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Abstract
In this research work, we propose an algorithm which involves the coupling of a new integral transform called the Elzaki 
transform and the well-known homotopy perturbation method on the Burgers–Huxley equation which is a type of 
nonlinear advection–diffusion partial differential equation. The Burgers–Huxley equation which models reaction mecha-
nisms, diffusion transports and nerve ion propagation which is applicable in traffic flows, acoustics, turbulence theory, 
hydrodynamics and generally mechanics is the fusion of the well-known Burgers equation and the Huxley equation. We 
proffer an analytical solution in the form of a Taylor multivariate series of displacement x and time t using the proposed 
Elzaki homotopy transformation perturbation method (EHTPM) to three cases of the Burgers–Huxley equation. This solu-
tion converges rapidly to a closed form which is the same as the exact solutions obtained using the normal analytical 
methods from the existing literatures. The exact results and that of our proposed EHTPM when compared via tables and 
3D plots show an excellent agreement devoid of errors.

Keywords  Nonlinear partial differential equations (PDE) · Advection–diffusion equation · Burgers–Huxley equation · 
Elzaki transform · Homotopy perturbation method · Acoustics
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1  Introduction

A partial differential equation (PDE) is an equation involv-
ing functions of more than one independent variable and 
their partial derivatives. They occur in many applications 
and play a big role in engineering and applied sciences [1]. 
For instance, a second-order partial differential equation 
for the function u(x, y) is F

(
x, y, u, ux , uy , uxx , uyy , uxy

)
= 0 

where the function F is given. An equation is said to be 
linear if the unknown function and its derivatives are lin-
ear in F.

An example of a first-order linear equation is

where the functions a, b, c and f  are given. Contrary to this, 
the equation is nonlinear. Nonlinear equations are equa-
tions with nonlinear terms.

Nonlinear partial differential equation (NPDE) has been 
widely studied by numerous researchers over the years 
and has become ubiquitous in nature [2–8]; it can be clas-
sified into integrable and non-integrable.

The integrable equations are those whose behaviour is 
determined by their initial conditions and, as a matter of 
fact, can be solved by integrating them from those initial 
conditions. However, some nonlinear PDEs are integra-
ble after some symbolic transformation. These equations 
have numerous exact solutions being constructed to them 

(1)a(x, y)ux + b(x, y)uy + c(x, y)u = f (x, y)
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but, however, still need the attention of mathematicians 
as there is no single best method for a model/problem.

The preference of a method to another lies in the rapid 
convergence to exact results, computational stress and 
simplicity of the method. However, some methods can 
perform better on some models than others due to the 
nonlinearity of the model and the radius of convergence of 
such method. Necdet Bildik and some other authors but-
tressed this based on their convergence analysis on some 
iterative methods [9, 10].

Amongst these integrable equations are the Benja-
min–Ono equation relevant in internal waves in deep 
water, nonlinear Schrödinger equation applicable in 
optics and water waves, Kadomtsev–Petviashvili equa-
tion applied in shallow water waves, Korteweg–de Vries 
(KdV) equation applicable in shallow waves models, the 
sine–Gordon equation applicable in solitions and quan-
tum field theory and so on [11].

On the contrary, non-integrable equations, viz. the Gin-
zburg–Landau equation applied in the theory of conduc-
tivity, Fisher’s equation applied in genetic propagation, 
Burgers–Huxley equation applicable in advection–diffu-
sion models and so on, require special attention, methods 
and constructive algorithm in order to obtain their exact 
solution. They are known to have few or no exact solutions.

However, just like the integrable equations, there are 
some numerous remarkable methods which are used to 
obtain exact and explicit solutions of non-integrable PDEs. 
The most remarkable ones are the Jacobi elliptic function 
method, the tanh function method, Weierstrass elliptic 
function method, Hirota bilinear method [12] to mention 
a few.

Exact solution rarely exists generally for nonlinear dif-
ferential equations (ordinary and partial), and as a result 
of this, efforts have been made over the years in construct-
ing semi-analytical and numerical means or schemes/algo-
rithms for solving them, viz. Taylor collocation method [13, 
14], Euler collocation methods [15], wavelet collocation 
methods [5, 6, 16], iterative differential quadrature method 
(IDQ) [17], variational iteration method [7, 18, 19], homot-
opy perturbation method [20–23], perturbation iteration 
method [10, 24], Adomian decomposition method [9], new 
iterative method [25] and homotopy analysis method [26, 
27].

The investigation and development of travelling wave 
solution play a prominent role in nonlinear science, and 
numerous soliton scientists have also endeavoured to seek 
the solitary wave solution of numerous models including 
the Burgers–Huxley equation [28–31].

In quest of seeking exact solutions for model/equations, 
mathematicians have also come up with hybrid methods 
(coupling two distinct methods) to obtain exact solutions 
of some models, viz. Sumudu decomposition method 

[32–34], homotopy perturbation transformation method 
[35, 36], homotopy variational iteration method [37], Elzaki 
differential transform [38], Elzaki projected differential 
transform [39, 40], Elzaki homotopy transformation per-
turbation method [41–43], Laplace Adomian decomposi-
tion method [44] and Laplace variational iteration method 
[45–47].

Very recently, Ziane et al. have coupled Elzaki integral 
transform and variational iteration method on partial dif-
ferential equations of fractional order [48]; Dhunde and 
Waghmare [4] have coupled the double Laplace transform 
with the new iterative method on nonlinear partial differ-
ential equations; Jena and Chakraverty [43] have coupled 
the Elzaki transform with the homotopy perturbation on 
time-fractional Navier–Stokes equation of which a series 
solution which converges rapidly to the exact solutions 
of the problems was obtained using these proposed 
methods.

In this paper, we applied an unprecedented hybrid 
method that involves a new integral transform (Elzaki 
transform) which is a modification of Sumudu integral 
transform with the well-known homotopy perturbation 
method on the Burgers–Huxley equation of three cases as 
a result of variation of equation parameters. The solution 
of these three cases is found to be an infinite multivariate 
Taylor series which rapidly converges to the exact solution 
of the problem.

The Elzaki transform was invented by Elzaki [49] and 
was derived from the classical Fourier integral and a modi-
fication of the existing Sumudu transform. Based on the 
mathematical simplicity of the Elzaki transform, it facili-
tates the process of solving ordinary and partial differen-
tial equations in the time domain [50–52]. The transform 
is defined by

Here, f (t) is a function of time.
The idea of homotopy perturbation (HPM) [53] was 

introduced by Ji-Huan He, who merged the traditional 
perturbation technique with the homotopy in topology 
by constructing a convex homotopy, considering the 
unknown function to a be an infinite series of an imbed-
ding parameter p ∈ [0, 1](perturbing the unknown func-
tion), and then obtain the solution of the problem in series 
form converging to the exact solution. He used it to solve 
strongly nonlinear problems in applied sciences, such as 
the Duffing equations and the eardrum equations [20–22, 
53].

Unlike nonlinear PDEs, linear partial differential equa-
tions could be solved analytically and by using integral 
transforms like the Elzaki transform [50], Laplace, Sumudu 

T (v) = v ∫
∞

0

f (t)e−
t

v dt
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[54, 55] and Fourier transforms. But due to the complexity 
caused by the nonlinear terms, these integral transforms 
are totally incapable of solving nonlinear partial differen-
tial equations. In this case, we introduce a semi-analytical 
method (homotopy perturbation method) so as to handle 
the nonlinear terms (Fig. 1). 

In addition, the Elzaki transform is an analytical method 
which provides exact solutions, while the homotopy per-
turbation is a semi-analytical method which provides 
approximate solutions. As a result, coupling these two 
methods would definitely yield a result extremely simi-
lar and highly convergent to the exact solution of the 
problem.

The huge advantage of this algorithm using Elzaki 
transform lies in the capability of combining two pow-
erful methods with the need of only initial conditions 
for obtaining an exact solution of the nonlinear advec-
tion–diffusion equation (Fig. 2).

2 � The Burgers–Huxley equation

The Burgers–Huxley equation is a nonlinear partial dif-
ferential equation which describes a wide class of physi-
cal nonlinear phenomena. It describes the interaction 
between reaction mechanisms, convection effects and 

diffusion transports. It finds its application in many fields 
such as biology, nonlinear acoustics, metallurgy, chem-
istry, combustion, mathematics and engineering by Sat-
suma et al. [56]. The Burgers–Huxley equation came into 
existence due to the combined efforts of Bateman [57, 58], 
Burgers [59] for the Burgers equation and also Hodgkin 
and Huxley [60] for the Huxley equation.

The generalized form of the Burgers–Huxley equation 
is given as (Fig. 3):

0 ≤ x ≤ 1, t ≥ 0; with the initial condition of Eq. (2) is sub-
jected to

where

� ≥ 0 is the reaction coefficient, 𝛼 > 0 is the advection 
coefficient, � and � are real constants with � ∈ (0, 1) and 
𝛿 > 0 , uxx is the diffusive term, u�ux is the advection term, 
while u

(
1 − u�

)(
u� − �

)
 is the reaction term.

(2)ut = uxx − �u�ux + �u
(
1 − u�

)(
u� − �

)

(3)u(x, 0) =
[
�

2
+

�

2
tanh (��x)

] 1

�

(4)� =
�

�√
�2 + 4�(1 + �) − �

�

4(1 + �)

Fig. 1   Solution plots for the closed form in Eq. (47) and the travel-
ling wave solution in Eq. (48) for � = 0, � = 1, � = 1 and � = 1 (Case 
1)

Fig. 2   Solution plots of the multivariate series obtained in Eq. (45) 
using the proposed Elzaki homotopy transformation perturbation 
method (EHTPM) (Case 1)
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The above nonlinear partial differential Eq. (2) models 
the interaction between reaction mechanisms, convection 
effects and diffusion transports [56].

When � = 0 and � = 1 , then Eq. (2) is reduced to the 
‘Huxley’s equation’. This describes the nerve propagation 
in nerve fibres and wall motion in liquid crystals [28].

When � = 0 and � = 1 , Eq. (2) reduces to ‘Burgers equa-
tion’. This describes the far field of wave propagation in 
nonlinear dissipative system [58].

Several attempts have been made by researchers to 
obtain the exact or analytical and numerical solution of 
the Burgers–Huxley equation over time.

An analytical solution was proffered to a fractional 
Burgers–Huxley equation using the residual power series 
method by Freihat [61], and an exact solution and special 
form of the Burgers–Huxley equation were obtained using 
the 

(
G�∕G

)
 expansion method by Zhu [62]. Nourazar et al. 

[63] obtained the exact solution of the Burgers–Huxley 
equation using the homotopy perturbation method, Mittal 
and Tripathi [64] obtained numerical solutions of the gen-
eralized Burgers–Fisher and generalized Burgers–Huxley 
equations using the collocation of cubic B-splines, Kamboj 
and Sharma [65] through iteration obtained an analytical 
solution to a singularly perturbed Burgers–Huxley equa-
tion, and Feng et al. [66] obtained a travelling wave solu-
tion to the Burgers–Huxley equation (Fig. 4).

A solitary wave solution was obtained for the gener-
alized Burgers–Huxley equation by El-Danaf [29], while 
Tomasiello [17] obtained a numerical solution of the Burg-
ers–Huxley equation using the iterative differential quad-
rature (IDQ) method (Fig. 5).

Furthermore, a travelling wave solution of the gener-
alized Burgers–Huxley equation was obtained by Deng 
[67], while Hashim et al. [9] solved the generalized Burg-
ers–Huxley equation using the Adomian decomposition 
method and so on (Fig. 6).

3 � Elzaki transform

The Elzaki transform is a semi-infinite convergent integral 
of the form.

Or

(5)T (v) = v ∫
∞

0

f (t)e−
t

v dt

(6)T (v) = v2 ∫
∞

0

f (vt)e−tdt

Fig. 3   Solution plots for the closed form in Eq.  (65) and the trav-
elling wave solution in Eq.  (66) for � = −1, � = 1, � = 1 and � = 1 
(Case 2)

Fig. 4   Solution plots of the multivariate series obtained in Eq. (63) 
using the proposed Elzaki homotopy transformation perturbation 
method (EHTPM) (Case 2)
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The function f  is of exponential order in the set 

(7)A = {f (t) ∶϶ m, k1, k2,> 0, |f (t)| < Me
|t|
kj

If

then

It is called modified Sumudu transform invented/intro-
duced by Tarig M. Elzaki.

By proceeding, we have the transform of derivatives 
using integration by parts:

Higher-order derivatives with respect to t  can be 
obtained by mathematical induction as:

4 � Homotopy perturbation method

The homotopy perturbation method was proposed by He 
[53] who is a Chinese professor of mathematics in 1998; he 
was able to couple the traditional perturbation method 
with the homotopy in topology of which he employed in 
solving some nonlinear breath taking problems.

Homotopy is a fundamental concept in topology and 
differential geometry [68]. The concept of homotopy can 
be traced back to rules of Poincare (1854–1982) [69], a 
French mathematician.

Shortly speaking, a homotopy describes a kind of con-
tinuous variation or deformation in mathematics.

t ∈ (−1)jX [0,∞]}

E{f (t)} = T (v) = v ∫
∞

0

f (t)e−
t

v dt

(8)E

[
�f

�t

]
=

1

v
T (x, v) − vf (v, 0)

(9)E

[
�2f

�t2

]
=

1

v2
T (x, v) − f (x, 0) − v

�f (x, 0)

�t

(10)E

[
�f

�x

]
= T

�

(x, v) =
dT (X , 0)

dx

(11)E

[
�f

�x

]
= T ��(x, v) =

d
2T (X , 0)

dx2

(12)E

[
�nf (x.t)

�tn

]
⇒

E
[
f (x, t)

]
vn

−

n−1∑
k=0

v2−n+k
�kf (x, 0)

�tk

Fig. 5   Solution plots for the closed form in Eq.  (82) and the trav-
elling wave solution in Eq.  (83) for � = −2, � = 1, � = 3 and � = 1 
(Case 3)

Fig. 6   Solution plots of the multivariate series obtained in Eq. (80) 
using the proposed Elzaki homotopy transformation perturbation 
method (EHTPM) (Case 3)
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For examples, a circle can be continuously deformed 
into the square or an ellipse; also, the shape of a coffee cup 
can be continuously deformed into a doughnut.

