amplitude error of the unbalance. The research of Ref. [4] 
showed the sensitive intervals of unbalance vibration in 
the input side and output side are respectively in lower 
frequency and in higher frequency in a gas turbine rotor 
system. Zhang [5] proposed a non-whole beat correlation 
method to identify the unbalance responses, which was 
proved to be feasible and practicable from the numerical 
simulation and balancing experiment.

It is a fitting technology for the surrogate model 
that predicts the response value in the unknown situa-
tion using those in the known situation. Its essence is 
to approximately express the relationship between the 
input and output data through establishing the mapping 
between them, taking the fitting precision and the pre-
diction precision as the constraints. With the application 
and development of surrogate model technology for more 
than 40 years, it has been quite mature in the applications 
of optimization design [6–12] and parameter identification 
[13–15] of complex engineering problems, replacing the 
high-precision model with heavy computation and solving 
the problem that analytical model cannot be established 
in some engineering fields. The introduction of surrogate 
model technology in the dual-rotor system, can establish 
the model vibration response of by the use of limited sam-
ple data to efficiently achieve accurate prediction for the 
unknown.

In the field of rotor dynamics, some progress in the 
application of surrogate model technology has been 
made. The research of the Ref. [16] illustrated the effec-
tiveness of Kriging when predicting the critical speeds and 
the vibration amplitudes of a single flexible rotor modelled 
by analytic method. The research of the Ref. [17] used a 
polynomial surrogate method to effectively analysis 
steady-state response of cracked rotors with uncertain-
but-bounded parameters by numerical simulations. Gu 
et al. [18] realized the identification of single-point unbal-
ance parameters of the single-rotor system model, based 
on the PSO-SVR model, but there are not results for the 
multi-point and the dual-rotor. The research of the Ref. [19] 
presented a new method based on an improved Kriging 
surrogate model and evolutionary algorithm (IKSMEA), 
which was proved to effectively and accurately identify the 
structure parameters of a nonlinear rotor-bearing system 
by numerical studies and experimental validation.

In this study, multi-measuring-point metamodellings 
of a typical dual-rotor system with double unbalance 
disks were established based on MARS, RBF and Krig-
ing in sequence, and successfully predicted the vibra-
tion amplitudes under the unknown working conditions 

which were randomly sampled with uniform distribu-
tion, proving the application feasibility in this field. The 
researches applying the metamodelling methods for 
predicting the vibration response of the dual-rotor sys-
tem are quite few, so this paper is a supplement. This is 
an exploratory practice of applying the relatively mature 
mathematical technology to the engineering field, which 
can provide the reference for the dynamics balance and 
design of dual-rotor aero-engine.

2 � Object, approach and algorithms

2.1 � Object

Figures 1 and 2 show the rotor structure of a certain type 
of aero-engine, in which the numbers, 1–6, represent six 
bearing supports in the whole rotor system. Based on 
the principles of the structural similarity (1:2 reduced 
scale and similar characteristics of mass and moment 
of inertia) and dynamic similarity (the characteristics of 
first three order modes and Campbell diagrams of the 
high-pressure rotor, low-pressure rotor and the dual-
rotor system are consistent with those of the prototype), 
a scaled model is obtained, as shown in Fig. 3. It is mainly 
composed of four parts, low-pressure fan disc (LPC), low-
pressure turbine disc (LPT), high-pressure compressor 
disc (HPC) and high-pressure turbine disc (HPT). In Fig. 3, 
there are five supportings, among which bearings 1#, 
2# and 5# support the LP rotor, and bearings 3# and 4# 
support the HP rotor; there are nine measuring points 
deployed in the rotors, with the purpose of monitoring 
the vibration responses. The measuring points 1, 2, 3, 4 
and 5 are at the LP part, among which, measuring point 
1 is the center of supporting 1#, measuring point 2 is 
the center of mass of the LPC, measuring point 3 is the 
center of supporting 2#, measuring point 4 is the center 
of mass of LPT, and measuring point 5 is the center of 
supporting 5#. The measuring points 6, 7, 8 and 9 are 
at the HP part, among which, measuring point 6 is the 
center of supporting 3#, measuring point 7 is the center 
of mass of the HPC, measuring point 8 is the center of 

Fig. 1   The simplified model of a dual-rotor system
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mass of the HPT, and measuring point 9 is the center of 
supporting 4#.

