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Abstract
In the framework of designing civil engineering structures such as dams and road embankments, slope stability assess-
ment is essential. Many slope stability assessment methods based on swarm intelligence algorithms and artificial intel-
ligence techniques have been developed in the past decade. Therefore, this paper aims to provide an up-to-date overview 
of slope stability by summarizing the review of applications of several metaheuristics in this field with their advantages 
and limitations. In this study, we present recent swarm intelligence methods and machine learning techniques used for 
assessing the stability of slopes and compare them with the antlion optimiser (ALO) technique. The factor of safety related 
to every slip surface searched was computed using Morgenstern-Price method. The performance of the proposed ALO 
is evaluated and validated for four slope examples against recent metaheuristics. Finally, the work carried out will help 
practitioners as they can now have all swarm intelligence approaches combined in one paper and will help in choosing 
them the right technique based on their application.

Keywords Factor of safety · Metaheuristic algorithms · Artificial intelligence · Optimisation techniques · Limit 
equilibrium method

1 Introduction

Slope stability assessment is a crucial step in civil engi-
neering for designing earth dams and road embankments. 
The computation of the minimum factor of safety (FS) is 
paramount to slope assessments because misjudgements 
may cause catastrophic slope failures and loss of life as 
reported in previous studies [1–4]. A FS higher than 1 
means that the slope is stable but normally in engineering 
applications a minimum value of 1.5 is required for static 
gravity loading and between 1.2–1.3 for seismic conditions 
particularly when slope failure causes major damages such 
as slopes beneath bridge abutments, major roadways and 
retaining structures. Generally, for slope stability assess-
ment several trial slip surfaces are considered to determine 

the one with the minimum FS value. The identification of 
the critical slip surface is the primary step, which is regu-
larly performed using traditional limit equilibrium meth-
ods (LEM) in professional practice. Recently, bio-inspired 
optimisation techniques have made assessing slope stabil-
ity easier, particularly for heterogeneous slopes and slopes 
with a weak band of a soil layer sandwiched between two 
strong layers [5]. In cases involving the aforementioned 
slope conditions, the problem to be analysed is nonlinear 
with a noncircular slip surface, whereas the search requires 
more than three variables. The three variables for the cir-
cular slip surface are coordinates of the center of the slip 
surface (horizontal, vertical) and radius of the slip surface.

Several techniques, including prominent traditional 
techniques to recent optimisation techniques, used to 
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assess slope stability are summarised in this paper. The 
most prevalently used method for performing slope sta-
bility calculations is traditional limit equilibrium method 
[6–11]. Classical techniques for assessing slope stability are 
unsuitable for several cases such as slopes with non-circu-
lar slip surfaces having multiple local minima solution and 
require a close by preliminary solution to obtain a valid 
result. A traditional LEM can identify the critical slip sur-
face; however, the method fails to identify a global mini-
mum in certain situations causing premature convergence 
at a local minimum [12]. Furthermore, other techniques, 
including finite difference [13] and finite element strength 
reduction techniques [14–17] are extensively used. By 
contrast, finite element techniques need not assume the 
pattern and position of trial slip surfaces and introduce 
other complexities, such as defining stress-strain relations 
of soils. Monte Carlo methods used for slope stability cal-
culation [18, 19] should have quality inputs to arrive to a 
desirable FS and they often underestimate the probabil-
ity of slope failures. Furthermore, MC methods are slow 
in computation as large sample size is required to obtain 
desirable result.

At present, intelligent algorithms such as harmony 
search (HS) [20], ant colony optimisation (ACO) [21–23], 
particle swarm optimisation (PSO) [24, 25], simulated 
annealing (SA) [26], artificial bee colony (ABC) [27], cuckoo 
search (CS) [28], firefly algorithm (FA) [28], fish swarm opti-
misation (FSO) [29], gravitational search algorithm (GSA) 
[30–32], big bang - big crunch (BB-BC) optimisation [33], 
relevance vector machine [34], mutative scaled chaos 
(MSC) [35], tabu search (TS) [36], genetic algorithms (GA) 
[37–42], fireworks algorithm (FWA) [43], black hole algo-
rithm (BHA) [44], immunised evolutionary programming 
(IEP) [45], differential evolution (DE) [46, 47], evolutionary 
strategy (ES) [46, 47], and biogeography-based optimisa-
tion (BBO) [46, 47], imperialistic competitive algorithm 
(ICA) [48], multiverse optimisation algorithm (MVO) [49] 
and teaching-learning-based optimisation (TLBO) [50] 
have been applied for slope stability analysis. Moreover, 
the hybridisation of these algorithms, such as CS with 
boundary constraint (CS-EB) [51], PSO with HS (PSO-HS) 
[52], ACO with simulated annealing (ACO-SA) [53], and GSA 
with sequential quadratic programming (GSA-SQP) [54] 
are used. Furthermore, artificial neural networks (ANNs) 
[55–64], reliability index [65] and fuzzy logic [66] have 
also been used to analyse the stability of slopes and earth 
dams. These studies indicate the potential of metaheuristic 
algorithms for assessing slope stability.

