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Abstract

In this paper, effects of deforming walls on peristaltic flow in a two dimensional channel have been investigated. The two
dimensional form of the governing equations is simplified by using appropriate transformations and well established approxi-
mations, which are used extensively for solution of such models. The transformations are designed so that the complex
problem is reduced into an ordinary differential equation (ODE). New and simple non-linear ODE is formed in view of adopted
procedures and techniques. Its solutions are exactly matched with the solutions of classical problems. