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Abstract
At-site flood frequency analysis is a direct method of estimation of flood frequency at a particular site. The appropri-
ate selection of probability distribution and a parameter estimation method are important for at-site flood frequency 
analysis. Generalized extreme value, three-parameter log-normal, generalized logistic, Pearson type-III and Gumbel 
distributions have been considered to describe the annual maximum steam flow at five gauging sites of Torne River in 
Sweden. To estimate the parameters of distributions, maximum likelihood estimation and L-moments methods are used. 
The performance of these distributions is assessed based on goodness-of-fit tests and accuracy measures. At most sites, 
the best-fitted distributions are with LM estimation method. Finally, the most suitable distribution at each site is used to 
predict the maximum flood magnitude for different return periods.

Keywords  Flood frequency analysis · L-moments · Maximum likelihood estimation

1  Introduction

Floods are natural hazards and cause extreme damages 
throughout the world. The main reasons of floods are 
extreme rainfall, ice and snow melting, dam breakage 
and the lack of capacity of the river watercourse to con-
vey the excess water. Floods are natural phenomena which 
cause disasters like destruction of infrastructure, damages 
in environmental and agricultural lands, mortality and 
economic losses. Many frequency distribution models 
have been developed for determination of hydraulic fre-
quency, but none of the distribution models is accepted 
as a universal distribution to describe the flood frequency 
at any gauging site. The selection of a suitable distribution 
usually depends on the characteristics of available data 
at a particular site. We need to estimate the flood mag-
nitude at a particular site for various purposes including 
construction of hydraulic structures (barrages, canals, 
bridges, dams, embankments, reservoirs and spillways), 

insurance studies, planning of flood management and 
rescue operations. We come across a number of methods 
which are available in the literature for flood magnitude 
estimation, but at-site flood frequency analysis remains 
the most direct method of estimation of flood frequency 
at a particular site.

To describe the flood frequency at a particular site, 
the choice of an appropriate probability distribution and 
parameter estimation method are of immense importance. 
The probability distributions used in this study include the 
generalized extreme value (GEV) distribution, Pearson 
type-III (P3) distribution, generalized logistic (GLO) distri-
bution, Gumbel (GUM) distribution and three-parameter 
log-normal (LN3) distribution. These distributions are rec-
ommended for at-sight flood frequency analysis in various 
countries [2, 4, 24]. Furthermore, these distributions are 
most commonly traced in the hydrological literature for 
at-site and regional flood frequency analysis.

 *  Mahmood Ul Hassan, scenic555@gmail.com | 1Department of Statistics, Stockholm University, Stockholm, Sweden. 2Department 
for Education, London, UK. 3Division of Science and Technology, University of Education, Lahore, Pakistan.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1584-z&domain=pdf
http://orcid.org/0000-0003-2889-0263


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1629 | https://doi.org/10.1007/s42452-019-1584-z

Cicioni et al. [3] conducted at-site flood frequency anal-
ysis in Italy by using 107 stations. They identified LN3 and 
GEV as best-fitting distributions based on the Kolmogo-
rov–Smirnov (KS), Anderson–Darling (AD) and Cramer–von 
Mises (CVM) goodness-of-fit tests. Saf [23] found the GLO 
as the most suitable distribution for Upper-West Medi-
terranean subregion in Turkey. Mkhandi et al. [17] used 
annual maximum flood data of 407 stations from 11 coun-
tries of Southern Africa to conduct the regional frequency 
analysis. They identified Pearson type-III (P3) distribution 
with probability weighted moment (PWM) method and 
log-Pearson type-III (LP3) with a method of moment 
(MOM) as the most suitable distributions for the regions. 
Młyński et al. [18] identified log-normal distribution as the 
most suitable for the upper Vistula Basin region (Poland). 
There have been many studies in the past literature on 
the comparison of various probability distributions with 
different parameter estimation methods for at-site flood 
frequency analysis, e.g. see [1, 5, 7, 22] (Fig. 1). 

The most commonly used methods for estimation 
of parameters in flood frequency analysis are the maxi-
mum likelihood estimation (MLE) method, the method of 
moments (MOM), the L-moments (LM) method and the 
probability weighted moments method (PWM). The MLE 
method is an efficient and most widely used method for 
estimation of parameters. Recently, the LM method has 
gained more attention in the hydrological literature for 
estimation of parameters of probability distributions. In 
this research study, we used LM and MLE methods for 
estimation of parameters of the candidate probability 
distribution.

The methods usually use for selection of the best 
distribution are goodness-of-fit (GOF) tests (e.g. Ander-
son–Darling and Cramér–von Mises), accuracy measures 
(e.g. root mean square error and root mean squared per-
centage error), goodness-of-fit indices (e.g. AIC and BIC) 
and graphical methods (e.g. Q–Q plot and L-moment ratio 
diagram). In the hydrological literature, researchers have 
used different methods in order to find the best probabil-
ity distribution. To identify the best-suited distribution 
at each site of Torne River, we have used goodness-of-fit 
(GOF) test and accuracy measures. The GOF tests are used 
to test that the data come from a specific distribution. The 
accuracy measures provide a term by term comparison of 
the deviation between the hypothetical distribution and 
the empirical distribution of the data. The details about 
accuracy measures and goodness-of-fit test used in this 
study are described in Sect. 3.

The estimation of flood frequency of the high return 
period is of great interest in flood frequency analysis. The 
flood frequency estimation of return periods is always 
associated with uncertainties. Uncertainty in flood fre-
quency analysis arises from many sources. Uncertainties 

included in water resources management can be distin-
guished in data uncertainties, structural uncertainties 
and model/parameters uncertainties, see e.g. [13, 14]. 
Furthermore, there is uncertainty in the estimation of 
flood frequency of return periods much larger than the 
actual records, particularly in the type of probability den-
sity function (PDF) and its parameters. This is particularly 
true on the right tail of the PDF, the region of interest for 
flooding. In addition, there is uncertainty in the measure-
ments. For example, see [15] for an in-depth discussion on 
epistemic uncertainty (reducible uncertainty) and natural 
uncertainty (irreducible uncertainty). The flood estimation 
on high return periods are always associated with high 
uncertainties. In this study, we quantify the uncertainty of 
a given quantile estimate for a specific fitted distribution 
by using the parametric bootstrap method.

In this research paper, the flood frequency calculation, 
using statistical distribution, is addressed for gauged 
catchments, for which we dispose a respectively long-
term hydrological time series. The choice of an appropriate 
probability distribution and associated parameter estima-
tion method is vital for at-site flood frequency analysis. The 
core objective of this study is to find the best-fit distribu-
tion among the candidate probability distributions with 
a particular method of estimation (MLE or LM) for annual 
maximum peak flow data at each site of the Torne River by 
using goodness-of-fit (GOF) tests and accuracy measures. 
We are also interested to look that, is there any best overall 
distribution and fitting method for these five sites of Torne 
River?. Finally, to estimate the quantiles of flood magni-
tude for the return period of 5, 10, 25, 50, 100, 200 and 500 
years with non-exceedance probability at each site of the 
river using the best-fit probability distribution. To address 
the uncertainty of flood estimations, we estimate standard 
error of estimated quantiles and construct 95% confidence 
interval of flood quantile for the return period using the 
parametric bootstrap method. This is a first study for at-site 
flood frequency analysis of Torne River.

This paper is organized as follows: Sect. 2 describes the 
study area and available data for the analysis. Section 3 
deals with the model description, parameter estima-
tion method and model comparison methods. Section 4 
provides the results and discussion of the application of 
L-moments and maximum likelihood estimation method 
based flood frequency analysis of five gauging sites on the 
Torne River. Finally, Sect. 5 concludes the article.

2 � Study area and data

The Torne River works as a border between northern Swe-
den and Finland, with total catchment area 40157 km2 of 
which 60% is within Swedish border and the remaining 
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area is in Finland. The Muonio River, which is the biggest 
contributor of the Torne River, joins shortly after Pajala 
Pumphus. Another contributor river Lainio (259.74 km 
long) joins the Torne river shortly after Junosuando. In 
springtime, water flow is above average level, which con-
verts into flood and this flood causes the damages to the 
waterfront constructions and buildings [6]. Therefore, 
Torne River is frequently affected by flooding problem 

[Swedish meteorological and hydrological institute 
(SMHI)]. The data of annual maximum flow of five gauging 
sites of Torne River (Swedish: Torneälven) are considered in 
this study. The data have been collected from SMHI (www.
smhi.se). The length of the data series varies from 34 to 108 
years. The summary of Torne River gauging sites character-
istics is presented in Table 1.

3 � Methodology

3.1 � Candidate probability distributions

To describe the flood frequency at a particular site, the 
selection of an appropriate probability distribution 
is always important. We have considered generalized 
extreme value (GEV), Pearson type-III (P3) distribution, 
generalized logistic (GLO) distribution, Gumbel (GUM) 
distribution and three-parameter log-normal (LN3) distri-
bution for the analysis of flood frequency at five gauging 
sites of the Torne River. The probability density function 
(pdf ) and quantile function y(F) of these distributions are 
summarized in Table 2. These distributions are common 
in the literature and are recommended distributions for 
flood frequency analysis in many countries (see e.g. [2, 
4, 21, 22]). We explain the detail of parameter estimation 
method (MLE and LM) in the following subsection.

Table 1   Summary of Torne 
River gauging sites

Station name Station no. Latitude Longitude Catchment 
area (km2)

Period for time series

Kukkolankoski Övre 16722 65.98 24.06 33,929.60 1911–2018
Pajala Pumphus 2012 67.21 23.40 11,038.10 1969–2018
Abisko 2357 68.19 19.99 3345.50 1984–2018
Junosuando 04 67.43 22.55 4348.00 1967–2018
Övre Abiskojokk 957 68.36 18.78 566.30 1985–2018

Fig. 1   Locations of gauging stations used in this study

Table 2   Probability density and quantiles functions of the probability distributions
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3.2 � Maximum likelihood estimation (MLE) method

The MLE method estimates the parameters by maximizing 
the log-likelihood function of a probability distribution. 
Suppose we have n independent and identically distrib-
uted observations y1, y2,… , yn . Each yi has a pdf given by 
f (yi ;�) . Here, � = (�1, �2,… ,�k) is a vector of unknown 
parameters to be estimated. Then, the log-likelihood 
function is defined as l(�) =

∑n

i=1
log f

�

yi ;�
�

 . The maxi-
mum likelihood estimate of � is the value of the param-
eter vector � that maximize the l(�) for given data Y. We 
use numerical optimization methods in order to search � 
which give the maximum value of l(�) . Many numerical 
optimization methods, e.g. Newton–Raphson method, 
Nelder and Mead, differential evolution, etc. are found in 
the literature. We have used Nelder and Mead method for 
numerical optimization proposed by Nelder and Mead 
[19].

3.3 � Theory of L‑moments (LM)

L-moments are introduced by Hosking [9, 10], which are 
linear functions of probability weighted moments (PWM’s). 
L-moments are alternative to the conventional moments, 
but computed from linear combinations of order statis-
tics. L-moments can be defined for any random variable Y 
whose mean exists [10]. The rth-order PWM ( �r ) is defined 
as

where F(y) is a cumulative probability distribution and 
y(F) is a quantile function of distribution. The first four 
L-moments in terms of linear combination of PWM are 
defined as

The first L-moment ( �1 ) is a measure of location (mean), 
while the second L-moment represents the dispersion. 
Finally, the L-moment ratios defined by Hosking [10] are 
given below
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1

∫
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�4

�2

The unbiased sample estimators of �i of the first four PWMs 
for any distribution can be computed as follows

where the data ( y1∶n ) are an ordered sample in ascend-
ing order from 1 to n. The parameters with L-moments 
estimation method are obtained by equating the sample 
L-moments with distribution L-moments.

3.4 � Standard error of estimated parameters

The standard errors (SE) of estimated parameters indicate 
a measure of reliability of estimates and performance of 
estimation technique. In this study, we have obtained SE of 
estimated parameters by Monte Carlo simulation method. 
The description of this method is given as

•	 We use estimated parameters with MLE and LM method 
at each gauging site and draw 1000 samples of size 
equal to the length of data from each probability dis-
tribution.

