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Abstract
Fly ash and phosphogypsum are industrial by-products requiring a cost to get rid of. Their potential use in the synthesis 
of geopolymer bricks provides great benefits such as the saving use of natural resources and the solid by-product waste 
management. Compressive strength is the most important parameter for geopolymer bricks design. In this study, two 
artificial neural networks, namely the multilayer perceptron (MLP) and the radial basis function (RBF) networks, have been 
investigated to predict the compressive strength. While developing the MLP or RBF models, 99 experimental observa-
tions were used for training and testing. Two evaluation steps were performed: The first step determined the effective 
number of hidden layers and neurons in each hidden layer as well as the appropriate activation function in predicting 
the compressive strength. The second evaluation step evaluated the accuracy with which the model would predict the 
compressive strength of geopolymers. The MLP neural network with two hidden layers having 8 and 10 neurons and 
the hyperbolic tangent activation function was the best model for predicting the compressive strength. Artificial neural 
networks can be used as a reliable and accurate technique for estimating the parameters of geopolymer materials.
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1  Introduction

Dumping or landfilling the solid by-product has a nega-
tive impact on the environment leading to many types 
of pollution. Therefore, the urgent investigation of the 
reuse of by-products is fundamental ensuring new 
materials to be safely and efficiently used in different 
applications. Fly ash (FA) is a solid waste generated from 
coal-fired electric power stations. The by-product phos-
phogypsum (PG)  is obtained during the wet process 
phosphoric acid production by attacking phosphate 
rock by sulfuric acid. Many researchers have valorized 
these materials by their incorporating as a binder in 
cementitious materials [1–4]. Altun and Sert [1] reported 
that phosphogypsum can be used in place of natural 
gypsum for Portland cement. The authors found that 
3 wt% PG is the optimal content showing the highest 
mechanical property. Shen et al. [2] studied the effect 
of incorporating PG to improve the performances of 
lime–FA binder. The results showed that phosphogyp-
sum promotes the binder action between lime and fly 
ash. Kumar [3] investigated the production of bricks from 
fly ash–lime–phosphogypsum. Outcomes indicate that 
these bricks are comparable with those of the ordinary 
burnt clay. Moreover, they are lighter and could be used 
for building construction. Shen et al. [4] reported that 
phosphogypsum can be used to produce the calcium 
sulfoaluminate cement with an optimal firing tempera-
ture between 1250 and 1300 °C.

Geopolymers, originally proposed by the French sci-
entist Davidovits [5], designated a large range of mate-
rials characterized by chains or networks of inorganic 
molecules that can be used as a binder in concrete. Their 
main properties are quick compressive strength devel-
opment, low permeability, resistance to acid attack and 
good resistance to freezing cycles [6]. The geopolymers 
were produced from a vast variety of raw materials such 
as metakaolin [7], clay [8] and other natural silica-alumi-
nates [9] as well as industrial process wastes such as coal 
fly ash [10, 11], lignite bottom ash [12], metallurgical slag 
[13, 14] and phosphogypsum [15, 16].

The prediction of the compressive strength is an 
essential parameter for successful geopolymer design. 
Indeed, several researchers have predicted the com-
pressive strength using different methods such as the 
regression analysis, the genetic algorithm, the fuzzy 
logic and the artificial neural networks [17–20]. ANN is 
one of the most commonly applied methods because of 
its effectiveness and large applicability [21–23]. Nazari 
and Torgal [24] have developed different models based 
on ANNs to predict the compressive strength of various 
types of geopolymers. Mansour et al. [25] built trained 

and tested ANNs to predict the ultimate shear strength 
of reinforced concrete beams with transverse reinforce-
ments. Recently, Naderpour et al. [26] have predicted the 
compressive strength of recycled aggregate concrete 
using artificial neural networks.