However, the shape of a coffee cup cannot be distorted 
continuously into the shape of a football; essentially, a 
homotopy defines a connection between different things 
in mathematics, which contains some characteristics in 
some aspects [70].

We consider two topological spaces (X , �1) and (Y , �2) 
of which f and g are continuous maps of the spaces X 
and Y, F being homotopic to g means a deformation 
of f into g, and if (X , �1) and (Y , �2) are continuous, the 
∀�1 ∈ X∃f−1(�2) ∈ Y  . (This is surjection.)

It is said that f  is homotopic to g , if there is a continu-
ous map.

such that

with the unit interval [0, 1]∀x ∈ X

Then this map is called homotopy between f  and g

4.1 � Illustration of the method

For the homotopy perturbation method, we consider a 
general equation of the type

where D is any differential operator. A convex homotopy 
(deformation) H(u, p) is defined such that

F (u) is a fundamental operator with known solution u0 
which can be obtained easily.

It is clear that H(u, p) = 0 since D(u) = 0 and H(u, p) is a 
convex homotopy on D(u).

For the convex homotopy H(u, p) , we have that 
H(u, p) = F(u),H(u, 1) = D(u).

This monotonic changing process of p from zero to 
unity ( p = 1 ) indicates that the known solution deforms 
into the original problem D(u) = 0 where p ∈ [0, 1] is taken 
as an expanding parameter.

In this method, we first use the imbedding parameter 
‘p’ as a ‘small parameter’ and assume that the solution of 
Eq. (13) can be written as power series in P.

By setting ‘p’ to unity (p → 1) in Eq. (15), we obtained 
approximate solution of Eq. (1) to be

F ∶ X × [0, 1] → Y

f (x, 0) = f (x) And f (x, 1) = g(x)

(13)D(u) = 0

(14)H(u, p) = (1 − p)F(u) + pD(u)

(15)U = u0 + pu1 + p2u2 + p3u3 +⋯ + pnun

5 � Application of the Elzaki homotopy 
transformation perturbation method 
algorithm to the generalized Burgers–
Huxley equation

We consider the generalized nonlinear Burg-
ers–Huxley equation in (2) subjected to the initial condi-
tion u(x, 0) = f (x) , and we take the Elzaki transform as:

Recall that

By rearranging terms appropriately and multiplying 
through by v , we have:

By taking the Inverse Elzaki transform of (21), we have:

E−1
[
v2f (x)

]
 gives a new function G(x, t), ,  while 

uxx − �u�ux + �(u(1 − u�)(u� − �) is the ‘arising nonlinear 
term’ of Eq. (2).

We now apply the next method in the algorithm; this is 
the homotopy perturbation method on (23).

Let

Equation (23) becomes:

(16)U = lim
p→1

(U) = u0 + u1 + u2 +⋯ + un

(17)∴U = lim
p→1

(U) =

n∑
k=0

uk

(18)E
{
ut
}
= E

{
uxx − �u�ux + �u

(
1 − u�

)(
u� − �

)}

(19)E
{
ut
}
=

E{u(x, t)}

v
− vu(x, 0)

(20)

∴
E(u(x, t))

v
− vu(x, 0) = E

{
uxx − �u�ux + �u

(
1 − u�

)(
u� − �

)}

(21)
E{u(x, t)} = v2u(x, 0) + vE

{
uxx − �u�ux + �(u(1 − u�)(u� − �)

}

(22)

E
−1[E{u(x, t)}] = E

−1
[
v
2
f (x)

]
+ E

−1
[
vE
{
uxx − �u�ux + �(u(1 − u

�)(u� − �)
}]

(23)
∴ u(x, t) = G(x, t) + E−1

[
vE
{
uxx − �u�ux + �(u(1 − u�)(u� − �)

}]

(24)u(x, t) =

∞∑
n=0

pnun(x, t)
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The arising nonlinear terms

would be decomposed into the a polynomial denoted by ∑∞

n=0
pnHn(n)

Then,

∑∞

n=0
pnHn(n) is a polynomial in terms of the imbedding 

parameter p ∈ [0, 1] called the He’s polynomial which rep-
resents the nonlinear terms. This polynomial can be calcu-
lated by the formula

where N is the nonlinear operator.
Then Eq. (25) becomes:

By opening up the series in (28), we obtain:

