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Abstract
Thermal conductivity is an important thermophysical property of nanofluids in many practical heat transfer applications. 
In this study, a novel approach is proposed to predict the thermal conductivity of nanofluids under multiple operating 
parameters. The proposed approach may be extended to be used to other thermophysical properties of nanofluids. The 
Kohonen’s self-organizing maps (SOM), as an unsupervised artificial neural network (ANN), is used to provide an accurate 
prediction tool for the problem in hand. Furthermore, SOM, similar to any ANN-based approach, can handle nonlinear 
and complex input–output relationships with high generalization ability. Comparison of the SOM predicted values with 
corresponding available theoretical results as well as experimental data implies high prediction capability of the devel-
oped approach. The proposed approach was utilized to predict thermal conductivity ratio of oxide  (Al2O3, CuO and  TiO2)/
water nanofluids under various operating conditions (nanoparticle size, temperature, and nanoparticle volume fraction).
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List of symbols
k  Thermal conductivity (W/(m K))
T   Temperature (°C)
x̄  Input vector
w̄j  Synaptic weight vector
hki  Topological neighborhood
dik  Euclidean distance
r  Thermal conductivity ratio
�  Effective width of the topological neighborhood
r̄  Position vector
�  Time constant
P  Projection matrix

Ig  Identity matrix
�  Volume fraction (%)

1 Introduction

Nanomaterials have shown promising applications in dif-
ferent engineering sectors [1–3]. Adding nanoparticles 
(1–100 nm) into a base fluid in heating and cooling pro-
cesses is one of the methods to increase the overall heat 
transfer coefficient between the fluid and the surrounding 
surfaces [4–6]. The main reason of this phenomenon is the 
significant increasing of the thermal conductivity of the 
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nanofluid (with nanoparticles) compared with the base 
fluid (without nanoparticles) [7–11]. Effects of different 
parameters, such as temperature, volume fraction, particle 
shape and particle size) on the thermal conductivity ratio 
(TCR) of the nanofluid and that of its base fluid studied in 
many articles [12–14]. Thermophysical properties of dif-
ferent nanofluids types have been investigated including 
different nanoparticles types such as CuO [15],  TiO2 [16], 
 Fe3O4 [17],  Al2O3 [18], and Ag [19] as well as different base 
fluid types such as water [20] and ethylene glycol [21].

Over the last three decades, nanofluids have attracted 
more and more attention. The main driving force for nano-
fluids research lies in a wide range of applications [22–25].

Various theoretical and experimental studies have been 
conducted on enhancement and prediction of the TCR of 
different types of nanofluids. The first theoretical investiga-
tion of the TCR can be traced back by Maxwell [26]. In this 
pioneering work, Maxwell presented a general equation 
to predict the thermal conductivity of dilute suspensions 
with micro particles. Then, several convenient and com-
pact analytical and empirical equations for predicting TCR 
of nanofluids have been presented in the literature [27].

Available methods of measuring nanofluids thermal 
conductivity experimentally, is too costly and time-con-
suming task. Furthermore, the presented empirical and 
theoretical correlations in the literature are reliable for 
some operating parameters with limited ranges. Therefore, 
due to the nonlinear behavior the thermal conductivity, 
determining a practical correlation of it as a function of 
multiple operating parameters is often complicated and 
sometimes impossible. So, the application of intelligent 
systems based techniques such as ANNs was proposed 
by some researchers. ANNs show very important features 
such as generalization, mapping capabilities, fault toler-
ance, robustness, and high speed data processing. They 
also have the ability to learn by examples and detect 
complex inherent nonlinear relationships between the 
inputs and the outputs. ANN may be used as an excellent 
alternative to numerical and analytical based approaches 
without involving in solving complex mathematical mod-
els [28–31]. Hence, ANN is used as powerful tool to solve 
complex engineering problems in different real-world 
applications with a significant reduction in cost and time 
[32–38].