2.2 � Approach

The achievement of prediction process includes the fol-
lowing three steps: (1) selecting samples and sample 
quantity in the variable space by the experimental design 
method; (2) calculating the output response variables of 
each sample for the research object, and then, establishing 

the metamodellings by training points; (3) doing the pre-
diction research and verifying the prediction accuracy of 
the results by testing points. The analysis process is shown 
in Fig. 4, in which letters, a to f, represent the orders of 
parameters inputted or outputted.

Design of experiment (DOE) is a scientific method to 
research the correlation between multiple factors and 
response variables [20]. Common DOE methods include 
Full Factorials Design, Orthogonal Experiment Design, 
Latin.

Hypercube Experiment Design, etc. Latin Hypercube 
Experimental Design is a random sampling method with 
the feature “space filling”, which can ensure that the entire 
variable space is covered by sample points, so adopted to 
determine mass and phase of unbalance disks of training 
sets in the paper. It can be taken as the principle that the 
number of training points is 10 times that of design vari-
ables [21]. There are four variables in the variable space: 
unbalance mass and phase of the LPC and HPC, so forty 
is the number of training samples. In order to verify the 
accuracy of the established models, the eleven testing 
points are randomly sampled with uniform distribution in 
the variable space. The distributions of training points and 
testing points are shown in Figs. 5 and 6.

Then, unbalance parameters are set so that the dynamic 
simulations in ADAMS are carried out to obtain the vibra-
tion responses of multiple measuring-points under 51 
working conditions. ADAMS software is the most excel-
lent dynamic simulation software of mechanical system 
developed by MDI. It is one of the most authoritative and 
widely used dynamic analysis software of mechanical sys-
tem in the world. It applies Lagrange method to calcu-
late multi-body dynamics, which is a relative coordinate 
method. The form of its dynamic equation is the second 
order differential equations of Lagrange coordinate matrix, 
namely A(q, t)q̈ = B(q, q̇, t) . It was first proposed to solve 
the problem of spacecraft and has been widely used until 

Fig. 2   3D solid model of the 
dual-rotor system

Fig. 3   The simplified model of a dual-rotor system

Fig. 4   Schematic diagram of predictions
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now. Its advantages are that the number of equations is 
the least, the number of coordinates of the tree topology 
system is equal to the degree of freedom of the system, 
and the dynamics equation is easily converted into ordi-
nary differential equations.

After this process, the time-domain signals are 
extracted and the response values under the excitation 
of rotational frequencies N1 and N2, namely the vibra-
tion amplitudes, are obtained through the Fast Fourier 
Transform (FFT), as shown in Fig. 7; N1 (40 Hz) represents 
the rotational frequency of the LP rotor, and N2 (117 Hz) 
represents the rotational frequency of the HP rotor; the 
array, (N1, N2), is the crawling state of the dual-rotor sys-
tem. From Fig. 7, the law can be seen that unbalance 

vibration of the dual-rotor system is mainly excited by 
rotation speeds and it is different from the single rotor 
that the more complicated structure of the dual-rotor 
will cause coupled oscillation between LP rotor and HP 
rotor that amplitudes excited by N1 and N2 are distrib-
uted in the whole system. What’s more, the unbalance 
vibration contributions from N1 and N2 vary as there 
exist different unbalance distributions in LPC and HPC, 
so this is the core of the work.