The present study aims the prediction of the com-
pressive strength of Moroccan fly ash–phosphogypsum 
geopolymer bricks by using radial basis function and 
multilayer perceptron neural networks. The effects of the 
number of hidden layers, the neurons in hidden layers 
as well as the activation functions on the prediction of 
the compressive strength were evaluated. Various input 
parameters of models are considered, whereas the com-
pressive strength is used independently as the output 
parameter.

2 � Materials and methods

2.1 � Materials and sample preparation

Fly ash used in this study was from LafargeHolcim in the 
west of Morocco. Phosphogypsum is issued from phos-
phate rock original from Morocco. FA was used in its natu-
ral particle size distribution without further reduction 
through milling. PG was washed with tap water, filtered 
and dried in the oven at 60 °C for 24 h, then grounded 
and sieved through a sieve of 120 µm. Figure 1 shows the 
materials used for making geopolymer bricks at a labora-
tory scale. The chemical compositions of fly ash and phos-
phogypsum are shown in Table 1.

The sodium hydroxide NaOH (analytical reagent grade, 
Fluka) solution was obtained by dissolving sodium hydrox-
ide pellets in bi-distilled water and allowed to cool to room 
temperature. The mixtures were obtained by hand mixing 
for 5 min.

Samples were prepared from fly ash, washed and sieved 
phosphogypsum, alkaline liquid and tap water. FA was par-
tially replaced with PG at the level of, 0, 5, 10, 15, 20, 25 
and 30% by weight. Four concentrations of NaOH 1, 5, 10 
and 15 M were added to a different liquid ratio to form 
geopolymer pastes. The paste samples were cast in cylin-
drical plastic molds with a diameter of 20 mm and height 
of 30 mm and vibrated to remove entrapped air. The man-
ufacturing process of FA–PG-based geopolymer bricks is 
shown in Fig. 2. The specimens were cured at a tempera-
ture of 60, 80 and 100 °C for 24 h in order to accelerate the 
geopolymer reaction and thus achieve the hardening of 
the structure. The bricks were placed in room temperature 
until the aging time test which was 3, 7 or 28 days.
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2.2 � Compressive strength test

The compressive strengths of specimens at 3, 7 and 
28  days were determined following the procedure 
described in BS EN 1961:2005 using an automatic com-
pression test machine. Four compression strength tests 
were carried out for samples prepared with each ratio, and 
the values reported were the averages of the four com-
pression strength values. Table 2 shows the details of the 
mixture proportions and the corresponding results under 
the considering experimental conditions. The specimens 
that contain FA, PG and NaOH solutions are abbreviated 
as FAPG1 to FAPG33.

2.3 � Artificial neural network and performance 
of models

The artificial neural network is a system of data process-
ing based on the working mechanism of the brain. The 
fundamental processing consists of a linear combination 
of input variables into a hidden layer of units where new 
combinations are created as final output variables. The 
architecture of ANN requires the knowledge of the num-
ber of network layers, the number of neurons in the layers 
as well as the learning algorithms and the neuron transfer 
functions. The theoretical backgrounds of neural network 
models can be found in [27–31].

Fig. 1   Materials

Table 1   Chemical composition 
of fly ash and phosphogypsum 
in weight percentage of oxides

Composi-
tion (%)

SiO2 Al2O3 Fe2O3 CaO MgO SO3 P2O5 F LOI

FA 50.85 26.55 3.69 5.45 1.56 0.46 1.16 – 6.89
PG 2.06 1.04 4.28 20 0.137 43.5 0.697 2.48 22

Fig. 2   Flowchart of the experimental procedure of FA–PG geopolymer bricks synthesis
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The radial basis function network applies RBF neurons 
in its hidden layer. Each RBF node is composed of a cen-
troid, an impact factor, and its output is a function with 
radial symmetry [27, 28].

