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Abstract
Genetic disorders and malignancies due to the chromosomal abnormalities are being researched in cytogenetics till date. 
G-banded metaphase images are analyzed, chromosomes pairs are identified and arranged into 23 classes as per ISCN 
ideogram features through karyotyping. This enables the cytogenetic experts to visualize and detect the chromosomal 
aberrations at ease. Although, the design of a fully automated karyotyping system is difficult, it eliminates the barriers 
of manual karyotyping. Here, we propose preprocessing techniques for G-banded metaphase images for the design of 
automated karyotyping system. Our method starts with a decision tree classifier that classifies the input images into 
analyzable and un-analyzable. Analyzable metaphase images are denoised by median filter and bilateral filter. Denoised 
images are enhanced using Iterative contrast limited adaptive histogram equalization and are segmented based on con-
tour. Our method ends with an ANN classifier that classifies the segmented images into single straight, bended, touching 
and overlapped based on the top ten Chi square selected GLCM geometrical features.
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1  Introduction

Cytogenetics is the combined study of cytology (study 
of cells) and genetics (study of inheritance) in which the 
structure and function of chromosomes are studied in 
detail. Chromosomes are packed but organized struc-
ture containing DNA, which carries genes. In [1–3], it is 
reported that humans have 23 pairs of chromosomes out 
of which 22 are autosomes, those responsible for structure 
and function of human body and the sex chromosome 
pair, which is responsible for the gender. Chromosomes 
have direct influence on human health and any changes in 
the number or structure of chromosomes in any cells may 
lead to various human disorders like mental retardation, 
congenital malformations, sterility, sexual abnormalities, 
spontaneous fetal loss, as specified in [4] or even cancer 

as in [5]. Thus, cytogenetics plays an important role in the 
detection, diagnosis, treatment and prognosis of these 
human disorders due to chromosome abnormalities.

1.1 � Karyotyping

Actual collection of chromosomes of living organisms 
called karyotypes, are examined by the experts through 
karyotyping. Human chromosome analysis or karyotyp-
ing is done manually by cytogenetic experts or physicians 
in the cytogenetic laboratories. For this process patient’s 
samples from peripheral blood, amniotic fluid or bone 
marrow are collected and cultured. G (Giemsa) banded 
metaphase microscopic images are captured since at 
the metaphase stage of cell division, chromosomes are 
clearly visible. Experts identify the chromosome pairs and 
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ascertain the numbers. These 1–23 pairs of numbered 
chromosomes are arranged in a karyogram based on 
human ideogram published by ISCN as shown in Fig. 1. 
Ideograms are a schematic representation of chromo-
somes. They show the relative size of the chromosomes 
and their banding patterns. By observing the structural 
and numerical chromosomal aberrations from karyogram, 
experts diagnose various genetic disorder, malignancies 
and hematologic disorders. Manual karyotyping is labour 
intensive and time-consuming task. It also suffers from 
operator fatigue, human errors etc. Thus, automated chro-
mosome classification is indeed, recommended.

1.2 � Automated karyotyping system

As mentioned in [6], chromosomes were among the first 
objects to be studied using automated means, in the bio-
logical pattern recognition system due to reasons like suf-
ficient straight forwardness, well defined to be a practical 
proposition, and being sufficiently monotonous. If the 
system could be automated then much more cases of 
chromosome analysis could be undertaken by a labora-
tory, and an increase in the output can be made even with 
limited staff. But ideal design and development of fully 
automated system is a challenging task. Various challenges 
at each stage of karyotyping is as shown in Fig. 2

Figure 3 shows some of such challenges in automated 
karyotyping. G banded metaphase images suffer from 
various noises like sensor noises, stain debrises, Guassian 
noises etc. These input images may also have unwanted 
structures like interphase cells. All such images, called 
noised images, always lead to misclassification, which 

inturn, may lead to false interpretation. Such a noisy and 
low contrast image is shown in Fig. 3a. Even a cytogenetic 
expert cannot correctly identify the class of chromosomes 
in such cases. Overlapped chromosomes shown in Fig. 3b, 
is another crucial challenge in the automated classfication 
since they are partially occluded by other chromosomes 
and the band information at the overlapping area, cannot 
be retrived. Touching chromosomes, as shown in Fig. 3c 
may confuse the classifiers, as those structures may be 
interpreted as a single chromosome since the chromo-
somes are non rigid objects. Clumbed chromosome 
images as shown in Fig. 3d, are the unanalyzable structures 
that complicates the entire karyotyping process.