The simulation results of training points are shown in 
Fig. 8. The simulation results of testing points are shown 
in Table  1. The Pearson correlation coefficient R*,Y for 
training and test sets can be separately found respec-
tively in Tables 2, 3, 4 and 5, in which Y means output 

(a) Distribution of unbalance in the LPC

(b) Distribution of unbalance in the HPC
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Fig. 5   The distribution of training points

(a) Distribution of unbalance in the LPC

(b) Distribution of unbalance in the HPC
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Fig. 6   The distribution of testing points
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Fig. 7   Time domain graph, spectrum graph and graph of axle center trail at the measuring point 1
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Fig. 8   Amplitudes excited by N1 and N2 based on training points a under N1, b under N2

Table 1   The partial results 
based on testing points/μm

Rotate speed Working 
condition

Measuring points

1 2 3 4 5 6 7 8 9

N1 1 1.04 38.07 0.09 1.80 1.99 0.44 0.76 1.84 2.02
2 0.80 29.29 0.07 1.38 1.52 0.36 0.59 1.41 1.55
3 0.76 27.82 0.07 1.31 1.45 0.33 0.56 1.34 1.47

N2 1 3.42 2.23 0.15 7.22 7.95 19.74 9.10 11.15 14.32
2 4.42 2.87 0.20 9.31 10.25 25.46 11.74 14.38 18.47
3 6.29 4.10 0.28 13.27 14.60 36.28 16.72 20.49 26.32
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parameters (amplitudes) and * represents input param-
eters that A and B are respectively unbalance mass and 
angle phase of LPC while C and D are respectively unbal-
ance mass and phase angle of HPC. From Tables 2 and 4, 
it can be seen that the amplitude under N1 is strongly 
correlated with unbalance mass of LPC, mediumly cor-
related with unbalance phase angle of LPC while weakly 
and weakly negatively correlated with unbalance mass 
and phase angle of HPC respectively; from Tables 3 and 
5, it can be seen that the amplitude under N2 is strongly 
correlated with unbalance mass of HPC, mediumly cor-
related with unbalance phase angle of HPC while weakly 
and negatively correlated with unbalance mass and 
phase angle of LPC respectively.     

In this work, the mean square error (MSE) and error rate 
of the vibration response value are used as the error analy-
sis standards of the surrogate models.

MSE is expressed as,

where N is the number of testing points, yi is the simula-
tion result, and yi′ is the corresponding predicted response 
values. The smaller the value of MSE is, the closer it is to 0, 
the higher precision of the model.

If μsimulate and �∗
predicted

 respectively represent response 
value through simulation and prediction of the testing 
samples excited by the rotate frequency, the expression of 
error rate, �∗

�
 is defined as,

(1)MSE =
1

N

N∑

i=1

(
yi − y�

i

)2

(2)�∗
�
=
�simulate − �∗

predicted

�simulate

× 100%

Table 2   The Pearson 
correlation coefficient R*,Y for 
training sets under N1

R*,Y The position of measuring points

1 2 3 4 5 6 7 8 9

RA,Y 1.0000 1.0000 1.0000 1.0000 1.0000 0.9963 0.9996 0.9999 0.9999
RB,Y 0.4794 0.4800 0.4803 0.4791 0.4788 0.4881 0.4813 0.4791 0.4787
RC,Y 0.0177 0.0166 0.0159 0.0181 0.0181 − 0.0006 0.0122 0.0192 0.0198
RD,Y − 0.0412 − 0.0415 − 0.0418 − 0.0407 − 0.0409 − 0.0462 − 0.0453 − 0.0394 − 0.0392

Table 3   The Pearson 
correlation coefficient R*,Y for 
training sets under N2

R*,Y The position of measuring points

1 2 3 4 5 6 7 8 9

RA,Y 0.0166 0.0167 0.0163 0.0166 0.0166 0.0166 0.0164 0.0165 0.0165
RB,Y − 0.1283 − 0.1283 − 0.1286 − 0.1283 − 0.1283 − 0.1283 − 0.1284 − 0.1284 − 0.1284
RC,Y 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RD,Y − 0.1631 − 0.1631 − 0.1631 − 0.1631 − 0.1630 − 0.1631 − 0.1630 − 0.1632 − 0.1632