Ahmadloo et al. [39] presented a 5-input multi-layer 
perception (MLP) as an ANN model for the estimation of 
the TCR of various nanofluids. Fifteen nanofluids with dif-
ferent types of nanoparticles and base fluids were used to 
develop the MLP model using experimental data reported 
in the literature. Ariana et al. [40] presented a study to 
develop and validate MLP model to estimate the TCR of 
alumina/water nanofluids as a function of volume fraction, 
temperature and diameter of the nanoparticle. Papari et al. 

[41] employed MLP model to estimate TCR of nanofluids 
consisting of multi-walled carbon nanotubes suspended 
in different base fluids. Hemmat et al. [42] investigated 
the efficiency of MLP neural network in modeling TCR of 
water/EG (40–60%) nanofluid with  Al2O3 nanoparticles. 
The measurement of nanofluid thermal conductivity at 
different volume fractions and temperatures was taken 
using KD2 Pro.. Longo et al. [43] presented a 3-input and 
a 4-input MLP ANN for predicting the TCR of oxide–water 
nanofluids. Both models employed for investigating the 
effect of nanoparticle thermal conductivity, nanoparticle 
volume fraction, and temperature, whereas the 4-input 
MLP model also considers the effect of the average size of 
nanoparticle cluster. Hemmat et al. [44] modeled the TCR 
of  Al2O3–water nanofluid at different solid volume frac-
tions and temperatures by ANN.

All the above-mentioned studies focused on predic-
tion of the TCR of nanofluids using a limited number of 
input parameters and only one unknown target parameter 
(TCR). In this study, a general approach is proposed to pre-
dict multiple unknown parameters including TCR based 
on any number of known input parameters. To check the 
validity of the approach, it is applied to three different 
nanofluids using both theoretical and experimental data 
available in literature.

2  Self‑organizing approach

In this article, self -organizing maps (SOM), as one an 
unsupervised ANN, is used to predict the TCR of nano-
fluids based on both theoretical and experimental litera-
ture data. As other ANNs approaches, SOM shows many 
important features such as generalization, data explora-
tion, mapping capabilities, robustness, fault tolerance, 
and high speed data processing. Additionally, they have 
the ability to detect complex nonlinear relationships 
between the outputs and the inputs. Once the training 
process is accomplished, SOM can be utilized to predict 
the unknown outputs which are not used during training 
process. SOM is a powerful tool that used to convert the 
complex relationships into simple relationships. It is used 
in many engineering applications such as inverse dynamic 
control of industrial robots [45], unmanned aerial vehicle 
control [46], aircraft dynamics [47], and image processing 
[48].

SOM is formed by creating a two-dimensional network 
consists of many interconnected nodes Fig. 1; the two-
dimensional network is the common used arrangement 
of the output neurons. First, the synaptic weight vector 
for each node (neuron) in the map is initialized by assign-
ing them proper values selected randomly from the train-
ing data using the principal component initialization to 
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achieve exact reproducibility of the obtained results [49]. 
Secondly, a random selected input vector from the input 
space is presented to the network and the response of 
each node is evaluated and the one which produces the 
maximum response, as well as those adjacent to it in the 
network, are adapted so as to produce a stronger response 
to that input. After a number of iterations of each input 
pattern the system should ideally reach a state where an 
ordered image of the inputs stored in the network. More 
details about the training process of the SOM as summa-
rized here:

2.1  Training algorithm

At each iteration, the value of a predefined discriminant 
function for each node is calculated using an input vec-
tor chosen randomly from the training dataset. The node 
that has the largest value of the discriminant function, at 
each iteration, is stated as the winner of the competition 
process [50, 51].