The multilayer perceptron is a class of feedforward 
neural network that has been commonly used for the 
approximate function [28]. The MLP learns the informa-
tion of the dataset pattern using an algorithm known 
as “training.” This algorithm modifies the weights of the 
neurons according to the error between the values of real 
output and target output, where it provides nonlinear 
regression between the input variables and the output 
variables [32]. The back-propagation (BP) with the gradi-
ent descent technique and Levenberg–Marquardt (LM) is 

Table 2   Details of mix 
proportions for different FA–
PG-based geopolymer bricks

Samples FA (%) PG (%) NaOH (M) Added 
water 
(%)

Water solid ratio Aging time (days) Tempera-
ture (°C)

FAPG1 100 0 1 39.6 0.396 3, 7, 28 60
FAPG2 95 5 1 39.1 0.391 3, 7, 28 60
FAPG3 90 10 1 38.6 0.386 3, 7, 28 60
FAPG4 85 15 1 38.1 0.381 3, 7, 28 60
FAPG5 80 20 1 37.6 0.376 3, 7, 28 60
FAPG6 75 25 1 37.1 0.371 3, 7, 28 60
FAPG7 70 30 1 36.6 0.366 3, 7, 28 60
FAPG8 100 0 1 39.6 0.396 3, 7, 28 80
FAPG9 95 5 1 39.1 0.391 3, 7, 28 80
FAPG 10 90 10 1 38.6 0.386 3, 7, 28 80
FAPG 11 85 15 1 38.1 0.381 3, 7, 28 80
FAPG 12 80 20 1 37.6 0.376 3, 7, 28 80
FAPG 13 75 25 1 37.1 0.371 3, 7, 28 80
FAPG 14 70 30 1 36.6 0.366 3, 7, 28 80
FAPG 15 100 0 1 39.6 0.396 3, 7, 28 100
FAPG 16 95 5 1 39.1 0.391 3, 7, 28 100
FAPG 17 90 10 1 38.6 0.386 3, 7, 28 100
FAPG 18 85 15 1 38.1 0.381 3, 7, 28 100
FAPG 19 80 20 1 37.6 0.376 3, 7, 28 100
FAPG 20 75 25 1 37.1 0.371 3, 7, 28 100
FAPG 21 70 30 1 36.6 0.366 3, 7, 28 100
FAPG 22 80 20 1 39.6 0.396 3, 7, 28 60
FAPG 23 80 20 1 39.4 0.394 3, 7, 28 60
FAPG 24 80 20 1 39.2 0.392 3, 7, 28 60
FAPG 25 80 20 5 38 0.38 3, 7, 28 60
FAPG 26 80 20 5 37 0.37 3, 7, 28 60
FAPG 27 80 20 5 36 0.36 3, 7, 28 60
FAPG 28 80 20 10 35.5 0.355 3, 7, 28 60
FAPG 29 80 20 10 34 0.34 3, 7, 28 60
FAPG 30 80 20 10 32 0.32 3, 7, 28 60
FAPG 31 80 20 15 33.5 0.335 3, 7, 28 60
FAPG 32 80 20 15 31 0.31 3, 7, 28 60
FAPG 33 80 20 15 28 0.28 3, 7, 28 60

Table 3   Used activation functions and output functions

ci and �i are the center and impact factor of the ith RBF node, x is 
the input vector, and ‖.‖ denotes a norm that is usually Euclidean. 
�i is the weight connecting the ith RBF hidden node to the output 
node, and g is the activation function. aj is the weight vector con-
necting the jth hidden neuron and the input neurons, and bj is the 
threshold of the jth hidden neuron. ajxi represents the inner prod-
uct of aj and xi , N is the number of hidden neurons, and n is the 
number of experimental data

ANN type Output function Activation function

RBF [27]
f (x) =

N∑
i=1

�igi(x) gi(x) = exp

�
−
‖x−ci‖2

2�2
i

�

MLP [28]
f (x) =

N∑
j=1

�jg

�
n∑
i=1

ajxi + bj

�
g(x) =

e2x−1

e2x+1

g(x) =
1

1+e−x
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the most well-known training algorithms for the multilayer 
perceptron [32]. Table 3 lists the output functions of the 
RBF and MLP network models and the used activation 
functions. 