2 � Related works

Automated method usually comprises of four steps: Pre-
processing, Segmentation, Feature extraction and Classi-
fication. Generally, preprocessing includes algorithms for 
denoising and enhancement of input images. Owing to 
culturing, banding, staining, and imaging, image denois-
ing and enhancement are desirable steps before feature 
extraction and classification. These methods improve the 
quality and contrast of images for efficient feature extrac-
tion and classification. Various denoising techniques using 
traditional smoothing and sharpening filters are used by 
researchers. Authors of [7] proposed a novel human chro-
mosome enhancement algorithm based on cubic spline 
wavelet transform. In [8], a wavelet based algorithm using 
multi scale differential operators, has been applied for 
chromosome image enhancement. Eventhough these 

Fig. 1   ISCN human ideogram and a normal karyogram
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methods improve the quality of features, due to over rep-
resentation, these methods have high space complexity. 
In [9], an image enhancement and denoising technique 
based on structure self-similarity and wavelet transform 
coefficients has been proposed. In [10], performances of 
different wavelet families for image enhancement are eval-
uated based on their Peak Signal to Noise Ratio (PSNR) and 
the value of Mean Square Error (MSE). Mathematical mor-
phology based enhancement algorithm for chromosome 
images has been proposed in [11]. Most of the chromo-
some image enhancement algorithms are reviewed in [12, 
13] and found that image enhancement improves not only 
the display and visualization of chromosomes but also the 
recognition rate and the accuracy of chromosome classifi-
cation. In [13], some special methods like oriented wave-
lets, derived from isotropic laplacian like filters, are also 
applied in the chromosome images for its enhancement.

Preprocessing based on histogram plays significant 
role in chromosome image enhancement. [14] has high 

Adaptive Contrast Enhancement (ACE) technique for 
image enhancement. It is based on Histogram Transfor-
mation of Local Standard Deviation and uses contrast 
gains (CGs) for adjusting high frequency components in 
images. In [15], Chromosome image contrast enhance-
ment using adaptive, iterative histogram matching is 
discussed. Iterative histogram matching algorithm for 
chromosome image enhancement based on statistical 
moments, is proposed in [16]. These methods increase 
contrast sharply and satisfactorily. The parameters have 
been chosen adaptively based on the input image to pro-
duce even better results and it is the major hindrance of 
this method. In [17], a method is proposed for the segmen-
tation and removal of interphase cells from chromosome 
images using multidirectional block ranking. The efficiency 
of automatic karyotyping decreases with the presence of 
undivided, condensed mass of chromosomes called inter-
phase cells, stain, debris and other unwanted interferences 
in the chromosome image. This algorithm segments and 

Fig. 2   Various challenges in each stage of karyotyping

Fig. 3   Challenges in auto-
mated karyotyping a noisy 
and low contrast image, b 
overlapped chromosomes, 
c touching chromosomes, d 
clumped metaphase
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removes these interferences and enhances the accuracy 
of automated karyotyping.

In segmentation, individual chromosomes are sepa-
reted as foreground objects from the metaphase spread. 
A metaphase spread has isolated chromosomes or cluster 
of touching, partially occluded or overlapping chromo-
somes. Segmentation, Feature extraction and classification 
of isolated single straight chromosome is relatively easier. 
Region labelling, region growing, region merging, and 
thresolding techniques are adopted by researchers. Here, 
same label is assigned to all the pixels in an individual 
chromosome. In [18] similarity based global thresholding 
techniques are proposed. In [19], segmentation of chromo-
some images based on recursive watershed algorithm is 
discussed which has an issue of over segmentation. Active 
shape models and contour based models for segmenta-
tion were also reported [20].