Let x̄ (with m space dimension) denotes input vector 
selected randomly from the input domain

The vector of synaptic weight (reference vector) of each 
node in the output layer has the same dimension of the 
input space ( m ). Let the synaptic weight vector of a node 
j be denoted by

(1)x̄ =
[
x1 x2 … xm

]T

where l  is the number of nodes in the map. To determine 
the best match node (BMN) of x̄ that has a synaptic weight 
of w̄j , the algorithm computes the inner products w̄T

j
x̄ for 

j = 1, 2,… , l , then the node with the leading inner prod-
uct value is selected as BMN.

The best matching condition, w̄T
j
x̄ is maximized, is 

expressed mathematically as Euclidean distance minimiza-
tion between x̄ and w̄j . If i(x̄) defines the BMN for x̄ , i(x̄) 
could be computed by [50]

The BMN locates of a topological neighborhood of 
cooperating nodes on the map. Then, more nodes sur-
rounding the BMN are adjusted. Mathematically, let hki 
denotes the topological neighborhood centered on the 
wining node i  , and k denotes a typical node of a set of 
excited (cooperating) nodes around wining node i  . The 
distance between wining node i  and excited cooperating 
k is defined by dik . Then, the topological neighborhood 
hki is defined as a function of the distance dik , such that it 
satisfies two different conditions:

1. hki has a peak value at the BMN i for which the distance 
dik is diminished; in other words, it is symmetric about 
dik = 0

(2)w̄j =
[
w1 w2 … wm

]T
, j = 1, 2,… , l

(3)i(x̄) = argmin
‖‖‖x̄ − w̄j

‖‖‖, j = 1, 2,… , l

Fig. 1  SOM network architec-
ture
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2. The topological neighborhood hki amplitude decreases 
monotonically with increasing lateral distance dik , 
decaying to zero for dik approaches infinity; this is an 
important condition to obtain a better convergence.

A typical choice of hki that fulfills the aforementioned 
conditions is the well-known Gaussian function [50]

which is independent of the BMN location. Where � is a 
parameter defines the effective width of the topological 
neighborhood. It measures the degree of participation 
in the learning process between the BMN and its excited 
neighbors.

The lateral distance dik between winning neuron i  and 
excited neuron k is defined as [52]

where the vector r̄k defines the position of excited node k 
and r̄i defines the position of winning node i .

In addition, the topological neighborhood size shrinks 
with time based on the following exponential decay 
function [52]

where �o is the initial value of � and is equal to the lat-
tice radius, n is the discrete time parameter and � is a time 
constant through the entire learning process which may 
be evaluated from [52]

By definition, for unsupervised and self-organizing 
ANN, w̄j of neuron j should be adjusted according to 
its relation to the input vector x̄ ; namely, w̄j is changed 
towards the input vector x̄ . The synaptic weight vectors 
of all nodes are updated according to the following algo-
rithm is [53]

where �(n) denotes the learning rate which decayed expo-
nentially and evaluated by

where �o is the initial learning rate and be chosen by expe-
rience to be less than 0.5 and � is a time constant.

These training procedures are repeated using a ran-
dom selected input vector at each step to ensure that 
every input vector has been selected as an input pattern. 

(4)hki = e

(
d2
ik

2�2

)

(5)d2
ik
= ‖‖r̄k − r̄i

‖‖2

(6)� = �oe
−

n

�

(7)� = 1000∕log(�o)

(8)w̄j(n + 1) = w̄j(n) + 𝛼(n)hki(n)(x̄ − w̄j(n))

(9)�(n) = �oe

(
−

n

�

)

It ensures the good formulation of feature areas on the 
lattice (map). Termination of the training process takes 
place after passing pre-specified number of training 
epochs.