To evaluate the performances of models, three error 
functions, namely the coefficient of determination (R2) 
[33], the root mean square error (RMSE) and the mean 
absolute error (MAE) [34], are used. Their mathematical 
expressions are as follows:

where yexp and yprd are the experimental and predicted 
output values and ȳprd is the mean of predicted values.

3 � Results and discussion

The most difficult thing in artificial neural network stud-
ies is to find the appropriate network architecture, which 
is based on the determination of the number of optimal 
layers and neurons in the hidden layers as well as of the 
suitable activation function. In the present study, three- 
and four-layer perceptron was investigated by using IBM 

(1)R2 =

∑n

i=1

�
yexp,i − ȳprd

�2

∑n

i=1

�
yexp,i − ȳprd

�2
+
∑n

i=1

�
yexp,i − yprd,i

�2

(2)RMSE =

√√√√1

n

n∑

i=1

(
yexp,i − yprd,i

)2

(3)MAE =
1

n

n∑

i=1

|||
(
yexp,i − yprd,i

)|||

SPSS version 20 and MATLAB version R2015a software. 
For MLP-MATLAB, the number of hidden layers was lim-
ited to one layer with the sigmoid activation function. The 
optimal number of neurons was selected using the neural 
network toolbox. The RBF model was tested for the same 
version of IBM SPSS. The BP and LM training algorithms 
were used for IBM SPSS and MATLAB software, respec-
tively. A total of 40 artificial networks were constructed 
using 99 experimental datasets. For all models, about 70% 
of samples were randomly assigned to the training phase 
and the remaining 30% of samples were allocated to the 
testing phase. The learning and momentum rates were 0.9 
and 0.4, respectively. The maximum epoch of the network 
varied from 1000 to 2000.

The ANN’s architectures used in this work are composed 
of an input layer with six input parameters: percentage of 
phosphogypsum (PPG), percentage of fly ash (PFA), cur-
ing temperature (CT), aging time (AT), sodium hydroxide 
concentration (SHC) and water (W), one or two hidden lay-
ers, and an output layer (compressive strength). The input 
parameters are the various constituents of the geopolymer 
specimens as used in the laboratory experiments.

Table 4 lists the fitting values of error functions for 
single-layer feedforward (RBF) and multilayer perceptron 
models. Outcomes indicate that the number of neurons 
in the hidden layers and the activation function affect 
the performance of the model. Similar observations were 
reported in the literature [21, 24]. Also from Table 4, we 
can conclude that the MLP models are able to predict the 
compressive strength values more accurately than the RBF 
one. Among multilayer perceptron networks, the MLP-III 
with architecture 6–8–10–1 (six input neurons, two hidden 
layers having 8 and 10 neurons, and one output neuron) 
with the hyperbolic tangent activation function is the best 

Table 4   Best-fitting values of the compressive strength of FA–PG-based geopolymer bricks

Models Hidden layer 1 Hidden layer 2 Activation function Statistical parameters

R2 RMSE MAENumber of neurons Number of neurons

MLP-I-MATLAB 12 0 Sigmoid 0.9608 0.7320 0.4968
MLP-I-SPSS 16 0 Hyperbolic tangent 0.9434 0.8877 0.6499
MLP-I-SPSS 16 0 Sigmoid 0.8952 1.2398 1.0245
RBF-SPSS 28 0 Gaussian 0.9487 0.8424 0.5963
MLP-II-SPSS 6 8 Hyperbolic tangent 0.9531 0.8037 0.5496
MLP-II-SPSS 6 8 Sigmoid 0.9367 0.9419 0.6861
MLP-III-SPSS 8 10 Hyperbolic tangent 0.9622 0.7185 0.4455
MLP-III-SPSS 8 10 Sigmoid 0.9394 0.9202 0.6742
MLP-IV-SPSS 10 12 Hyperbolic tangent 0.9517 0.8158 0.5576
MLP-IV-SPSS 10 12 Sigmoid 0.9350 0.9551 0.7148
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model for predicting the compressive strength of FA–PG-
based geopolymer bricks, as confirmed by its high R2 value 
and the lowest RMSE and MAE values. Figure 3a, b depicts 
the predictive performance of the MLP-III (6–8–10–1) 
model. From Fig. 3a, it can be seen that the predicted com-
pressive strength values present better agreement with 
those of experimentally determined values. These results 
prove that the model was able to reproduce the experi-
mental compressive strength results with high accuracy. 
The results of the regression analysis (Fig. 3b) show that 
the experimental and predicted compressive strengths 
are highly correlated, with a coefficient of determination 
close to 1.