By comparing the coefficients from the powers of p , we 
have

(25)
∞�
n=0

pnun(x, t) = G(x, t) + p

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vE

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
∞�
n=0

pnun

�

xx

− �

�
∞�
n=0

pnun

��� ∞�
n=0

pnun

�

x

+ �

�
∞�
n=0

pnun

�⎡⎢⎢⎣
1 −

�
∞�
n=0

pnun

��⎤⎥⎥⎦

⎡⎢⎢⎣

�
∞�
n=0

pnun

��

− �

⎤⎥⎥⎦

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�
∞�
n=0

pnun

�

xx

− �

�
∞�
n=0

pnun

��� ∞�
n=0

pnun

�

x

+ �

�
∞�
n=0

pnun

�⎡
⎢⎢⎣
1 −

�
∞�
n=0

pnun

��⎤
⎥⎥⎦

⎡
⎢⎢⎣

�
∞�
n=0

pnun

��

− �

⎤
⎥⎥⎦

(26)

⎡⎢⎢⎢⎢⎢⎢⎣

�
∞�
n=0

pnun

�

xx

− �

�
∞�
n=0

pnun

��� ∞�
n=0

pnun

�

x

+ �

�
∞�
n=0

pnun

�⎡⎢⎢⎣
1 −

�
∞�
n=0

pnun

��⎤⎥⎥⎦

⎡⎢⎢⎣

�
∞�
n=0

pnun

��

− �

⎤⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

=

�
∞�
n=0

pnHn(n)

�

(27)Hn(n) =
1

n!

�n

�pn
N

(
n∑

k=0

pkvk

)

p=0

, n = 0, 1, 2,…

(28)
∞∑
n=0

pnun(x, t) = G(x, t) + p

[
E−1

[
vE

[
∞∑
n=0

pnHn(u)

]]]

(29)

p0u0(x, t) + p1u1(x, t) + p2u2(x, t)

+⋯ + pnun(x, t) = G(x, t) +

[
E−1

[
vE

{
pH0(u) + p2H1(u)

+ p3H2(u) +⋯ + pn+1Hn(u)

}]]

This is the coupling of the Elzaki transform and the 
homotopy perturbation using the He’s polynomial [41, 
42] on the Burgers–Huxley equation

Having obtained u0(x, t), u1(x, t), u2(x, t) , etc. up to 
desired iteration, then the solution according to homotopy 
(p → 1) is given by

(30)

p0 ∶ u0(x, t) = G(x, t)

p1 ∶ u1(x, t) = E−1
[
v2E

[
H0(u)

]]
p2 ∶ u2(x, t) = E−1

[
v2E

[
H1(u)

]]
p3 ∶ u3(x, t) = E−1

[
v2E

[
H2(u)

]]
⋮

p3 ∶ un(x, t) = E−1
[
v2E

[
Hn−1(u)

]]

(31)U(x, t) = u0(x, t) + u1(x, t) + u2(x, t) +⋯ + un(x, t)
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Equation (31) results in a Taylor’s series of two variables 
of which its close form can be determined.

6 � Application of algorithm

6.1 � Example 1 (Case 1)

In this case, we examine the Burgers–Huxley equation for 
� = 0, � = 1, � = 1, � = 1 given by (Table 1)

(32)ut = uxx + u(1 − u)(u − 1)

Subject to the initial condition

Solution Algorithm

By taking the Elzaki transform of (32)

By taking the inverse Elzaki transform of (35)

We now apply the homotopy perturbation method as 
the next algorithm to Eq. (38).

Let

By constructing a homotopy on (38), Eq. (38) becomes:

The arising nonlinear term in (39) is denoted by ∑∞

n=0
pnHn(n)

(33)u(x, 0) =
e

√
2

4
x

e

√
2

4
x + e−

√
2

4
x

(34)E(ut) = E(uxx) + E(u(1 − u)(u − 1))

E
{
ut
}
=

E{u(x, t)}

v
− vu(x, 0)

(35)E{u(x, t)} = v2u(x, 0) + vE
{
uxx + u(1 − u)(u − 1)

}

(36)
E−1[E[u(x, t)]] = E−1[v2u(x, 0)] + E−1

[
vE
{
uxx + u(1 − u)(u − 1)

}]

(37)∴ u(x, t) = u(x, 0) + E−1
[
vE
{
uxx + u(1 − u)(u − 1)

}]

(38)

∴ u(x, t) =
e

√
2

4
x

e

√
2

4
x + e

−

√
2

4
x

+ E−1[vE[uxx + u(1 − u)(u − 1)]]

u(x, t) =

∞∑
n=0

pnun(x, t)

(39)u(x, t) =
e
−

x

4

e
x

4 + e
−

x

4

+ p

⎡
⎢⎢⎢⎢⎢⎣

E−1

⎡
⎢⎢⎢⎢⎢⎣

vE

⎡
⎢⎢⎢⎢⎢⎣

�
∞�
n=0

pnun

�

xx

+

�
∞�
n=0

pnun

��
∞�
n=0

pnun

�

x

+

�
∞�
n=0

pnun

��
1 −

�
∞�
n=0

pnun

����
∞�
n=0

pnun

�
− 1

�

⎤
⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

(40)∴

�
∞�
n=0

pnHn(n)