Most of the currently available commercial chromo-
some classification systems are semi automated and 
requires human intervention to disentangle the touching 
and overlapping chromosomes in the metaphase. Another 
issue is that single isoated chromosomes and overlapping 
or touching chromosomes demand different segmenta-
tion algorithm. Most of the feature extraction and clas-
sification algorithms work well for straight chromosomes 
only. So, erecting bended chromosomes before feature 
extraction is also desirable. Automated detection of single 
isolated chromosomes and cluster of touching or overlap-
ping chromosomes has been addressed in the literature. 
[21] proposed a system to classify the segmented chromo-
somes into five classes, using geometric features. Correla-
tion-based feature selection (CFS) scheme and Classifica-
tion via regression (CVR) classifier were respectively used 
for the feature selection and classification of the objects. 

The five categories in this system are straight, overlapping, 
bent, touching and noise. [22] proposed a system to clas-
sify a segmented chromosome as a single chromosome or 
cluster of overlapping/touching chromosomes. Consider-
ing the size they were able to identify single and cluster of 
chromosomes, and by checking the number of end points, 
they were able to count the number of chromosomes in a 
cluster. In [23] a neural network approach is proposed for 
the automated identification of single chromosomes and 
blob of chromosomes. Significance of all these preprocess-
ing steps in the design of automated karyotyping system 
is discussed in [24–26]

3 � Proposed methods

The proposed methodology for preprocessing G-banded 
metaphase image, for efficient automated karyotyping, is 
outlined in Fig. 4 and explained in the followinng sessions

G-banded microscopic metaphase image collected 
from the cytogenetic laboratory may suffer from noise, 
inhomogenious illumination, low contrast etc. Some of 
the metaphase spread even may not be analyzable by the 
cytogenetic experts. Since there are sufficient number of 
metaphase spread from a single slide, the unanalyzable 
metaphase can be discarded. In this circumstance, an auto-
mated technique for classifying the metaphase as analyz-
able or unanalyzable is a desirable task. Thus analyzable 
metaphase are identified and are denoised, enhanced, 
segmented and post classified as single straight chromo-
some, bended chromosome, touching chromosomes and 
overlapped chromosomes. Single straight chromosomes 
can be directly fed into automated karyotyping system but 

Fig. 4   Proposed methodology
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the remaining class should be assigned with further geo-
metrical correction and segmentation techniques.

3.1 � G banded microscopic metaphase image 
acquisition

Giemsa stained images (G-banded) are used as the input 
as in Fig. 5a. G banding, or Giemsa banding is a technique 
used in cytogenetics to produce a visible karyotype by 
staining condensed chromosomes. They are then analyzed 
and classified based on the size and unique G-banding 
pattern of each chromosome class. Here, input images are 
captured at Regional Cancer Center, Thiruvananthapuram, 
Kerala, India. For this, peripheral blood from volunteers 
are collected. Eight drops of peripheral blood are added 
to 8 ml supplemented media and 80 ml freshly diluted 
PHA is added to this culture. This is incubated for 72 h at 
37 °C and at the 69th hour 80 ml of Colchicine is added. 
After incubation, culture tube is centrifuged for 10 min at 
800–1000 rpm. After discarding the supernatant by pipet-
ting out the media, resuspended the cell button in 10 ml of 
hypotonic solution and incubated for 15–20 min at 37 °C. 
After this, 5 drops of fresh fixative is added. After keeping 
the tube at room temperature for 5–10 min, tubes are cen-
trifuged. After discarding the supernatant and mixing the 
pellet thoroughly in 10 ml of fixative, the solution is kept at 
4 °C overnight for fixation. After overnight fixation, again 
the tubes are centrifuged, supernatant is discarded and 
the cells are resuspended in fresh fixative. After the final 
centrifugation, the cells are again resuspended in a small 
volume of fixative approximately 0.5–1 ml, (depending on 
the size of the cell button) to give a slightly opaque sus-
pension. Thus culture is harvested, slides are prepared and 
are banded by Trypsin, stained by Giemsa. Such slides are 
examined under magnification (10× of Leica Microscope) 
phase objective to check the cell density and spread 
of metaphase chromosomes. If satisfactory, they are 
examined under 100× oil emersion in leica DM2900 and 