Table 4   The Pearson 
correlation coefficient R*,Y for 
testing sets under N1

R*,Y The position of measuring points

1 2 3 4 5 6 7 8 9

RA,Y 1.0000 1.0000 1.0000 1.0000 1.0000 0.9935 0.9996 0.9999 0.9999
RB,Y 0.1425 0.1408 0.1405 0.1420 0.1420 0.1268 0.1426 0.1398 0.1400
RC,Y 0.4180 0.4181 0.4183 0.4173 0.4175 0.4179 0.4172 0.4172 0.4168
RD,Y − 0.2616 − 0.2584 − 0.2568 − 0.2620 − 0.2620 − 0.1981 − 0.2460 − 0.2648 − 0.2661

Table 5   The Pearson 
correlation coefficient R*,Y for 
testing sets under N2

R*,Y The position of measuring points

1 2 3 4 5 6 7 8 9

RA,Y 0.4180 0.4180 0.4180 0.4182 0.4181 0.4181 0.4181 0.4182 0.4180
RB,Y 0.4205 0.4206 0.4206 0.4207 0.4204 0.4205 0.4202 0.4209 0.4205
RC,Y 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RD,Y − 0.0256 − 0.0257 − 0.0257 − 0.0259 − 0.0257 − 0.0257 − 0.0256 − 0.0259 − 0.0257
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where * refers to the type of the surrogate models, which 
can be MARS, RBF, and Kriging.

2.3 � Algorithms

In this study, the surrogate models of vibration responses 
at each measuring point are established based on the 
following three algorithms where linear functions are all 
important components, all of which are multiple-input 
and single-output. The input variables are unbalance 
parameters of the training samples, while the output 
variables are the corresponding vibration responses. 
The method of multivariate adaptive regression splines, 
shorted as MARS, is a form of non-parametric regres-
sion analysis to model nonlinearities and interactions 
between variables [22], and chooses piecewise truncated 
linear functions to estimate the Eq. (3) expressed by the 
input variable x.

where ε is the predicted error, x = (x1, x2,⋯ , xp)
T is input 

variables, p is the number of training points, and the col-
umn number of matrix x is the number of response vari-
able y.

MARS is to form reflected pairs for the each predictor 
variable, xj, j ∈ {1, …, p} with corresponding knots at all dis-
tinct relating values, xij, i ∈ {1, …, n}, where n is the sample 
size, expressed by the set C in Eq. (4).

For a given vector of predictor variables x and the target 
variable f(x), the form of the MARS model approximating 
the function in Eq. (3) is defined as

where Bm(x) represents a truncated linear function from 
set C or tensor product of more than one function, and M 
is the number of truncated linear function in the current 
model [22, 23]. For multiple variable cases, multiplying an 

(3)y = f (x) + �

(4)C =

{
(
xj − t

)
+
,
(
t − xj

)
+

|
||||

t ∈
{
x1j , x2j ,⋯ , xnj

}
,

j ∈ {1,⋯ , p}

}

(5)f (x) = �0 +

M∑

m=1

�m ⋅ Bm(x)

Table 6   Predicted amplitudes 
in N1 of 3 working conditions/
μm

Working 
condition

Surrogate models Measuring points

1 2 3 4 5 6 7 8 9

1 MARS 1.04 38.07 0.09 1.80 1.99 0.47 0.75 1.84 2.03
RBF 1.02 37.25 0.09 1.76 1.95 0.43 0.74 1.80 1.98
Kriging 1.04 38.06 0.09 1.79 1.99 0.45 0.76 1.83 2.02

2 MARS 0.80 29.28 0.07 1.38 1.53 0.34 0.58 1.42 1.56
RBF 0.80 29.17 0.07 1.38 1.52 0.34 0.58 1.41 1.55
Kriging 0.80 29.28 0.07 1.38 1.53 0.35 0.59 1.41 1.55

3 MARS 0.76 27.82 0.07 1.31 1.45 0.32 0.55 1.35 1.48
RBF 0.76 27.93 0.07 1.32 1.46 0.33 0.56 1.35 1.49
Kriging 0.76 27.82 0.07 1.31 1.45 0.32 0.56 1.34 1.48

Table 7   Predicted amplitudes 
in N2 of 3 working conditions

Working 
condition

Surrogate models Measuring points

1 2 3 4 5 6 7 8 9

1 MARS 3.42 2.23 0.15 7.22 7.94 19.73 9.10 11.15 14.32
RBF 3.44 2.24 0.16 7.26 7.99 19.85 9.16 11.22 14.40
Kriging 3.42 2.23 0.15 7.22 7.94 19.73 9.10 11.15 14.31