�
=

⎡⎢⎢⎢⎣

�
∞∑
n=0

pnun(x, t)

�

xx

+

�
∞∑
n=0

pnun(x, t)

��
1 −

�
∞∑
n=0

pnun(x, t)

����
∞∑
n=0

pnun(x, t)

�
− 1

�
⎤⎥⎥⎥⎦

Table 1   Case 1

We present the results for Case 1 at x = 1, x = 2, x = 3 for each 
value of t = 0.1, 0.2, 0.3, 0.4, 0.5 for � = 1, � = 0, � = 1, � = 1

t EXACT​ EHTPM ERROR = |EXACT-
EHTPM|

x = 1 0.1 0.6586101677 0.6586101685 0.0000000008
0.2 0.6472805375 0.6472805381 0.0000000006
0.3 0.6357828413 0.6357828418 0.0000000005
0.4 0.6241279918 0.6241279926 0.0000000008
0.5 0.6123276001 0.6123276008 0.0000000007

x = 2 0.1 0.7964436586 0.7964436604 0.0000000018
0.2 0.7882173830 0.7882173813 0.0000000017
0.3 0.7797505961 0.7797505954 0.0000000007
0.4 0.7710436411 0.7710436401 0.0000000001
0.5 0.7620974978 0.7620974995 0.0000000017

x = 3 0.1 0.8880842585 0.8880842583 0.0000000002
0.2 0.8830174664 0.8830174663 0.0000000001
0.3 0.8777528603 0.8777528605 0.0000000002
0.4 0.8722855969 0.8722855969 0.0000000000
0.5 0.8666109785 0.8666109781 0.0000000004
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By replacing (40) into (39) and inserting initial condi-
tion, we have:

The first few He’s polynomials from the above com-
puted are

By comparing the powers of p in Eq. (41), we have

Solving (43) accordingly, we obtain the respective solu-
tions of the equation as:

From Eq. (43),

(41)

∞�
n=0

pnun(x, t) =
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√
2

4
x

e

√
2

4
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−

√
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4
x
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∞�
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���

(42)

p0 ∶ H0(u) = u0xx − u3
0
+ 2u2

0
− u0

p1 ∶ H1(u) = u1xx − 3u2
0
u1 + 4u0u

2

2
− u1

p2 ∶ H2(u) = u2xx − 3u2
0
u2 − 3u0u

2

1
+ u2

1
+ 4u0u1 − u2

p3 ∶ H3(u) = u3xx − u3
1
− 6u0u1u2 + 4u1u2 − u3

⋮

H0(u) = −
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2

1�
e

√
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−

√
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x
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4

e

√
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4
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√
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x
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√
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√
2
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x
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1
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√
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2
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√
2

2
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�

�
e

√
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4
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4
x

�4
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(43)

p0 ∶ u0(x, t) =
e

√
2

4
x

e

√
2

4
x + e−

√
2

4
x

p1 ∶ u1(x, t) = E−1
�
vE
�
H0(u)

��
p2 ∶ u2(x, t) = E−1

�
vE
�
H1(u)

��
p3 ∶ u3(x, t) = E−1

�
vE
�
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��
⋮
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��

u0(x, t) = u(x, 0) =
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√
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4
x

e

√
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4
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−

√
2

4
x

u1(x, t) = E−1
�
vE
�
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��
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⎡
⎢⎢⎢⎢⎣
vE

⎡
⎢⎢⎢⎢⎣
−
1
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e

√
2

4
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−

√
2

4
x
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⎤
⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

is a function of x and would be factored out.

−
1

2

1�
e

√
2

4
x + e−

√
2

4
x

�2

∴ u1(x, t) = −
1

2
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e

√
2

4
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−

√
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4
x

�2
E
−1[vE[1]]

= −
1

2
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e

√
2

4
x + e

−

√
2

4
x

�2
E
−1
�
v
3
�

Similarly,

Then the solution to the Burgers–Huxley equation 
according to homotopy from Eq. (31) is given as

Using a computation tool, the above multivariate series 
solution converges to the closed form.