The FS results obtained using these metaheuristic 
approaches get trapped in local optimum because of the 
selection of an inaccurate set of parameters. For e.g., ACO 
has limitations because it may converge to local opti-
mum providing inaccurate results, which is attributed 

to the selection of inaccurate tuning parameters, and 
requires high computation time. A similar case used GA 
for optimisation because it required the careful selection 
of crossover and mutation rates. Additionally, PSO and 
ABC use inertia weights, social and cognitive parameters, 
and the number of bees and limits, respectively. Hybrid 
approaches require complex actions, such as hybridising, 
which are difficult to include for practitioners. In addi-
tion, the ANN has severe limitations because it requires 
a large database comprising several slope failure condi-
tions and can only be applied to the considered case. 
Artificial intelligence (AI) techniques [67] utilised for 
accurate prediction of slope stability require hyperpa-
rameter and weight tuning. Table 1 summarises differ-
ent algorithmic specific parameters and their numerical 
values tuned for computing FS of slopes. Thus, all opti-
misation techniques excluding BHA and TLBO, require 
careful parameter tuning to capture global optima. 
Hence, different metaheuristic approaches that do not 
encounter the aforementioned limitation of parameter 
tuning are required, which can evade this local minima 
in most cases.

The no-free-lunch theorem [68] entices scientists 
to continually come up with novel metaheuristic algo-
rithms and employ them to their respective fields of 
interest such as optimizing the mechanical stabilization 
of earth walls [69] and reinforced concrete cantilever 
retaining walls [70]. In 2015, Mirjalili [71] proposed a new 
optimisation method termed ALO whose description is 
provided in Sect. 2. Several studies [72, 73] have com-
pared ALO with GA and PSO and indicated the superior 
performance of ALO in solving non-convex and complex 
optimisation problems. The ALO algorithm has been suc-
cessfully applied to solve numerous engineering prob-
lems [72–79]. In this particular application, a procedure 
for employing an ALO method was developed and 
adapted for calculating the minimum FS of a slope, and 
four benchmark slopes were considered. A comparison 
between different results obtained using other state-of-
the-art approaches and the current technique indicates 
advantages and limitations of the new method. Different 
algorithms may have different fitness function evalua-
tions consumed per iteration [80, 81], and therefore, the 
comparison of FS with other metaheuristics approaches 
is considered.

The paper is organised as follows: Sect. 1 introduces the 
previous studies performing geotechnical slope stability 
calculations by using intelligent algorithms and limitations 
of traditional techniques; Sect. 2 introduces the ALO algo-
rithm; Sect. 3 discusses slope stability calculations of the 
ALO algorithm; in Sect. 4, four case studies are presented 
to validate the technique; and finally, in Sect. 5 conclusions 
are presented.
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2  Overview of ALO algorithm

ALO is a bio-inspired optimisation algorithm popu-
larised by Mirjalili [71]. It is a swarm-based algorithm, 
which employs random walks and roulette wheel selec-
tions biased using fitness functions for selecting control 

variables, and therefore, probability of falling for local 
minima is considerably low. The five primary steps 
involved in ALO are as follows: First, an antlion creates 
a cone-shaped sandpit (Fig. 1a). The antlion then hides 
from the ant (Fig.  1b, c) and waits for the ant to get 
trapped. When the ant enters cone-shaped sandpit, the 
antlion tosses sand outside the pit, compelling the ant 

Table 1  Literature review on algorithmic specific parameters used in ALO and other metaheuristic approches for slope stability analyses

Acronyms of all algorithms used are reported in Sect. 1

Algorithm Algorithmic specific parameters for each algorithm with their numerical values used in slope stability analysis by different 
researchers

ACO [21] Ant colony size (300), total number of tours (200), pheromone evaporation rate ( � = 0.3 ), bilinear scaling constant Z = 2 for 
the quality function

PSO [24] Inertial weight � = 0.5 , swarm size (60), cognitive parameter c1 =2 and social parameter c2 = 2 , number of iterations (200)
SA [26] Initial temperature state, cooling rate, acceptance probability, maximum number of iterations
ABC [27] Bee colony size (20–50), number of cycles (100), limit (300-650)
FA [28] Swarm of n = 50 particles, parameter � representing attractiveness, light absorption coefficient ( � ) varying between 0.1 and 

10, generation = 3000;
FSO [29] Fish pool fp = 0.9 , number of fishes in fp , parameter for optimisation pr = 0.1 , probability array � = 0.8, maximum number of 

iterations = 700

GSA [30, 31] Population size N = 50 , initial gravitational constant G0 = 100 , constant � = 0.1 , maximum iteration tmax = 1000

BBO [32] Number of habitats (100), mutation rate Mmax = 0.2 , maximum immigration and emigration rate I = 0.5 and E = 1 , number of 
generations (250)

BB-BC [33] Universe composed of Nb = 30 number of bodies, search space reduction parameter � =0.7–0.9, maximum size of the step 
� = 1 , scaling factor � = 0.7 , generation number =50, distribution constants � = 1.4, � = 0.3

GA [37] Crossover (0.75) and mutation probability (0.002), position of crossover, length of chromosome (24), population size (200), 
number of generations (300)

FWA [43] Number of spark seeds N = 10 , number of generating sparks M = 40 , maximum explosion amplitude Â = 40 , number of 
Gaussian sparks Me = 5 , total number of iterations (2000)

BHA [44] Population of stars (50), maximum number of iterations (500)
DE [46] Weighting factor F, crossover constant Cr , size of population (50), maximum number of generations (3000)
ES [46] Size of population (50), maximum number of generations (3000), number of offspring � , standard deviation �
ICA [48] Population of countries (300), population of imperialists (8) and decades (500), rate of revolution (0.3), damp ratio (0.99), unit-

ing threshold (0.02), control parameter � = 0.1, � = 2, � = 0.02

HS [52] Harmony memory consideration rate HR = 0.98 , the pitch adjustment rate PR = 0.1 , harmony memory HM of size M, number 
of function evaluations NOFs