2 MARS 4.42 2.87 0.20 9.31 10.25 25.46 11.74 14.38 18.47
RBF 4.45 2.90 0.20 9.38 10.32 25.65 11.83 14.49 18.61
Kriging 4.42 2.87 0.20 9.31 10.25 25.46 11.74 14.38 18.47

3 MARS 6.29 4.09 0.28 13.27 14.60 36.28 16.72 20.49 26.32
RBF 6.23 4.06 0.28 13.15 14.46 35.94 16.57 20.31 26.07
Kriging 6.29 4.10 0.28 13.27 14.60 36.28 16.73 20.50 26.32

Table 8   Average computing time of the surrogate models

Surrogate models MARS RBF Kriging

Computing time/s 0.01 0.001 0.1
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existing piecewise linear basis function (BF) with a trun-
cated linear function involving a new variable where both 
components are nonzero can create the interaction terms 
which is nonzero only over the space of predictors in MARS 
[24].

For a real problem, the model building strategy of radial 
basis function (RBF) is to construct an approximate model 

by linear superposition of radial basis functions, expressed 
as Eq. (6) [25],

where wik is the synaptic weight between the kth neuron 
of the output layer of the second hidden layer and the ith 

(6)f o(x) =

M∑

k=1

Wik ⋅Φi

(‖
‖x − cki

‖
‖2
)

Table 9   The residual results 
based on testing points/μm

Rotate speed Working 
condition

Measuring points

1 2 3 4 5 6 7 8 9

N1 4 0.38 13.91 0.03 0.66 0.73 0.16 0.28 0.67 0.74
5 1.14 41.72 0.10 1.97 2.18 0.49 0.84 2.01 2.21
6 0.55 20.14 0.05 0.95 1.06 0.22 0.40 0.98 1.08
7 1.07 38.80 0.09 1.83 2.03 0.43 0.76 1.88 2.08
8 0.96 34.78 0.08 1.65 1.82 0.38 0.68 1.69 1.87
9 0.70 25.63 0.06 1.21 1.34 0.31 0.51 1.23 1.36

10 1.22 44.65 0.11 2.11 2.33 0.52 0.89 2.15 2.38
11 0.60 21.97 0.05 1.03 1.14 0.26 0.44 1.06 1.17

N2 4 1.88 1.22 0.08 3.96 4.36 10.83 4.99 6.12 1.88
5 4.20 2.73 0.19 8.85 9.74 24.19 11.15 13.66 4.20
6 3.04 1.98 0.14 6.40 7.05 17.50 8.08 9.89 3.04
7 6.73 4.38 0.30 14.20 15.62 38.80 17.89 21.93 6.73
8 4.14 2.69 0.19 8.73 9.61 23.87 11.01 13.48 4.14
9 6.62 4.31 0.30 13.97 15.37 38.19 17.61 21.57 6.62

10 4.64 3.02 0.21 9.78 10.76 26.74 12.33 15.11 4.64
11 2.76 1.80 0.12 5.82 6.40 15.91 7.34 8.99 2.76

Fig. 9   Error rate histograms of MARS a under N1, b under N2
Fig. 10   Error rate histograms of RBF a under N1, b under N2
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neuron of the output layer, cki is the ith hidden center vec-
tor for the kth pattern class of the first hidden layer, || · ||2 is 
the Euclidean norm, M denotes the number of neurons in 
the output layer and the second hidden layer, namely the 
patterns class number for the training samples set, Φi(·) is 
the kernel function guaranteeing the required accuracy. In 
this work, the Multiquadric is the choice, written as Eq. (7) 
[26],

where σi is the width of the receptive field.
Kriging constructs an unbiased estimation model with 

the minimum estimation variance characteristics of local 
estimation. It consists of a linear regression model and an 
extra random function, which, for the input variable x = (x1, 
…, xi, …, xj, …, xm)T, can be defined as Eq. (8) [27],