2.2  SOM offline learning

Offline learning of SOM is accomplished using training 
data found in the literature according to the procedures 
described in the previous sections. The training vector is 
comprised of the nanofluid code ( �ij ); where � is the code 
of the nanofluid number, i  , i = 1, 2,… ,m , m is the num-
ber nanofluids, j = 1, 2,… , n , and n is the total number of 
the experimental data, �ij is the volume fraction of nano-
fluid i  at instant j , Tij the accordance temperature at each 
experiment, dij is the nanoparticle diameter, and rij is the 
TCR between the nanofluid and base fluid, then the result-
ant vector will be

2.3  SOM online testing

After the off-line learning of the SOM, the trained SOM 
is tested online. TCR, at least, is the unknown parameter, 
while nanofluid code, volume fraction, temperature and 
nanoparticles diameters are the known parameters. SOM is 
provided by a subspace of the input vector to compute the 
target output. This can be accomplished by using a projec-
tion matrix defined in Eq. (11) [54] that pre-multiplied by 
the input vector and defined as:

where Id denotes the identity matrix. Then the input vector 
xkj is pre-multiplied by the projection matrix P to get the 
new input vector x

′

kj

It worthy mentioned that the minimization of the 
Euclidean distance will be calculated between the modi-
fied input vector x

′

ij
 and the modified weight vectors Pwj.

To get the TCR, the winning node output weight vector 
wj is pre-multiplied the difference between the projection 
matrix and its corresponding identity matrix (I − P) . Then 
the required subspace of the weight vector w

′

j
 which rep-

(10)xij =
[
�ij �ij Tij dij rij

]

(11)P =

⎡⎢⎢⎢⎣

Id 0 … 0

0 0 … …

… … … 0

0 … 0 0

⎤⎥⎥⎥⎦

(12)
x

�

ij
= P[xij]

T

=
[
�ij �ij Tij dij 0

]T
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resents the required heat fluxes and their position is cal-
culated as follows

2.4  SOM quality estimation

Herein, the quantization error Qe as a well-known crite-
rion to investigate the map resolution of the SOM [55], is 
introduced to represent the SOM fitting to a given training 
data. The quantization error is evaluated by calculating the 
average distance between the input training vectors and 
the corresponding BMN’s. For any given training dataset, 
the quantization error can be simply reduced by increas-
ing the number of map nodes, thus the training data are 
distributed more sparsely inside the map. The error of 
quantization is computed by:

where N , wxij
 , and xij denote the number of the training 

datasets, the BMN, the input vector, respectively. Our goal 
is to decrease the Qe as much as possible (may be this is 
constrained by the available commercial computing 
hardware).

3  Results and discussions

In this section, two different examples will be illustrated 
to demonstrate the validity of the proposed method to 
predict the TCR for three types of water based nanofluids 
using three different nanoparticles, namely, aluminum 
oxide  (Al2O3), copper oxide (CuO), and titanium oxide 
 (TiO2). The goal is the prediction of the unknown TCR of 
the nanofluids based on measured data available in the 
literature. Both theoretical and experimental data are 
used as training data to the SOM. After SOM formation 
and training, unused data in the training process is used 
to test the validity of the approach.

SOM network with two-dimensional structure is used. 
The training process of the SOM is performed according 
to the procedures described in Sect. 2. The initial value 
of the learning rate �o = 0.3 and decreases gradually up 
to �f ≃ 0.01 with time constant � = 1000;while the Gauss-
ian function width parameter � starts with �o equal to the 
lattice radius and decreases gradually with time constant 
calculated according to Eq. (7). The quantization error Qe of 

(13)
w

�

j
= (I − P)wj

=
[
0 0 0 0 rij

]T

(14)Qe =
1

N

m∑
i=1

n∑
j=1

‖‖‖xij − wxij

‖‖‖

different simulation results is ranged from 0.735 to 0.956 
which is considered to be agreeable.