•	 For each simulated sample, we obtain the MLE and LM 
estimates for the parameters of the distribution.

•	 For each gauging site, the standard errors are obtained 
by taking the standard deviation of these 1000 MLE and 
LM estimates of the parameters of each distribution.

3.5 � Goodness‑of‑fit (GOF) tests

The goodness-of-fit tests are used to test that the observed 
data follow a particular distribution. We consider the 
Anderson–Darling (AD) test for the study. This test is often 
used in flood frequency analysis and has shown good per-
formance in case of small sample size and heavy-tailed dis-
tributions [12, 20]. The test statistic for AD test is defined as

where 
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3.6 � Accuracy measure method

In accuracy measure (AM) methods, we have used the 
mean absolute error (MAE), mean absolute percentage 
error (MAPE), root mean square error (RMSE), root mean 
squared percentage error (RMSPE) and correlation coeffi-
cient ( R2 ) to evaluate how adequately a given distribution 
fits the observed data. These measures are defined as

where F̄(yi) =
∑n

i=1
F(ŷi )

n
 and n represents the size of the data 

series. In all above accuracy measures, F(yi) is the empiri-
cal cumulative distribution function (CDF) of the data 
(observed ordered values) and F(ŷi) indicates the theoreti-
cal CDF of the distribution (ordered estimated values from 
the distribution).

3.7 � Quantile estimation

After selection of the best probability distribution, the 
main goal of flood frequency analysis is to estimate the 
quantile yT  for a return period (T) of scientific relevance. 
P(Y ⩾ yT ) =

1

T
 indicates the probability of exceedance from 

flood level yT  once in T years. The cumulative probability 
of non-exceedance is defined as

The distribution function F(yT ) can be expressed in inverse 
form as yT = y(F) , and we can directly evaluate estimated 
quantile yT by replacing F. Sometimes, inverse of F(yT ) does 
not exist analytically, and then, the numerical method is 
used to evaluate yT  for the given value of F. The expres-
sions of quantile function of candidate distributions are 
summarized in Table 2. The quantile estimate for T years 
is calculated by substituting the value of F = (1 −

1

T
) in 

the expressions of quantile in Table 2. The standard error 
of estimated quantiles represents the uncertainty in the 

MAE =
1

n

n
�

i=1

�F(yi) − F(ŷi)�
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estimation of flood frequency of return periods. The con-
fidence interval of flood quantile gives an estimated range 
of values which is likely to include the flood frequency of 
return periods. We use a parametric bootstrap method for 
estimation of standard error of estimated quantiles and 
confidence interval of flood quantiles of return periods. 
This method is more precise than an asymptotic computa-
tion when n is small [16, p. 133]. The detail of procedure 
involves in parametric bootstrap method is given in [16, 
p. 133].

4 � Result and discussion

We summarized the basic statistics of five gauging sites in 
Table 5. All data on gauging sites in the table are in cubic 
metre per second. It is observed that all data at these sites 
are skewed. This is a enough evidence to model the data 
with non-normal distribution. In flood frequency analysis, 
the basic statistical assumptions are independence, ran-
domness and stationarity of the data series (see e.g. [8, 
11]). The independence and randomness of the data series 
at given site are tested by using correlation coefficient (r) 
at lag-1 and Wald–Wolfowitz (WW) test, respectively. To 
check the stationarity of the data series, Mann–Kendall 
(MK) test has been applied. The assumptions verification 
results are summarized in Table 3. The results in Table 3 
indicate that the data series at each gauging site of Torne 
River are suitable for flood frequency analysis and prob-
ability density estimation.