The first function of Eq. (9) is a realization of a regres-
sion function and gh(x), (h = 1, 2, …, p) is the basis regres-
sion function; the second is a stochastic process (random 
function) whose mean is 0 and the covariance of random 
process z(x) is

where R(c, xi, xj) is the correlation coefficient between z(xi) 
and z(xj) with parameter c and σ2 is the process variance. 
The correlation function used in this study is the Gaussian, 
which is expressed as Eq. (10),

where xi
n is the nth component of xi.
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Fig. 11   Error rate histograms of Kriging a under N1, b under N2

Fig. 12   The pie charts of MARS’s error rates a under N1, b under N2

Fig. 13   The pie charts of RBF’s error rates a under N1, b under N2

Fig. 14   The pie charts of Kriging’s error rates a under N1, b under 
N2



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:12 | https://doi.org/10.1007/s42452-019-1818-0

Kriging selects the Best Linear Unbiased Predictor 
(BLUP), which minimizes the Mean Squared Errors (MSE) 
of the predictor [28],

3 � Prediction and accuracy tests

The parameters in the training points are used to estab-
lish the prediction models and those of testing set are 
used as input variables to predict the vibration response 
amplitudes at the measuring points. The specific predic-
tion results of surrogate models are shown in Tables 6 and 
7, which are corresponding with the data in Table 1 from 
the first three working conditions of the testing set. The 
experimental results and prediction results of the other 8 
working conditions are shown in Tables 9, 10, 11. It can be 
seen that the prediction results converge to the simulation 
results by comparison. 

Table 8 shows the average calculation time of each 
algorithm when predicting. As can be seen from it, the 

(11)min
c

MSE
[
Go

(
xi
)]

= min
c

[
Go

(
xi
)
− Y

(
xi
)]
.

computing efficiencies are all very high; the most efficient 
is RBF, followed by MARS and Kriging.

In fact, ADAMS simulation can also be used to predict 
the vibration response, showed as Tables 1 and 9. How-
ever, compared with metamodelling methods, it has three 
disadvantages. Firstly, ADAMS’ calculation time is about 
10 s in this paper, which has a lower prediction efficiency 
according to Table 8 when ran in the same computer; sec-
ondly, complex multi-body dynamics simulation proce-
dures, including the establishment of 3D model, settings 
of constraint conditions and driving motions, etc. all con-
sume much time, which can be saved by metamodelling 
methods; thirdly, compared with surrogate model algo-
rithm, multi-body dynamics methods require a higher 
computer configuration, especially CPU and RAM. So we 
choose the surrogate models to predict vibration response 
in rotor dynamics instead of the dynamics simulation.

Based on the simulation values and the predicted val-
ues of the surrogate models in testing points, the error rate 
histograms at the 9 measurement points under N1 and N2 
are obtained, as shown in Figs. 9, 10 and 11. Figure 9 shows 
that MARS’s error rates under N1 are mostly less than 5%, 
and those under N2 are all ranging from − 0.1 to − 0.1%, 

Table 10   Predicted amplitudes 
in N1 of residual working 
conditions/μm

Working 
condition

Surrogate models Measuring points

1 2 3 4 5 6 7 8 9

4 MARS 0.38 13.91 0.03 0.66 0.73 0.16 0.28 0.67 0.74
RBF 0.41 14.80 0.04 0.70 0.77 0.17 0.30 0.71 0.78
Kriging 0.38 13.92 0.03 0.65 0.73 0.16 0.28 0.67 0.74

5 MARS 1.14 41.72 0.10 1.97 2.18 0.48 0.84 2.02 2.23
RBF 1.13 41.08 0.10 1.94 2.14 0.47 0.82 1.98 2.18
Kriging 1.14 41.72 0.10 1.97 2.18 0.48 0.84 2.01 2.22

6 MARS 0.55 20.14 0.05 0.95 1.06 0.22 0.40 0.97 1.08
RBF 0.54 19.87 0.05 0.94 1.04 0.23 0.40 0.96 1.06
Kriging 0.55 20.14 0.05 0.95 1.05 0.23 0.40 0.97 1.08