G-banded microscopic metaphase images are captured 
using leica DMC 2900. Sample image is shown in Fig. 5a.

3.2 � Preprocessing G‑banded metaphase image

As, G banded metaphase microscopic images acquired 
though cytogenetic procedure fall into two catego-
ries namely analyzable and unanalyzable, a classifier is 
designed to identify the analyzable images for further 
processing. Here, a simple decision tree is designed to clas-
sify the input images into analyzable and unanalyzable 
classes. For this, features are extracted from region labeled 
images and are used for image classification. This scheme 
computes five image features such as number of labelled 
regions, size of labelled regions, circularity of labelled 
region, average grey value of labelled region, radial length 
of each region to the cell center.

As G-banded microscopic images are susceptible to var-
ious noises, suppression of the noise from the low-quality 
images is desirable before the segmentation and classifica-
tion of the chromosomes. So it is necessary to remove the 
noise and enhance the bands. Here, a traditional median 
filter followed by bilateral filter is applied on G-banded 
images for better denoising. Since the input images suf-
fer from Guassian noise as illustrated in Fig. 5b, a bilateral 
filter is proposed as it is a non-linear, edge-preserving, and 
noise-reducing smoothing filter for images and it replaces 
the intensity of each pixel with a weighted average of 
intensity values from nearby pixels. Here the weights are 
selected based on a Gaussian distribution obtained from 
the input image. Separation of foreground pixels from 
background pixels of the input image is done by thresh-
olding. Here the green channel of the metaphase image is 
Otsu thresholded as the green channel of the input image 
has higher intensity variation between foreground and 
background objects in the metaphase spread.

Since the images suffer from inhomogeneous illumina-
tion, it is essential to enhance the contrast of the images 
and improve the visibility of bands. For this purpose, blue 

Fig. 5   a Sample G-banded microscopic metaphase, b model of Guassian noise in input image, c enhanced image using iterative CLAHE
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channel of the metaphase spread is considered since the 
dark and white bands have comparatively good contrast. 
A contrast limited adaptive histogram equalization tech-
nique (CLAHE) is iteratively applied in the foreground 
objects of blue channel so that the dark and white bands 
made more clearly visible. In CLAHE, contrast of the local 
regions of the image or tiles, is enhanced. Each tile’s con-
trast is enhanced to match a given histogram. The neigh-
boring tiles are then combined using bilinear interpolation 
to eliminate artificially induced boundaries. The contrast, 
especially in homogeneous areas, can be limited by speci-
fying a clipping limit to avoid amplifying any noise that 
might be present in the image. CLAHE overperforms on 
adaptive iterative histogram matching since in the lat-
ter method, the image noise if any present, may also be 
enhanced. As discussed in [12], the experimental result 
of CLAHE is shown in Table 1 in which the Peak Signal 
to Noise Ratio (PSNR) and the Structural Similarity Index 
Metric (SSIM) are the measures of performance. Based on 
this fact, CLAHE is selected for contrast enhancement of 
denoised image. The clipping limit of the CLAHE algorithm 
for G banded metaphase image is experimentally calcu-
lated as 20 and the resultant image is shown in Fig. 5c. 
These denoising and contrast enhancement methods 
resulted in accurate segmentation, four class classification 
and karotyping.