The estimated parameters for each distribution at each 
gauging site by using MLE and LM method of estimation 
along with standard error (SE) are reported in Table 4. To 
identify the best distribution at each site, we use GOF tests 
and accuracy measures. Each distribution with parameter 
estimation method is ranked in each GOF test and accu-
racy measure in Table 6. The distribution is assigned a rank 
score between 1 and 10 in GOF test and accuracy meas-
ures, rank score 10 for the best-fitted and 1 for the worse 
fitted distribution. The rank score scheme is based on the 
relative magnitude of accuracy measures and AD test P 
value. The distribution with the lowest RMSE, lowest MAE, 
lowest RMSEP, lowest MAEP or the highest R2 has the high-
est rank score value 10. In AD test, the distribution with 
the highest P value has the highest rank score value 10. 
The best distribution with estimation method at each site 
is identified based on the total rank score in GOF tests and 
accuracy measures methods. The total rank score in Table 6 
indicates that GLO with MLE estimation method is best for 
Junosuando. For site Pajala Pumphus and Abisko, the LN3 
distribution is performed better than other distributions 
with the LM method. The GEV and PE3 distribution with 
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the LM method are best-fit distributions for gauging site 
Kukkolankoski Övre and Övre Abiskojokk, respectively.

In this study, a single distribution has not emerged as 
the best distribution for all gauging sites. This was also 
the case in [1, 5]. Overall, the LM estimation method per-
formed better for identifying the suitable distribution (also 
see, [1]). The most suited distribution with MLE estimation 

method is identified at gauging site which has the high-
est CV and skewness, see Tables 5 and 6. It seems that the 
sites having extreme average of annual maxima of flood 
and catchment area (either very large or very small) are in 
favour of the LM method of estimation, see Tables 1, 5 and 
6. If we look the landscape setting, the gauging sites which 
are at an extreme position (close and far away) to the Gulf 

Table 3   Assumptions results 
of five gauging sites of Torne 
River

where n represents the sample size of time series and r indicates the Pearson correlation coefficient

Station name n r P value Mann–Kendall test Wald–Wol-
fowitz test

Test statistics P value P value

Kukkolankoski Övre 108 −  0.08 0.23 1.85 0.06 0.86
Pajala Pumphus 50 −  0.11 0.25 0.32 0.75 0.94
Abisko 35 0.03 0.80 0.21 0.83 0.17
Junosuando 52 −  0.09 0.34 1.41 0.16 0.95
Övre Abiskojokk 34 −  0.06 0.66 −  0.62 0.53 0.33

Table 4   Estimated parameters with MLE and LM methods

Here, 𝜇̂ , 𝛼̂ and 𝜅̂ represent the estimated location, scale and shape parameters, respectively. The value in parenthesis is a standard error of 
estimated parameter

Station Probability distributions

GEV P3 GUM GLO LN3

MLE MLE MLE MLE MLE

𝜇̂ 𝛼̂ 𝜅̂ 𝜇̂ 𝛼̂ 𝜅̂ 𝜇̂ 𝛼̂ 𝜇̂ 𝛼̂ 𝜅̂ 𝜇̂ 𝛼̂ 𝜅̂

16722 1993.73
(48.38)

450.20
(34.34)

0.16
(0.07)

297.25
(763.60)

128.76
(58.50)

14.72
(12.50)

1955.47
(43.91)

433.50
(33.52)

2149.33
(49.03)

280.04
(22.95)

− 0.11
(0.07)

2152.08
(51.38)

483.32
(33.78)

− 0.17
(0.09)

2012 768.35
(34.29)

223.53
(24.67)

0.43
(0.08)

1663.77
(516.20)

− 52.30
(36.45)

15.99
(20.76)

718.05
(36.57)

240.19
(25.24)

839.62
(29.98)

117.07
(13.92)

0.08
(0.10)

844.26
(31.44)

204.85
(21.03)

0.16
(0.12)

2357 207.26
(9.80)

52.41
(6.86)

0.24
(0.11)

− 285.00
(869.20)

5.69
(9.86)

90.04
(308.12)

200.73
(9.01)

50.87
(6.84)

225.42
(9.49)

30.92
(4.35)

− 0.04
(0.12)

225.60
(9.93)

53.77
(6.45)

− 0.06
(0.15)

4 281.69
(11.84)

74.13
(8.10)

0.02
(0.11)

113.75
(51.00)

40.43
(15.39)

5.18
(3.10)