TLBO [50] Number of learners and maximum number of iterations
ALO (pro-

posed 
approach)

Population of ants and antlions (10-100), maximum number of iterations (100)

Fig. 1  a Cone-shaped trap of antlion with antlion hiding beneath the pit [78], b ants entering the trap [78], c random walk of ant in antlion’s 
pit, and d ant being consumed by antlion
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to fall towards the edge of the pit. The ant is then pulled 
into the sandpit and consumed (Fig. 1d). Finally, the ant-
lion throws the uneaten ant and plans for the next plot. 
The mathematical model of ALO is briefly explained as 
follows [71, 76, 78]:

2.1  Initialisation

The ALO algorithm models the interaction of two popula-
tions, namely ants and antlions. The population of ants is 
equal to number of antlions, denoted by constant NP. The 
position of the ants (Eq. 1) is stored in matrix MatAnt where 
each row represents the values of control variables for a 
particular solution.

where Anti,j and Dim indicate the position of the jth control 
variable for the ith ant and the total number of control 
variables, respectively. MatOAnt (Eq. 2) and Fit are the matrix 
storing the fitness function associated with each ant posi-
tion and the fitness function, respectively.

Moreover besides the ants, the antlions also hide whose 
matrices MatAntlion and MatOAntlion are used to store their 
scavenging positions and fitness values. After the initialisa-
tion step, the optimal antlion (antlion with the maximum 
fitness value) is selected as an elite.

2.2  Digging traps

The ALO algorithm utilises a roulette wheel mechanism to 
select antlions based on their fitness values. This process 
ensures high probability for ensnare ants for antlions with 
high fitness. For each ant, one antlion is selected, thus only 
one ant is trapped by one antlion.

2.3  Sliding ants towards antlion

Antlions start tossing sand away from the pit after realising 
that the ant is entering the trap. Thus boundaries of ants 
random walk (Fig. 1c) are updated as below:

(1)

(2)

where ci(Iter) and di(Iter) are the vector containing mini-
mum and maximum limits of the ith control variable, and 
Iter denotes the present iteration number and � , a con-
stant based on range of ratio of Iter and Itermax (maximum 
number of iterations) [71] .

2.4  Entrapment in antlion pits

The subsequent equations below model the entrapment 
of ants in antlion pits, thus influencing their random walks:

2.5  Random walk of ants in antlion pit

In this step, the population of ants (Fig. 1b) is initialised 
using a random walk by the following equation:

where cums provides accumulative sum, and rwj comprises 
of the jth row of the vector, whose value is 1 for random 
number generated greater than 0.5 and 0 otherwise. The 
walks are normalised by the following equation to keep 
them within bounds.

where Pi(Iter) is the updated using normalised position of 
the ith control variable at the Iter. ai and bi are the lower 
and upper limits of the ith control variable, while the indi-
ces for ci(Iter) and di(Iter) denote the lower and upper 
boundaries for the current iteration Iter.

2.6  Elitism

Parameters of the ant are now calculated based on the cur-
rent optimal antlion and global optimal antlion to enhance 

(3)ci(Iter) =
ci(Iter)

10�
Iter

Itermax

(4)di(Iter) =
di(Iter)

10�
Iter

Itermax

(5)cm
i
(Iter) =Antlionj(Iter) + ci(Iter)

(6)dm
i
(Iter) =Antlionj(Iter) + di(Iter)

(7)

P(Iter) = (0, cums(2rw1 − 1), cums(2rw2 − 1),… ,

cums(2rw
Itermax

− 1))

(8)Pi(Iter) =
(Pi(Iter) − ai)(di(Iter) − ci(Iter))

(bi − ai)
+ ci(Iter)
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the local and global search capability (Fig. 2). The position 
of the ith ant at current iteration is updated as follows:

where RWRoulette(Iter) and RWElite(Iter) are random walks of 
the ith ant around antlion tabbed through roulette wheel 
mechanism and the elite antlion.

2.7  Catching preys, rebuilding traps

The fitness function for the position of the ant is calculated 
in this step. The fittest solution is replaced with the existing 
solution if it is superior ( fit(Anti(Iter)) < fit(Antlionj(Iter)) ) 
else the previous solution is retained as per the following 
equation:

The aforementioned steps in Sects. 2.2–2.7 are repeated 
until Itermax are reached.

3  Implementation of ALO to slope stability 
problem

The method explained in Sect. 2 is modified to fit into a 
slope stability problem. The process comprises of the fol-
lowing steps: the generation of the trial slip surface, cal-
culating the FS, and using ALO to identify the critical slip 
surface and compute its FS. A computer code is developed 
in MATLAB [82] to automatically search the critical slip sur-
face using ALO.

(9)Anti(Iter) =
RWRoulette(Iter) + RWElite(Iter)

2

(10)Antlionj(Iter) = Anti(Iter)

3.1  Generation of trial slip surface and FS 
computation

Before calculating for the FS, the slip surface must be 
generated using a slip surface generation algorithm. Sev-
eral such algorithms are available [20]. In this paper, the 
method proposed by Cheng [83] is used. The method by 
Cheng [83] is used as it was easy to implement in com-
puter programming language and involved fewer ranges 
to be defined for control variables (only ranges of entry 
and exit points of slip surfaces). Figure 3 illustrates the 
method of generating the trial slip surface, where y = G(x) 
and B(x) represents the mathematical function of slope 
geometry and the equation of the bedrock, respectively.

In the first step, the failure mass is split into N vertical 
segments having uniform width. Although from previ-
ous researches, horizontal slice methods developed by 
Lo and Xu [84] are having many advantages in solving for 
the safety factor of slopes, but for the scope of work only 
vertical slices are used in the present study. The failure sur-
face is defined by N + 1 vertices [ V1 , V2,...,VN+1 ] as follows:

Values of x1 (entry) and xN+1 (exit) shown in Fig. 4a can be 
determined from engineering experience. Because all 
slices have the same width, x-coordinates of points from 
x2 to xN (not control variables) can be determined by the 
following equation:

For y coordinates y1 and yN+1 can be computed using the 
geometry of the slope. To determine y coordinates of other 
points, upper and lower bounds ( yimax and yimin ) that rep-
resent slope geometry and bedrock profile, respectively, 
are considered. For optimisation algorithms, minimum 
and maximum limits of decision variables are pre-stated 
and constant during the optimisation. Lower and upper 
bounds of ordinates of vertices from V2 till VN are set to yimin 
and yimax because their minimum and maximum value are 
dynamically defined using the following equation:

To summarise the optimisation process for identifying the 
critical slip surface having a minimum FS can be summa-
rised as follows:

where � can be obtained using the aforementioned 
procedure.

(11)V = [(x1, y1), (x2, y2),… , (xN , yN), (xN+1, yN+1)]

(12)xi+1 = x1 +

(

xN+1 − x1

N

)

× i for i = 1, 2,… ,N − 1,N

(13)yi = yimin + (yimax − yimin) × �i ;i = 1,… ,N − 1

(14)

min f (x ← �) s.t x
l
≤ x1 ≤ x

u
; x

L
≤ x

N+1 ≤ x
U
;

0 < 𝜎
i
< 1 ;i = 1,… ,N − 1

Fig. 2  Figure illustrating the update of ants position based on rou-
lette wheel mechanism and elite antlion
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For each trial slip surface generated by aforementioned 
procedure, Morgenstern-Price method [8] is used to com-
pute the FS. However, equilibrium equations for force and 
moment summing over all slices are nonlinear and cannot 
be solved using a simple technique. In this paper, the nonlin-
ear equations are solved using a numerical procedure devel-
oped by Zhu et al. [85] to obtain converging values for the 
FS and scaling factor ( � ). In Morgenstern-Price method, the 

ratio of interslice forces ( Ti∕Ei ) is assumed to be in a � f (xb) , 
and the relation can be expressed as follows:

where Ti and Ei are shear interslice and normal interslice 
forces, respectively (Fig. 4b). f (xb) is the interslice force 
function that varies with respect to xb (Fig. 4a).

(15)
Ti

Ei
= �f (xb)

Fig. 3  Procedure for generating trial slip surfaces (modified from [83])

(a) (b)

Fig. 4  a Sliding body showing division of slices and b forces acting on ith slice
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The sliding mass is split into vertical slices and 
resolved into forces as shown in Fig. 4a to evaluate the 
FS. From Fig. 4b, where Wi = weight of ith slice; Ui = pore 
water pressure at the base of the ith slice; Ni = effective 
normal force at the base of the ith slice; Qi = external 
surcharge load acting on the ith slice at inclination �i , �i 
= horizontal angle of the slice base; bi = the width of the 
ith slice; Kh = horizontal seismic coefficient; and Ei and Ei−1 
are the normal interslice forces acting on left and right 
boundaries of the slice, respectively. For soil parameters, 
c
′ , �′ = effective cohesion and internal friction angle at 

the base of the ith slice. The following iterative algorithm 
is employed to evaluate the FS [85]:

i) Compute Ri and Ti for each slice by using the following 
equations: 

ii) The initial trial values of the FS and � must be selected 
through criteria [85], however FSo = 1 and �o = 0 can 
be safely selected as an initial prediction.

iii) A constant interslice function is selected; that is, inter-
slice forces are parallel, which is a particular case of 
Morgenstern-Price method, equivalent to Spencer 
method [86]. 

iv) Compute coefficients Φi and �i−1 for each slice by using 
the following equations: 

v) The FS is calculated using Eq. 21 and Φi and �i are then 
determined using the current value of the FS. The FS is 
recomputed using updated values of Φi and �i . 

vi) Use Eqs. 22 and 23 to calculate Ei and � . 

 when Eo and En are the interslice force at boundaries 
and are set at 0. 

(16)
Ri = (Wi cos �i − KhWi sin �i − uibi sec �i) tan�

�

i
+ cibi sec �i

(17)Ti = Wi sin �i + KhWi cos �i

(18)f (xb) = 1

(19)
Φi = (sin �i − �fi cos �i) tan�

�

i
+ (cos �i − �fi sin �i)FS

(20)�i−1 =
Φi

Φi−1

(21)FS =

∑n−1

i=1

�

Ri
∏n−1

j=1

�

+ Rn

∑n−1

i=1

�

Ti
∏n−1

j=1

�

+ Tn

(22)Ei =
�i−1Ei−1Φi−1 + FS × Ti − Ri

Φi

The steps (ii)-(vi) are reiterated until the values of the FS 
and � are within set tolerance value. The aforementioned 
procedure was implemented in MATLAB and converged 
to the desired accuracy in less than 5 iterations.

3.2  ALO application to slope stability problem

In this application, the algorithm is modelled to determine 
the optimal FS for trial slip surfaces. The slope is divided 
into 30 slices having a total of 31 control variables. The 
variation in x1 and x31 is explained in Sect. 3.1, whereas all 
�1 - �29 vary from [0,1]. The ALO algorithm is implemented 
in the following seven steps for slope stability problem:

Step 1 Generate the first array of population search 
agents and calculate their fitness. The values are defined 
for Dim + 1 variables (31 in this case) that represent coor-
dinates of the trial slip surface as shown in Fig. 4a. The first 
step involves the initialisation of the algorithm by using 
a set of random ants roaming and antlions laying traps 
through the search space.

Step 2 Sort antlions according to their fitness values in 
an ascending order, and select the antlion with the optimal 
fitness as the elite.

Step 3 Pick an antlion for each individual ant via roulette 
wheel. Antlions having a superior fitness value has higher 
probability of selection through this process.

3.1 Create a random walk (Eq. 7), and normalise it (Eq. 8).
3.2 Update the values of cm

i
(Iter) and dm

i
(Iter) (Eqs. 5-6).

3.3 Update the position of the ant (Eq. 9).

Step 4 Compute the fitness of all ants and update matrix 
1. The fitness is inversely proportional to the FS for the 
selected control variables and is calculated using Spencer’s 
method explained in Sect. 3. The FS is computed only for 
matrices of ants ( MatOAnt ) and not for antlions when the 
computation is carried out inside the loop (refer to the 
flowchart in Fig. 5). Moreover, the elite antlion is always in 
updated antlion population, which is consistent with other 
evolutionary techniques that retain the optimal solution.

(23)� =

∑n

i=1

�

bi(Ei + Ei−1) tan �i + KhWihi
�

∑n

i=1

�

bi(fiEi + fi−1Ei−1)
�

(24)
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Step 5 The antlion exchanges its position with the cor-
responding ant if the ant is fitter. In this step, the fitness of 
the selected elite antlion (Eq. 10) improve, thus converging 
to the optimal solution.

Step 6 Replace elite if ( fit(Anti(Iter)) < fit(Antlionj(Iter)).
Step 7 Repeat steps 3–6 until the termination criteria 

is reached.

The ALO solution comprises numerous generations of 
the system of variables that are optimised, resulting in the 
lowest FS. The position of the elitist antlion represents the 
critical slip surface with a minimum FS. A large value of 
fitness function is used when the FS violates the search 
boundary and generates infeasible slip surfaces. Figure  
5 the process of the ALO algorithm adopted for slope 
stability.

Fig. 5  Flowchart to capture critical slip surface and factor of safety using ALO algorithm for assessing slope stability
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4  Numerical experiments

The section analyses four slopes with different complexi-
ties, namely a homogeneous slope and three heteroge-
neous slopes to test the efficacy of ALO approach. The 
critical slip surface and corresponding FS are determined 
through the proposed technique and compared with 
those obtained using other optimisation algorithms. 
Because the solution obtained in each simulation is 
different, 10 simulations are used for each numerical 
experiment to report the mean and standard deviation 
along with the optimal solution of the numerical experi-
ment. Therefore, for 10 simulations for each numerical 
experiment, 10 optimal solutions are available for 10 
experiments. Among these 10 optimal solution, a solu-
tion with the minimum FS is reported as the optimal 
solution. Moreover, Table  2 reports lower and upper 
bound limits of control variables. The total vertical slices 
are fixed to 30 because the computation of the FS of a 
slope is unaffected by the number of selected slices if 
the minimum number of slices is set to 30 [87]. Table 3 
reports the parameters of ALO. The parameters of the 
ALO algorithm were chosen from previous studies [78]. 
Subsequent sections indicate that the critical slip surface 
gradually approached the optimal slip surface with the 
progression of the search for these two population sizes.

4.1  Example 1

The homogeneous soil slope considered from Yamagami 
and Ueta [88] is analysed. The slope is in dry condition 
with soil parameters reported in Table 4. Figure 6 pre-
sents slope geometry. Figure 6 analyses the critical slip 
surface identified by solving the same benchmark exam-
ple by using other slope stability optimisaton methods 

and the current technique. In the 10 computations, the 
calculated minimum and maximum FS are 1.317 and 
1.349, respectively. Table 5 presents a comparative sum-
mary for two population sizes used with its results veri-
fied against different methods. For the homogeneous 
case, irrespective of the swarm intelligence technique, 
most of them converge to similar results. The standard 
deviation in FS is reduced to 0.008 and 0.016 for popu-
lations of 50 and 10 from 0.298, respectively, following 
the results provided by Kahatadeniya et al. [21] by using 
discrete ant colony optimisation. The current algorithm 
captures the optimal solution with a fewer number of 
adjustable parameters to adjust than several prominent 
algorithms. For the homogeneous case, the analysed 
algorithms converge to rather similar values, indicating 
the robustness of calculation.

Figure 7 presents the convergence behaviour of the 
ALO algorithm. Two simulations are plotted to indicate 

Table 2  Upper and lower 
limits of search variables and 
number of slices considered for 
examples 1–4

Example no. Min Max Min Max Min Max No. of Slices
x
l

x
u

x
L

x
U

�
u

�
l

N

1. 0 10 20 30 0 1 30
2. 0 60 140 160 0 1 30
3. 10 15 25 34 0 1 30
4. 0 20 40 50 0 1 30

Table 3  Control parameters 
used in antlion optimiser for 
factor of safety calculations in 
examples 1–4

Input variable sets Example 1 Example 2 Example 3 Example 4

Population (Total number of ants and 
antlions) (NP)

10–50 10–100 10–100 10–100

Maximum iterations count ( Itermax) 50 100 100 100
No. of control variables (Dim) 31 31 31 31

Table 4  Soil parameters for benchmark examples 1–4

Example no. Layer (s) Cohesion (c) Friction 
angle �

Unit weight �

(kPa) (◦) kN/m
3

1. 1 9.8 10 17.64
2. 1 28.7 20 18.8

2 0 10 18.8
3. 1 15 20 19.0

2 17 21 19.0
3 5 10 19.0
4 35 28 19.0

4. 1 0 38 19.5
2 5.3 23 19.5
3 7.2 20 19.5
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that the fitness of the elitist antlion is updated using the 
number of iterations and converges to a constant value. 
The algorithm estimates the FS within desired accuracy, 

even with 10 ants and antlions. The initial estimate is 
already near to the optimal value and the difference 
between the optimal values obtained using the popula-
tions of 10 and 50 is residual -0.04, which is negligible 
for engineering applications.

4.2  Example 2

The second illustrative example of the heterogeneous soil 
profile is referred to from Fredlund and Krahn [91]. Fig-
ure 8 presents the geometry of the slope, and soil param-
eters for three horizontal layers are reported in Table 4. 
Because of the presence of a thin band of a weak soil layer 
sandwiched between two strong soil layers, local minima 
occurs and several traditional methods fail to converge to 
global minima.

Fig. 6  Critical slip surface 
identified using ALO and other 
optimisation methods for 
example 1

Table 5  Comparison of factor 
of safety obtained using ALO 
technique for the standard 
example 1 with different 
methods

Source Method FS

Yamagami and Ueta [88] Broyden–Fletcher–Goldfarb–Shanno (BFGS) 1.338
Yamagami and Ueta [88] Simplex method 1.339–1.348
Cheng et al. [87] Particle swarm optimisation (PSO) 1.329
Cheng et al. [87] Modified particle swarm optimisation (MPSO) 1.326
Cheng et al. [20] Modified harmony search (MHS) 1.322
Jianping et al. [89] Genetic algorithm (GA) + line 1.324
Jianping et al. [89] Genetic algorithm (GA) + Spline 1.321
Kahatadeniya et al. [21] Ant colony optimisation (ACO) 1.311–2.966
Khajehzadeh et al. [25] Particle swarm optimisation (PSO) 1.321
Khajehzadeh et al. [25] Modified particle swarm optimisation (MPSO) 1.308
Kang et al. [27] Artificial bee colony optimisation (ABC) 1.321
Kashani et al. [48] Imperialistic competitive algorithm (ICA) 1.321
Xiao et al. [43] Enhanced fireworks algorithm (EFW) 1.322
RS slope [90] Cuckoo search 1.327
Mishra et al. [50] Teaching–learning-based optimisation (TLBO) 1.324–1.325
ALO (This study) Antlion Optimiser (ALO) NP = 10 1.334–1.387
ALO (This study) Antlion Optimiser (ALO) NP = 50 1.317–1.349

Fig. 7  Factor of safety for fittest antlion versus number of iterations 
by using populations of 50 and 10 for example 1
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Figure  8 presents the slip surface for populations 
of 10 and 100 identified using the current technique. 
It converges to the optimal solution by increasing the 
population of both ants and antlions to 100. The current 
technique can automatically capture the critical failure 
surface. The obtained minimum FS is 1.366, with a stand-
ard deviation of 0.091. The method exhibits consistent 
results with less standard deviation and a superior esti-
mation of the minimum factor of safety from Zhu et al. 
[94] and Jongmin et al. [93]. Figure 9 compares the con-
vergence rates of the current technique for population 

sizes of 100 and 10 with 100 iterations. The population 
of ant and antlions for the heterogeneous layer must be 
approximately 100 to correctly identify global minima. 
The proposed technique is similar to the recent solution 
using ICA presented by Kashani et al. [48] and TLBO pre-
sented by Mishra et al. [50] with some minor deviations 
(refer Table 6), which may occur because of the discre-
tisation of the sliding mass into slices and the method 
used for FS calculations.

4.3  Example 3

The third illustrative example of the heterogeneous soil 
profile having a weak band of an inclined soil layer is 
referred to from Zolfaghari et al. [95]. The soil parameters 
are reported in Table 4. In this case, the weak soil layer is 
sandwiched between two soil layers. Some optimisation 
techniques cannot converge to global minima.

The FS and corresponding slip surface have been com-
puted using different optimisation techniques, such as 
genetic algorithm by Zolfaghari et al. [95]; tabu search, 
harmony search, particle swarm optimisation, simulated 
annealing, and ant colony optimisation by Cheng et al. 
[87]; gravitational search algorithm by Khajehzadeh 
et al. [30]; artificial bee colony by Kang et al. [27]; cuckoo 
search, firefly algorithm, and cuckoo search-boundary 
constraint (CS-BC) by Gandomi et al. [28]; imperialistic 
competitive algorithm by [48], as presented in Table 7. 
The solution obtained using the proposed technique is 
1.079, which is the optimal solution for this problem. The 
solution is superior than those obtained using GA, SA, 
TS, ACO, HS, MHS, PSO, DE, ES FA and MVO. The results 
are a slightly on higher side when compared with CS, 
CS-BC, BBO and ICA, reason can be due to the method 
used to calculate FS as the difference is almost negligi-
ble. The standard deviation is obtained with ALO (0.162) 
is smaller than the one obtained by BBO (0.384) [46] but 
slightly more than MVO (0.1229) [49].

Figure 10 reports the critical slip surface obtained by 
solving the benchmark example by using the current 

Fig. 8  Critical slip surface identified using ALO and ICA for example 
2

Fig. 9  Factor of safety for fittest antlion vs number of iterations 
using populations of 100 and 10 for example 2

Table 6  Comparison of factor 
of safety obtained using ALO 
technique for the standard 
example 2 with different 
methods

Source Method FS

Fredlund and Krahn [91] Spencer’s method 1.373
Goh [92] Genetic algorithm 1.288
Jongmin et al. [93] Limit equilibrium with the velocity field and plastic zone 1.37
Zhu et al. [94] A generalised framework of LEM 1.373
Kashani et al. [48] Imperialistic Competitive Algorithm (ICA) 1.3625
Mishra et al. [50] Teaching–learning-based optimisation (TLBO) 1.315–1.466
ALO (This study) Antlion Optimiser (ALO) NP = 10 1.589–2.063
ALO (This study) Antlion Optimiser (ALO) NP = 100 1.366–1.724
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Table 7  Comparison of factor 
of safety obtained using ALO 
technique for the standard 
example 3 with different 
methods

Source Method FS

Zolfaghari et al. [95] Genetic algorithm (GA) 1.24
Cheng et al. [26] Simulated annealing (SA) 1.2813
Cheng et al. [87] Tabu search (TS) 1.4661
Cheng et al. [87] Ant colony optimisation (ACO) 1.5817
Cheng et al. [87] Harmony search (HS) 1.2405
Cheng et al. [87] Modified harmony search (MHS) 1.1315
Cheng et al. [24] Modified Particle swarm optimisation (MPSO) 1.1289
Cheng et al. [20] Particle swarm optimisation (PSO) 1.1095
Khajehzadeh et al. [30] Gravitational search algorithm 1.0785
Kang et al. [27] Artificial bee colony optimisation (ABC) 1.086
Gandomi et al. [28] Firefly algorithm (FA) 1.303
Gandomi et al. [28] Cuckoo search (CS) 1.0635
Gandomi et al. [28] Cuckoo search—boundary constraint (CS-BC) 1.0502
Gandomi et al. [46] Biogeography-based optimization (BBO) 1.055
Gandomi et al. [46] Differential evolution (DE) 1.659
Gandomi et al. [46] Evolutionary strategy (ES) 1.502
Mishra et al. [49] Multi verse optimiser (MVO) 1.1447–1.7362
ALO (This study) Antlion optimiser (ALO) NP = 10 1.253–1.906
ALO (This study) Antlion optimiser (ALO) NP = 100 1.079–1.633

Fig. 10  Critical slip surface 
identified using ALO and other 
optimisation methods for 
example 3

Fig. 11  Factor of safety for 
fittest antlion vs number of 
iterations using populations of 
100 and 10 for example 4
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technique for the population sizes of 10 and 100 with 
100 iterations. Figure 11 compares the convergence rate 
of ALO optimiser for population sizes of 10 and 100. For a 
population size of 100, the ALO more rapidly converges 
to the optimal solution than with population of 10.

4.4  Example 4

The fourth illustrative example of the heterogeneous soil 
profile is referred to from the Association for Computer 
Aided Designs (ACAD) in Australia [96]. The slope has three 
non-horizontal soil layers whose properties are reported in 

Table 4. Figure 12 presents the slip surface for this exam-
ple captured using the proposed technique. The critical 
surface obtained using the proposed algorithm is differ-
ent for population sizes of 10 and 100. Therefore, although 
the algorithm for both populations converges to similar FS 
values, the solution is different for each case. Both solu-
tions present similar FS with the different geometry of 
the critical surface. The problem was previously analysed 
using GA, leap frog, HS, SA, TS, HS, ABC, ACO, PPACO, TLBO 
and finite element methods. The minimum factor of safety 
obtained using ALO is 1.351 with a standard deviation of 
0.018, indicating that this method is more efficient than 

Fig. 12  Critical slip surface 
identified using ALO and other 
optimisation methods for 
example 3

Table 8  Comparison of factor 
of safety obtained using ALO 
technique for the standard 
example 4 with different 
methods

Source Method FS

Goh [92] Genetic algorithm (GA) 1.387
Bolton et al. [97] Leap frog method 1.387
Cheng et al. [87] Particle swarm optimisation (PSO) 1.359
Cheng et al. [87] Ant colony optimisation (ACO) 1.3931
Cheng et al. [87] Simulated annealing (SA) 1.3569
Cheng et al. [87] Tabu search (TS) 1.3762
Cheng el al. [20] Harmony search algorithm (HSA) 1.359
Kang et al. [27] Artificial bee colony optimisation (ABC) 1.343
Gao [45] Evolutionary programming (EP) 1.358
Gao [45] Immunised evolutionary programming (IEP) 1.355
Gao [22] Ant colony optimisation (ACO) 1.353
Gao [23] Meeting ant colony optimisation (MACO) 1.348
Gao [22] Premium penalty ant colony optimisation (PPACO) 1.340
Goh [22] Finite element method 1.426
Gao [98] Improved black hole algorithm 1.355
Xiao et al. [43] Enhanced fireworks algorithm (EFW) 1.350
Mishra et al. [50] Teaching–learning-based optimisation (TLBO) 1.343–1.356
Mishra et al. [49] Multi verse optimiser (MVO) 1.346–1.376
ALO (This study) Antlion optimiser (ALO) NP = 10 1.571–1.714
ALO (This study) Antlion optimiser (ALO) NP = 100 1.351–1.404
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most methods. However, TLBO presented by Mishra et al. 
[50] reports the FS between 1.343–1.356 with a standard 
deviation of 0.003193 making it more efficient in uncer-
tainty reduction.

Table  8 reports the comparison of the FS obtained 
using the ALO technique for the standard example 4 with 
different methods previously reported. In this case, the 
result with FEM (1.426) is sub-optimal solution than result 
obtained by using the current method (1.351–1.404), 
which shows that current technique is robust. The ALO is 
more efficient than other studies because the FS values 
are similar. Figure 13 compares the convergence rates of 
ALO optimiser for population sizes of 10 and 100 with 100 
iterations. For a population size of 100, ALO more rapidly 
converges to optimal solution.

Finally, for comparison with other metaheuristic 
techniques, the number of fitness function evaluations 
described by NOFs is calculated under the same or rep-
licated experimental conditions. Therefore, comparison 
is performed by calculating the total fitness evaluations 

for different population sizes and the number of itera-
tions required for one simulation experiment. All the 
examples, excluding example 1 that has 2500 fitness 
function evaluations, used 10,000 fitness function evalu-
ations. Figure 14 shows that the ALO algorithm has fewer 
fitness function evaluations than GA, PSO, and ACO for 
all four slopes and similar NOFs than ABC. Although 
ABC and ALO have the same number of fitness function 
evaluations, ALO has fewer function fitness function 
evaluations than GA, PSO, and ACO. In particular, for 
homogeneous slopes, the performance of ALO is supe-
rior in terms of accuracy and NOFs consumed (refer to 
a small bump shown in Fig. 14 for example 1 reporting 
2500 NOFs) and for heterogeneous slopes it can locate 
the critical slip surface with success consuming 10,000 
NOFs. The proposed approach yields accurate results 
when maintaining the number of fitness function evalu-
ations at minimum in comparison with other optimisa-
tion techniques.

The computational time using population of 10 and 
100 is further assessed based on a Intel(R) Core(TM) 
i5-7500 CPU 3.40 GHz processors with 4.00 GB of 
installed memory (RAM). The average computing time 
is about 5  s for the population of 10 and 30 s for the 
population of 100 with 100 iterations for homogene-
ous slope. For heterogeneous slope profiles, the time 
increases to 7 s and 40 s for 100 iterations respectively.

5  Conclusions

A comprehensive state-of-the-art review of the slope 
stability using swarm intelligence techniques is pre-
sented in this paper. Additionally, from the state-of-the-
art reviews that the applications of swarm intelligence 

Fig. 13  Factor of safety for fittest antlion versus number of itera-
tions using populations of 100 and 10 for example 4

Fig. 14  Comparison of total 
number of function evalua-
tions (NOFs) of antlion optimi-
sation with other optimisation 
techniques
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techniques are discussed with emphasis on parameter 
tuning, which is drawback of several methods. For the 
comparison purposes, the ALO algorithm is successfully 
adapted to solve the slope stability problem for four 
different examples with different complexities. On the 
basis of the four case studies analysed, the algorithm 
can reach satisfactory results, and therefore, it is robust 
and in line with other evolutionary algorithms already 
applied to the same cases in the past.

The fitness function evaluations for ALO is less than 
or similar to other optimisation approaches. It has been 
observed from the present study that the fitness func-
tion zeroed in on the global minima and unlike some bio-
inspired algorithms, it requires fewer parameters to adjust. 
One of the primary advantages of ALO over other prominent 
algorithms is that it has a fairly simple mathematical struc-
ture and requires only two parameters, namely the number 
of search agents and iterations, to be adjusted. ALO used 
roulette wheel selection and elite antlion bias to select con-
trol parameter as compared with ACO, which is primarily 
driven by pheromone level updates. Therefore, compared 
with ACO, the proposed method has wider search capabili-
ties and can explore solutions by using more combinations 
of control variables. This mechanism assists ALO in coming 
out of local minimum more easily than its counterpart ACO. 
The results from numerical experiments demonstrate that 
solutions realised using ALO and TLBO have less standard 
deviation than those obtained using the existing optimisa-
tion methods. Therefore, the reviews of current study can 
be applied by various researchers and field practitioners 
for choosing a particular metaheuristic technique for their 
application.

The proposed analysis neglects the effect of pore water 
pressure as all the case study examples are analysed based 
on dry conditions (i.e. zero pore water pressure). Further-
more, stability evaluation of a slope in case of a seismic 
condition is not addressed in the paper. In the future works, 
effect of pore water pressure and earthquake forces can be 
taken into account as they have a direct effect on comput-
ing the safety factor of the slopes. Furthermore, effect of 
the number of vertical slices (current study 30 are used) on 
slopes of varying complexity and their effect on factor of 
safety can also be taken into consideration.
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