3.3 � Segmentation and four class classification

Entire objective of karyotyping is to pair and classify 
46 chromosomes in the metaphase into 23 classes. So 
individual chromosome should be segmented from the 

metaphase. Here, contour-based segmentation is pro-
posed which yields single or cluster of chromosomes. For 
chromosome contour extraction, the binary image of the 
chromosome is convolved with the kernal. Convolved 
images shows only the boundary pixel with high intensity 
and this information is used to segment the chromosomes 
from the CLAHE enhanced blue channel. For this minimum 
area rectangle enclosing these contours are considered. 
As chromosomes are non-rigid objects, they are present 
in different orientations in the metaphase spread. To cor-
rect the orientation of the chromosomes, the angle of 
inclination of these minimum area rectangle is found out 
and are rotated to align the chromosomes vertically. Such 
segmented as shown in Fig. 6.

Here, for the feature selection, Chi square technique 
is applied to identify combined top 10 prominant geo-
metrical features and GLCM features. Selected features 
are shown in the Table 2.

Further, a neural network is designed for four-class clas-
sification in which these top 10 features of the segmented 
chromosomes are fed to 10 input layer neurons to clas-
sify the segmented objects into four categories namely, 
straight single (Fig. 7a), bended (Fig. 7b), touching (Fig. 7c) 
and overlapped (Fig. 7d). These four classification deter-
mines whether the chromosomes should process further 
or not. In karyograms the single chromosomes are always 
aligned vertically, so there is no further processing for sin-
gle straight chromosomes. If the chromosome is bended 
one, then it should be straightened in order to arrange it 
into the karyogram. Also in the case of touching and over-
lapping chromosomes each chromosome image should 
be separated to arrange them in the form of 23 pairs of 
chromosomes in karyogram.

The pretrained model is tested by the dataset of 36 
chromosomes out of which 23,9,2,2 are the single straight, 
bended, touching, overlapped, respectively and an accu-
racy of 91.7% is obtained. Analysis of the models with 

Table 1   Experimental results 
of CLAHE

Method PSNR SSIM

CLAHE 24.5843 0.9703

Fig. 6   Segmented image
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Geometrical and GLCM features separately and combined 
is shown in Table 3.

4 � Discussion and conclusion

In this paper, preprocessing of G-banded metaphase 
microscopic image for efficient karyotyping is dis-
cussed. Analyzable and unanalyzable images can be 
identified by using a decision tree classifier using fea-
tures extracted from region labelled images. After 
denoising and enhancement of input image, contour 
based segmentation is proposed that yields both single 

chromosomes and cluster of touching or overlapping 
chromosomes. A four class classification of segmented 
parts as single straight, bended, touching or overlapped 
chromosome is proposed, in which top 10 Chi square 
selected features are used for classification. It is found 
that the four class classification is having 91.7% accu-
racy and specific post processing methods and clas-
sification techniques can be applied for these classes, 
for karyotyping. In future, better contrast enhancement 
techniques and feature selection techniques can be used 
for improving the accuracy of the classifier. This work 
can be extended with a five class classifier that includes 
one class explicitly for classifying interphase cells so that 
objects belong to that class can be directly eliminated 
before karyotyping.
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Table 2   Top 10 prominant 
geometrical and GLCM 
features selected using Chi 
square technique

Geometrical features GLCM features Top 10 Chi square 
selected features

Length Mean Geometrical
Area Variance  Area
Convex area Standard deviation  Convex area
Perimeter Kurtosis  Eccentricity
Equidiameter Skewness  Minor axis 

length
Major axis length Entropy  Orientation
Minor axis length Contrast  Solidity
Solidity Sum of squares and variance GLCM
Eccentricity Cluster shade  Mean
Extent Cluster prominence  Kurtosis
Euler number Sum of entropy  Entropy
Circularity Difference of entropy  Length
Orientation Sum of average

Fig. 7   Classsification results 
a single straight, b bended, c 
touching, d overlapped

Table 3   Four class classification efficiency

Method Accuracy (%)

Geometrical features 87.1
GLCM features 80.6
Top 10 Chi square selected features 91.7
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