280.81
(10.49)

73.61
(8.00)

307.58
(11.97)

48.63
(6.16)

− 0.20
(0.08)

308.92
(12.80)

85.91
(9.24)

− 0.32
(0.12)

957 108.80
(5.18)

26.47
(3.77)

0.08
(0.14)

61.85
(27.44)

17.66
(13.39)

3.42
(4.08)

107.71
(4.56)

25.83
(3.47)

119.34
(5.56)

17.35
(2.54)

− 0.13
(0.14)

118.11
(5.76)

29.65
(3.86)

− 0.28
(0.19)

Station Probability distributions

GEV P3 GUM GLO LN3

LM LM LM LM LM

𝜇̂ 𝛼̂ 𝜅̂ 𝜇̂ 𝛼̂ 𝜅̂ 𝜇̂ 𝛼̂ 𝜇̂ 𝛼̂ 𝜅̂ 𝜇̂ 𝛼̂ 𝜅̂

16722 1990.07
(46.62)

456.59
(36.53)

0.15
(0.07)

11.28
(994.14)

114.04
(57.03)

19.12
(19.50)

1959.44
(40.39)

403.29
(36.53)

2157.98
(46.90)

276.98
(22.79)

− 0.07
(0.05)

2154.46
(48.38)

490.66
(35.96)

− 0.15
(0.09)

2012 764.68
(33.65)

220.31
(23.58)

0.40
(0.11)

1964.77
(781.80)

− 39.13
(42.25)

29.07
(22.81)

728.59
(26.28)

170.98
(22.34)

839.06
(28.85)

117.80
(13.84)

0.06
(0.08)

840.27
(32.31)

208.73
(22.61)

0.12
(0.13)

2357 206.33
(10.49)

53.49
(6.96)

0.22
(0.13)

− 305.49
(270.70)

5.80
(15.19)

91.88
(23.56)

201.21
(8.01)

45.18
(7.06)

225.54
(9.51)

31.26
(4.46)

− 0.03
(0.09)

225.36
(10.37)

55.39
(6.62)

− 0.07
(0.16)

4 279.83
(10.94)

73.16
(9.12)

− 0.01
(0.10)

148.25
(89.07)

50.90
(21.98)

3.43
(8.62)

280.25
(10.75)

74.02
(9.07)

308.19
(12.16)

48.68
(6.18)

− 0.18
(0.08)

306.66
(13.10)

85.97
(9.70)

− 0.37
(0.14)

957 109.40
(5.50)

28.50
(4.18)

0.14
(0.13)

− 3.65
(103.66)

7.84
(7.83)

16.06
(20.99)

107.62
(4.55)

25.38
(4.10)

119.92
(5.26)

17.40
(2.54)

− 0.08
(0.10)

119.68
(5.90)

30.82
(3.93)

− 0.17
(0.17)
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of Bothnia are in favour of the LM estimation method. 
The sample size of the time series does not seem to be 
an important factor in favour of particular distribution or 
estimation method in this study.

One major objective of flood frequency analysis is to 
estimate the quantiles in the extreme upper tail of the 
best-fitted distribution at each gauging site. The quantiles 
estimate for the return periods 5, 10, 25, 50, 100, 200 and 
500 years are calculated by using quantile function and 
parameters value of the best-fitted distributions. Quan-
tile estimate yT with non-exceedance probability F for the 
best-fitted distributions is given in Table 7. The estimate of 
uncertainty ( �s ) in quantile estimates and 95% confidence 
intervals of quantiles of flood for different return period 
are also presented in Table 7. The SE indicates that longer 
return periods have more uncertainty around the flood 
quantile estimates.

5 � Conclusion

In this study, the annual maximum steam flow series of 
five gauging sites of Torne River are examined. Flood 
frequency analysis is performed by using GEV, P3, GUM, 
GLO and LN3 distributions. The MLE and LM parameter 

estimation techniques are used to estimate the distribu-
tion’s parameters. The study investigates the selection of 
best-fit probability distribution and estimation method for 
at-site flood frequency analysis of Torne river. The best-fit 
frequency distribution is identified at each gauging site 
based on the highest total rank score in goodness-of-fit 
tests and accuracy measures.