7 MARS 1.06 38.80 0.09 1.83 2.03 0.49 0.78 1.88 2.07
RBF 1.03 37.71 0.09 1.78 1.97 0.44 0.75 1.82 2.00
Kriging 1.06 38.80 0.09 1.82 2.03 0.46 0.77 1.88 2.07

8 MARS 0.95 34.77 0.08 1.64 1.82 0.33 0.70 1.68 1.85
RBF 0.94 34.28 0.08 1.62 1.79 0.39 0.68 1.65 1.82
Kriging 0.95 34.76 0.08 1.64 1.82 0.38 0.69 1.69 1.86

9 MARS 0.70 25.62 0.06 1.21 1.34 0.29 0.51 1.24 1.37
RBF 0.70 25.63 0.06 1.21 1.34 0.29 0.51 1.25 1.37
Kriging 0.70 25.62 0.06 1.21 1.34 0.30 0.51 1.24 1.36

10 MARS 1.22 44.65 0.11 2.11 2.33 0.52 0.89 2.16 2.38
RBF 1.20 43.69 0.10 2.06 2.28 0.50 0.87 2.11 2.33
Kriging 1.22 44.65 0.11 2.11 2.33 0.52 0.89 2.16 2.38

11 MARS 0.60 21.96 0.05 1.04 1.15 0.24 0.44 1.06 1.17
RBF 0.60 21.78 0.05 1.03 1.14 0.25 0.43 1.05 1.16
Kriging 0.60 21.96 0.05 1.03 1.15 0.25 0.44 1.06 1.17
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with a better accuracy. Figure 10 shows that RBF’s error 
rates under N1 and N2 are all mostly less than 10%, except 
testing point 4, whose predicted values are obviously big-
ger than the corresponding simulated at all measurement 
points for the error rates ranging from − 10 to − 5%, no 
matter what in N1 or N2, according the Eq. (2) above. Fig-
ure 11 shows that Kriging’s error rates are ranging from 
− 0.1 to 0.1% in N2, while − 0.92% to 0.6% in N1 except 
those at measuring point 6 ranging from − 7.22 to − 2.15%.

If the maximum error rate 5% is taken as a standard to 
evaluate the predicted accuracy, the pie charts of the error 
rates are drawn in Figs. 12, 13 and 14. In these three fig-
ures, the Kriging’s ratios are all 100%, the RBF’s ratios are 
99% and 98% respectively, and the MARS’s ratios are 97% 
and 100% respectively, under N1 and N2 (Tables 10, 11).     

The comparison of MSE values based on testing points 
from MARS, RBF and Kriging can be seen in Figs. 15 and 
16, where Logarithmic Coordinates are used. The larger the 
MSE values, the smaller the ordinates.

From Fig.  15, the MSE values of the RBF model at 
measuring point 2 of the LP rotor are much higher than 
those of MARS and Kriging under N1, so the prediction 
accuracy of the RBF model here is much lower; at the 

other measuring points of the LP rotor, MSE values of all 
models are less than 5e-02, with high prediction accu-
racy. At the measuring points of the HP rotor, MSE val-
ues of all models are less than 3e-02, so the prediction 
accuracy is also quite high. In general, the magnitude 
order from the models at measurement points of the HP 
section is: RBF > MARS > Kriging, so the order of precision 
is: Kriging > MARS > RBF.

It can be seen from Fig.  16 that, at all measuring 
points under N2, the MSE values of MARS and Kriging are 
much smaller than those of RBF, with higher prediction 
accuracies.