(a)	 Comparison between measured and predicted com-
pressive strength values for all samples.

(b)	 Regression analysis of the MLP-III (6–8–10–1) model.

The reliability of the model was tested for different 
experimental conditions. The predicted and experi-
mental values of CS, as a function of the percentage 
of phosphogypsum, for NaOH (1 M), at different cur-
ing temperatures and aging times based on MLP-III 
(6–8–10–1) neural network, are depicted in Fig. 4. The 
plots indicate that the MLP-III (6–8–10–1) model fits well 
the experimental data of the compressive strength of 
FA–PG-based geopolymer bricks. Also from Fig. 4, we 
can see that by increasing the curing temperature from 
60 to 100 °C, the compressive strength decreases from 
8.91 to 7.14 MPa. Similar observations were reported in 
other researches [35, 36]. On the other hand, the rise in 
aging time beyond 7 days had not a beneficial effect 
on the compressive strength. In addition, the optimal 
percentage found of phosphogypsum replacement is 
10%. Therefore, the best conditions for Moroccan FA–PG-
based geopolymer bricks are 60 °C, 28 days and 10% for 
curing temperature, aging time and phosphogypsum 
percentage, respectively.

The effect of sodium hydroxide concentration on the 
compressive strength, at various aging times, is presented 
in Fig. 5. The increase in NaOH concentration and aging 
time leads to the rise in the compressive strength. Indeed, 
the CS was varied from 8 to 17.4 MPa with the variation of 
sodium hydroxide from 1 to 15 M. This was ascribed to the 
formation of sodium aluminosilicate, obtained from the 
dissolution of Si4+ and Al3+ ions from fly ash, caused by the 
increase in NaOH concentration [37].

Figure 6 depicts the relative importance of input param-
eters on the prediction of the compressive strength of 
FA–PG geopolymer bricks based on the MLP-III (6–8–10–1) 
model. The results clearly show that the concentration of 
sodium hydroxide is the most significant parameter for the 
compressive strength prediction.

The predictive performance of the MLP-III (6–8–10–1) 
model was tested on four data from the literature [17, 
38–40]. The results are evaluated based on three math-
ematical error functions: R2, RMSE and MAE. The obtained 
values of the fitting error functions are summarized in 
Table 5. Outcomes indicate that the MLP-III (6–8–10–1) 
model can fit the experimental data very well.
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Fig. 3   Predictive performance of the MLP-III (6–8–10–1) model
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4 � Conclusion

Fly ash and phosphogypsum can be used as alternate 
binders for the synthesis of geopolymer bricks. The best 
geopolymerization process was obtained for 60 °C, 28 days 
and 10% for curing temperature, aging time and phospho-
gypsum percentage, respectively.

The artificial neural network was tested as an alterna-
tive to experimental tests for simulating the compressive 
strength of FA–PG-based geopolymers. The results show 
that the ANN technique may be a promising method for 
rapid and accurate estimation of the compressive strength 
of FA–PG-based geopolymer bricks.
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Fig. 4   Compressive strength plots as a function of phosphogypsum percentage, at different curing temperatures and aging times. The sym-
bols and dashed lines are the experimental and predicted values based on MLP-III (6–8–10–1) neural network
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This study contributes to a better understanding of the 
synthesis of geopolymer bricks based on fly ash and phos-
phogypsum and enables the prediction of the compressive 
strength using the ANN technique.
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