(44)
∴ u1(x, t) = −
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√
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4
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√
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4
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1

8

�
e

√
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4
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√
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4
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√
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t
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This corresponds excellently with the general solution

obtained by Wang et  al.  [28] using nonlinear 
transformations.

w h e re  � =
�(�−�)

4(1+�)
 a n d  � =

√
�2 + 4�(1 + �)  fo r 

� = 0, � = 1, � = 1, � = 1

6.2 � Example 2 (Case 2)

Consider the generalized Burgers–Huxley equation in (1) 
for � = −1, � = 1, � = 1, � = 1 given by (Table 2)

(46)

u(x, t) =
1

2
+

1

2
.
e

�√
2

4
x−

t

4

�
− e

−
�√

2

4
x−

t

4

�

e

�√
2

4
x−

t

4

�
+ e

−
�√

2

4
x−

t

4

� =
1

2
+

1

2
tanh

�√
2

4
x −

t

4

�

(47)∴ u(x, t) =
1

2
+

1

2
tanh

�
1

2
√
2

�
x −

t√
2

��

(48)
u(x, t) =

[
�

2
+

�

2
tanh

{
��

(
x −

{
��

1 + �
−

(1 + � − �)(� − �)

2(1 + �)

}
t

)}]1∕�

Subject to the initial condition

Solution Algorithm

By taking the Elzaki transform of (49)

By taking the inverse Elzaki transform of (52)

We now apply the homotopy perturbation method as 
the next algorithm to Eq. (55)

Let

By constructing a homotopy on (55), Eq. (55) becomes:

(49)ut = uxx + uux + u(1 − u)(u − 1)

(50)u(x, 0) =
e
−

x

4

e
x

4 + e
−

x

4

(51)E
[
ut
]
= E

[
uxx

]
+ E

[
uux + u(1 − u)(u − 1)

]

E
{
ut
}
=

E[u(x, t)]

v
− vu(x, 0)

(52)
E{u(x, t)} = v2u(x, 0) + vE

[
uxx + uux + u(1 − u)(u − 1)

]

(53)

E
−1[E[u(x, t)]] = E

−1[v2u(x, 0)]

+ E
−1
[
vE
{
uxx + uux + u(1 − u)(u − 1)

}]

(54)
∴ u(x, t) = u(x, 0) + E−1

[
vE
[
uxx + uux + u(1 − u)(u − 1)

]]

(55)

∴ u(x, t) =
e
−

x

4

e
x

4 + e
−

x

4

+ E−1[vE[uxx + uux + u(1 − u)(u − 1)]]

u(x, t) =

∞∑
n=0

pnun(x, t),

(56)u(x, t) =
e
−

x
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e
x

4 + e
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x
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+ p

⎡
⎢⎢⎢⎢⎢⎣
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+

�
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1 −

�
∞�
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����
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− 1

�

⎤
⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

Table 2   Case 2

We present the results for Case 2 at x = 1, x = 2, x = 3 for each 
value of t = 0.1, 0.2, 0.3, 0.4, 0.5 for � = 1, � = −1, � = 1, � = 1

t EXACT​ EHTPM ERROR = |EXACT-
EHTPM|

x = 1 0.1 0.3600839033 0.3600839027 0.0000000006
0.2 0.3429895374 0.3429895370 0.0000000004
0.3 0.3262929006 0.3262929004 0.0000000002
0.4 0.3100255188 0.3100255184 0.0000000004
0.5 0.2942149720 0.2942149717 0.0000000003

x = 2 0.1 0.25445339 0.25445339 0.00000000
0.2 0.24048908 0.24048907 0.00000001
0.3 0.22705774 0.22705772 0.00000002
0.4 0.21416502 0.21416445 0.00000057
0.5 0.20181322 0.20181132 0.00000019

x = 3 0.1 0.17150477 0.17150477 0.00000000
0.2 0.16110895 0.16110894 0.00000001
0.3 0.15122825 0.15122814 0.00000011
0.4 0.14185047 0.14185049 0.00000002
0.5 0.13296224 0.13296217 0.00000007
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The arising nonlinear term in (56) is denoted by ∑∞

n=0
pnHn(n)

By replacing (57) into (56) and inserting initial condi-
tion, we have:

The first few He’s polynomials from the above com-
puted are

By comparing the powers of p in Eq. (58), we have

Solving (61) accordingly, we obtain the respective solu-
tions of the equation as:

(57)∴

�
∞�
n=0

pnHn(n)

�
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0
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0
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⋮
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[
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[
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[
H2(u)

]]
⋮

pn ∶ un(x, t) = E−1
[
vE
[
Hn−1(u)

]]

From Eq. (61),

is a function of x and would be factored out.

Similarly,

Then the solution to the Burgers–Huxley equation 
according to homotopy from Eq. (31) is given as
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Using a computation tool, the above multivariate series 
solution converges to the closed form.