4 � Conclusions

In this work, based on the research finding that the vibra-
tion of dual-rotor system is caused by the coupled exci-
tations of rotational frequencies N1 and N2, three kinds 
of surrogate models, MARS, RBF and Kriging, are estab-
lished under finite working conditions to predict unknown 
unbalance responses of a simplified dual-rotor model of 
aero-engine. And it is proved that the predicted results 

Table 11   Predicted amplitudes 
in N2 of residual working 
conditions/μm

Working 
condition

Surrogate models Measuring points

1 2 3 4 5 6 7 8 9

4 MARS 1.88 1.22 0.08 3.96 4.36 10.82 4.99 6.11 7.85
RBF 2.04 1.33 0.09 4.30 4.73 11.76 5.42 6.64 8.53
Kriging 1.88 1.22 0.09 3.96 4.36 10.83 4.99 6.11 7.86

5 MARS 4.20 2.73 0.19 8.85 9.74 24.19 11.15 13.66 17.55
RBF 4.21 2.74 0.19 8.88 9.77 24.28 11.19 13.72 17.61
Kriging 4.19 2.73 0.19 8.85 9.73 24.18 11.15 13.66 17.54

6 MARS 3.04 1.98 0.14 6.40 7.05 17.51 8.07 9.89 12.70
RBF 3.02 1.96 0.14 6.37 7.00 17.40 8.02 9.83 12.62
Kriging 3.04 1.98 0.14 6.40 7.04 17.51 8.07 9.89 12.70

7 MARS 6.73 4.38 0.30 14.20 15.62 38.82 17.89 21.93 28.16
RBF 6.39 4.16 0.29 13.49 14.84 36.87 17.00 20.83 26.75
Kriging 6.73 4.38 0.30 14.20 15.62 38.82 17.90 21.93 28.16

8 MARS 4.14 2.69 0.19 8.73 9.61 23.87 11.01 13.48 17.32
RBF 4.16 2.71 0.19 8.77 9.65 23.97 11.05 13.54 17.39
Kriging 4.14 2.69 0.19 8.73 9.60 23.86 11.00 13.48 17.31

9 MARS 6.62 4.31 0.30 13.97 15.37 38.18 17.60 21.57 27.70
RBF 6.40 4.16 0.29 13.50 14.85 36.89 17.01 20.84 26.76
Kriging 6.62 4.31 0.30 13.97 15.37 38.19 17.61 21.57 27.70

10 MARS 4.64 3.02 0.21 9.78 10.76 26.73 12.33 15.10 19.39
RBF 4.63 3.01 0.21 9.77 10.75 26.70 12.31 15.08 19.36
Kriging 4.64 3.02 0.21 9.78 10.76 26.73 12.32 15.10 19.39

11 MARS 2.76 1.80 0.12 5.82 6.41 15.91 7.34 8.99 11.55
RBF 2.74 1.78 0.12 5.78 6.35 15.79 7.28 8.92 11.45
Kriging 2.76 1.80 0.12 5.82 6.40 15.91 7.34 8.99 11.54
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have high accuracies, according to analyzation and com-
parison with the selected standards.

1.	 The predicted unbalance response values of these 
three algorithms basically converge to the correspond-
ing simulation results under N1 and N2;

2.	 The three algorithms are high-efficiency, among which 
RBF is the fastest, while Kriging is the slowest by con-
trast.

3.	 Compared with those under N2, the error rates under 
N1 are significantly bigger, so the precision order is the 
opposite. The reason of the phenomenon is that the 
vibration amplitudes under N1 are significantly smaller 
than those under N2, so the former is more difficult to 
accurately predict.

4.	 When the maximum error rate of 5% is taken as an 
evaluation standard, the predicted results of Kriging’s 
are the most precise, and under N1 and N2 the MARS 

and the RBF respectively have better performances by 
contrast.

5.	 The MSE of testing points taken as an evaluation stand-
ard, the three surrogate models all have high predic-
tion accuracies; the MSE values of RBF are obviously 
larger than those of the others, which accuracy is the 
lowest by contrast. Under N1, the Kriging’s accuracy is 
a little better than that of the MARS, but under N2, the 
two are much the same.

Acknowledgments  This work was supported by National Natural Sci-
ence Foundation of China (Grant No. 51705064).

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

1 2 3 4 5
0

2

4

6

8

10

(a) Measuring Points

-lg
(M

SE
)

MARS
RBF
Kriging

6 7 8 9
0

2

4

6

8

10

(b) Measuring Points

-lg
(M

SE
)

MARS
RBF
Kriging

Fig. 15   Comparison of MSE values of the models at the measuring 
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