The results indicate that the GLO distribution using MLE 
for gauging site Junosuando and the LN3 distribution with 
a LM method for Pajala Pumphus and Abisko perform bet-
ter than other distributions of this study. The GEV and P3 
distributions using the LM method are the most suitable 
distribution at Kukkolankoski Övre and Övre Abiskojokk, 
respectively. At most gauging sites, the best distributions 
using LM estimation method are identified as the best-
suited distributions.

The results found in this research study for flood fre-
quency analysis of Torne River can be used in flood study, 
water resource planning and designing of hydraulic 
structures within the same basin and similar catchments. 
The best-fitted distributions used in this study could be 
considered as candidate distributions for regional flood 
frequency analysis of Torne River basin or at-site flood fre-
quency analysis on other rivers in Sweden as well.

Table 5   Descriptive statistics 
(cubic metre per second)

Here, S represents the standard deviation and CV indicates the coefficient of variation

Station n Mean Median S CV Skewness Kurtosis

16722 108 2192.22 2140.00 493.03 0.22 0.37 − 0.19
2012 50 827.28 837.53 211.16 0.26 − 0.54 0.90
2357 35 227.29 223.53 54.71 0.24 0.17 − 0.07
04 52 322.98 296.50 93.32 0.29 0.93 0.95
957 34 122.27 120.67 31.39 0.26 0.73 1.24
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Table 6   Rank score of 
distribution in both GOF tests 
and accuracy measures

The bold values are rank score for best-fitted distribution

Station Method Distribution AD RMSE MAE RMSEP MAEP R2 Total rank

Kukkolankoski Övre MLE GEV 7 5 7 7 7 5 38

P3 6 7 6 6 5 7 37

GLO 4 3 4 4 4 3 22

LN3 5 6 5 5 6 6 33

GUM 2 1 2 2 2 1 10

LM GEV 10 10 10 10 10 10 60
P3 9 9 9 9 9 9 54

GLO 3 4 3 3 3 4 20

LN3 8 8 8 8 8 8 48

GUM 1 2 1 1 1 2 08

Pajala Pumphus (2012) MLE GEV 3 4 7 4 4 4 26

P3 6 5 5 5 5 5 31

GLO 4 8 3 8 8 8 39

LN3 7 6 6 6 6 6 37

GUM 1 1 1 2 1 1 7

LM GEV 5 3 8 3 3 3 25

P3 9 9 9 9 9 9 54

GLO 8 7 4 7 7 7 40

LN3 10 10 10 10 10 10 60
GUM 2 2 2 1 2 2 11

Abisko (2357) MLE GEV 3 3 3 3 4 3 19

P3 8 5 6 4 6 5 34

GLO 4 6 4 9 3 6 32

LN3 7 4 5 5 5 4 30

GUM 2 1 2 2 2 1 10

LM GEV 6 7 8 6 8 7 42

P3 9 9 9 7 9 9 52

GLO 5 8 7 10 7 8 45

LN3 10 10 10 8 10 10 58
GUM 1 2 1 1 1 2 8

Junosuando (4) MLE GEV 5 1 1 2 2 1 12

P3 2 1 1 2 2 1 09

GLO 10 10 6 9 7 10 52
LN3 4 3 4 5 5 3 24

GUM 8 6 9 6 8 6 43

LM GEV 6 9 8 7 6 9 45

P3 1 4 5 1 1 4 16

GLO 9 5 3 10 9 5 41

LN3 3 7 7 4 4 7 32

GUM 7 8 10 8 10 8 51

Övre Abiskojokk (957) MLE GEV 6 5 7 7 7 5 37

P3 1 7 1 4 1 7 21

GLO 5 10 4 3 4 10 36

LN3 4 6 5 6 6 6 33

GUM 3 9 3 5 3 9 32

LM GEV 8 1 8 9 8 1 35

P3 9 2 10 10 10 2 43
GLO 7 4 6 1 5 4 27

LN3 10 3 9 8 9 3 42

GUM 2 8 2 2 2 8 24
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