This corresponds excellently with the general solution
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obtained by Wang et  al.  [28] using nonlinear 
transformations.

w h e re  � =
�(�−�)

4(1+�)
 a n d  � =

√
�2 + 4�(1 + �)  fo r 

� = −1, � = 1, � = 1, � = 1

6.3 � Example 3 (Case 3)

Consider the generalized Burgers–Huxley equation in (1) 
for � = 1, � = −2, � = 3, � = 1 given by (Table 3)

 Subject to the initial condition

Solution Algorithm

By taking the Elzaki transform of (67)

By taking the inverse Elzaki transform of (70)

(67)ut = uxx + uux + 2u(1 − u)(u − 3)

(68)u(x, 0) =
3e

−
−3(

√
3−1)
4

x

e
3(

√
3−1)
4

x + e
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(69)E(ut) = E(uxx) + E
[
uxx + uux + 2u(1 − u)(u − 3)

]

E
{
ut
}
=

E{u(x, t)}

v
− vu(x, 0)

(70)
∴ E{u(x, t)} = v2u(x, 0) + vE

[
uxx + uux + 2u(1 − u)(u − 3)

]

(71)

E
−1[E[u(x, t)]] = E

−1[v2u(x, 0)]

+ E
−1
[
vE
[
uxx + uux + 2u(1 − u)(u − 3)

]]

(72)
∴ u(x, t) = u(x, 0) + E−1

[
vE
{
uxx + uux + 2u(1 − u)(u − 3)

}]

(73)∴ u(x, t) =
3e−

−3(
√
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4

x

e
3(

√
3−1)
4

x + e
−3(

√
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4
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+ E−1[vE[uxx + uux + 2u(1 − u)(u − 3)]]

Table 3   Case 3

We present the results for Case 3 at x = 1, x = 2, x = 3 for each 
value of t = 0.1, 0.2, 0.3, 0.4, 0.5 for � = 1, � = −2, � = 3, � = 1

t EXACT​ EHTPM ERROR = |EXACT-
EHTPM|

x = 1 0.1 0.6539287 0.6539287 0.0000000
0.2 0.5668156 0.5668156 0.0000000
0.3 0.4888891 0.4888891 0.0000000
0.4 0.4198275 0.4198272 0.0000003
0.5 0.3591264 0.3591261 0.0000003

x = 2 0.1 0.2551628 0.2551628 0.0000000
0.2 0.2162743 0.2162730 0.0000013
0.3 0.1829176 0.1829124 0.0000052
0.4 0.1544203 0.1544233 0.0000003
0.5 0.1301576 0.1301578 0.0000002

x = 3 0.1 0.0902139 0.0902139 0.0000000
0.2 0.0757707 0.0757704 0.0000003
0.3 0.0635844 0.0635842 0.0000002
0.4 0.0533306 0.0533304 0.0000002
0.5 0.0447017 0.0447014 0.0000003
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We now apply the homotopy perturbation method as 
the next algorithm to Eq. (72)

Let

By constructing a homotopy on (73) and replacing 
u(x, t) , Eq. (73) becomes:

The arising nonlinear terms in (74) would be denoted 
by 

∑∞

n=0
pnHn(n)

By replacing (75) into (74) and inserting initial condi-
tion, we have:

The first few He’s polynomials from the above com-
puted are

u(x, t) =
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n=0

pnun(x, t)
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By comparing the powers of p in Eq. (41), we have
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Solving (78) accordingly, we obtain the respective solu-
tions of the equation as:

From Eq. (78),
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is a function of x and would be factored out.

Similarly,

Then the solution to the Burgers–Huxley equation 
according to homotopy from Eq. (31) is given as

Using a computation tool, the above multivariate series 
solution converges to the closed form.
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This corresponds excellently with the general solution

obtained by Wang et  al.  [28] using nonlinear 
transformations.

w h e re  � =
�(�−�)

4(1+�)
 a n d  � =

√
�2 + 4�(1 + �)  fo r 

� = 1, � = −2, � = 3, � = 1

7 � Results

In this section, we present a relationship and comparison 
between the exact results and the Elzaki homotopy trans-
formation perturbation (EHTPM) results for the three cases 
of the Burgers–Huxley equation using tables and 3D-Plots.

The exact results were obtained from a general solution 
presented by Wang et al. [28] as:

where � =
�(�−�)

4(1+�)
, and � =

√
�2 + 4�(1 + �)

8 � Conclusion

We have studied the Burgers–Huxley equation of three 
cases using the Elzaki homotopy transformation pertur-
bation method (EHTPM). This method is unprecedented.
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The EHTPM results when compared to the exact 
obtained from the prominent literatures and to using 
the ordinary homotopy [28, 63] clearly show a high level 
of rapid convergence and exactness than the ordinary 
homotopy. These solutions obtained via the proposed 

EHTPM are easily interpreted as it is presented in a Tay-
lor multivariate series and closed form with a precise and 
straightforward algorithm, with no restrictions, discretiza-
tion and devoid of errors.

On this note, we strongly recommend the proposed 
EHTPM in solving models in fluid flow and fluid dynamics, 
engineering, nonlinear dynamics, acoustics, convection 
diffusion models, advection diffusion models and so on. 
In addition, this method is highly efficient enough and 
can be brought into the classroom to provide analyti-
cal solutions to equations similar to the Burgers–Huxley 
equation and other nonlinear partial differential equation 
as well.
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Appendix

Elzaki table of transform for some functions
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