3.1  Example 1

In this illustrated example we will consider two types of 
nanofluids  (Al2O3/water and CuO/water). The training data 
are generated from the theoretical model developed by 
[56] based on their experimental results. The main goal of 
this example, as the first step, is to investigate the validity 
of the proposed method to solve the problem understudy 
and avoiding the measuring errors which appeared during 
experiments and may affect the training process. According 
to their study, CuO and  Al2O3 nanoparticles with average 
diameters of 29 and 36 nm, respectively, were mixed with 
water at volume fractions of 2%, 4%, 6%, and 10% and the 
experiments carried out at temperatures ranging from 27.5 
to 34.7 °C. The empirical formulas of the TCR as a function 
in the volume fraction and the temperature for  Al2O3/water 
and CuO/water nanofluids are given by:

where r , � , and T  denote the TCR, volume fraction and 
temperature in Celsius, respectively; and the subscripts A 
and B are used for  Al2O3/water and CuO/water nanofluids, 
respectively.

For both nanofluids, the training data was taken at vol-
ume fraction ranged from 2 to 10% with step equal to 0.5% 
and temperature ranged from 27.5 to 32.5 °C with step equal 
to 0.5 °C with total number of data for each nanofluid equal 
to 255 as shown in Fig. 2. In this figure, CuO/water exhibits 
a better thermal conductivity ratio compared with  Al2O3/
water at all investigated conditions. However, it is worth 
to mention that CuO is unstable and is oxidized in water at 
T > 150 °C, so  Al2O3/water nanofluid is a better choice for 
high temperature applications. All the training data ele-
ments, i.e., �ij , �ij , Tij , dij , and rij , are normalized, before given 
to the SOM, to be ranged from − 1 to 1 with unitary variance 
and zero mean. So that the efficiency of the training process 
is enhanced by preventing the data dispersion to take place, 
as all input elements have the same importance regardless 
the magnitude of their values. After the learning process is 
finished, all data including the weights of SOM nodes are 
reverse-normalized.

To check the validity of the proposed method to solve 
the problem in hand, the network is tested using a new data 
which did not give to the network in the training process. 
Then, the SOM accuracy, as an estimation model, is evalu-
ated by two different error related performance criteria, i.e., 

(15)rA = 0.53785 + 0.76448 × �A + 0.01868 × TA

(16)rB = 0.69266 + 3.761088 × �B + 0.017924 × TB
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mean squared error (MSE) and mean absolute percent error 
(MAPE), between the exact (actual) and predicted values 
from the SOM which can be evaluated from the following 
relationships:

where t  is the number of test points, xexact are the exact 
values obtained from literature and xpred are the predicted 
values obtained from the SOM model.

Smaller values of MSE and MAPE indicate better perfor-
mance of the network.

Figure 3a, b shows the scatter plot of the predicted 
values obtained from the SOM model versus the exact 

(17)MSE =
1

t

t∑
i=1

(
xexact,i − xpred,i

)2

(18)MAPE =

(
1

t

t∑
i=1

|||||
xexact,i − xpred,i

xexact,i

|||||

)
× 100

values obtained from literature for  Al2O3/water and CuO/
water nanofluids, respectively. The known parameters 
fed to the network in the this test were �ij , �ij , Tij , and 
dij which picked up randomly from the literature data 
to predict the corresponding unknown rij values. It is 
observed from this figure that the obtained results are 
acceptable. The MSE for  Al2O3/water and CuO/water 
nanofluids are 9.4402e−06 and 8.2908e−05, respectively. 
While, the MAPE for  Al2O3/water and CuO/water nanoflu-
ids are 0.2354% and 0.5358%, respectively.

Figure 4a, b shows a comparative plot between the 
predicted values and the corresponding exact values 
of the TCR for  Al2O3/water and CuO/water nanofluids, 
respectively, as a function of the temperature at differ-
ent volume fractions (3.2, 5.8, and 8.4%). While, Fig. 5a, 

Fig. 2  Effect of the temperature and the volume fraction on the 
variation of TCR of: a  Al2O3/water nanofluids, b CuO/water nanoflu-
ids

Fig. 3  Predicted versus exact values of TCR over the test datasets: a 
 Al2O3/water nanofluids, b CuO/water nanofluids
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b shows a comparative plot between the predicted val-
ues and the corresponding exact values of the TCR for 
 Al2O3/water and CuO/water nanofluids, respectively, as 
a function of the volume fraction at different tempera-
ture values (26.6, 30.2, and 33.8 °C). These two figures 
demonstrate the capability of the proposed method to 
predict the target values of the TCR regardless the nature 
of the input test datasets as long as the training process 
is achieved in a correct manner with sufficient and effec-
tive training datasets.

3.2  Example 2

Herein, the proposed method will be applied to predict 
the TCR of  TiO2/water nanofluid. The SOM performance will 
be investigated using training and test datasets from the 
available experimental results in the literature as reported 
in Table 1. This table shows the thermal conductivity of 
 TiO2 reported in previous studies [57–71]. Three different 
parameters have been included in this table: particle size, 
particle volume fraction, and temperature. The training 

Fig. 4  Effect of variations of the temperature on the TCR for three 
different volume fractions and the predicted values of the pro-
posed ANN model. a  Al2O3/water nanofluids, b CuO/water nanoflu-
ids

Fig. 5  Effect of variations of the volume fraction on the TCR for 
three different temperature values and the predicted values of 
the proposed ANN model. a  Al2O3/water nanofluids, b CuO/water 
nanofluids

Table 1  Some previous studies on the thermal conductivity of  TiO2/
water nanofluid

Source Particle size (nm) Particle volume 
fraction (%)

Temperature (°C)

[71] 20–40 0. 58–9. 77 27–30
[70] 18–34 1–4 27
[69] 15 0.50–5.00 20
[57] 30–50 1–6 1–40
[58] 21 0.2–3.0 13–55
[59] 26–28 2–4 18.1–65.4
[60] 40 2.6 9.96–39.9
[61] 10–70 1–3 25
[62] 34 0.29–0.68 20
[63] 21 0.2–2 15–35
[64] 25 0.1–1 25
[65] 5–100 1–5 25
[66] 13–27 0.99–4.35 25
[67] 21 0.2–1 30–70
[68] 13–30 1–2.5 25–50
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data was taken at volume fraction ranged from 0.2 to 
9.77%, temperature ranged from 1 to 70 °C, and particle 
diameters ranged from 5 to 100 nm with total number of 
150 training vectors. After normalization of the training 
data components, i.e., �ij , Tij , dij , and rij , the data are fed 
to the network. Finally, after finishing the learning pro-
cess, all data including the weights of SOM nodes are 
reverse-normalized.

Figure 6 shows the scatter plot of the predicted val-
ues obtained from the SOM model versus the exact val-
ues found in literature  TiO2/water nanofluid. The known 
parameters fed to the network in the this test were �ij , Tij , 
and dij which picked up randomly from the literature data 
to predict the corresponding unknown rij values. The MSE 
and the MAPE for the resulted data were 5.5381e−05 and 
0.5978%, respectively.

The predicted results in this study imply that ANN may 
be used as a robust tool to predict the thermal conductiv-
ity of nanofluids. Moreover, it is recommended to apply 
different metaheurestic methods [72–76] to select the 
optimal nanofluids parameters that maximize their utili-
zation as heat transfer fluid.

4  Conclusion

A general and accurate SOM model is used to predict TCR 
of oxide  (Al2O3, CuO and  TiO2)/water nanofluids under 
various operating conditions. The network was trained 
using both theoretical and experimental data available 
in literature. The model can not only learn multiple input 
parameters, such as nanofluid type, TCR, nanoparticle size, 
temperature, nanoparticle volume fraction, but also can 

be tested using multiple unknown parameters. The maxi-
mum mean squared error (MSE) of the SOM model is only 
8.2908e−05; and the mean absolute percent error (MAPE) 
is 0.5978%. The proposed approach is accurate, fast, sim-
ple, robust, and applicable for any type of nanofluids. Fur-
thermore, it can also be readily extended to predict any 
other thermo-physical properties of the nanofluids, which 
is our future work.
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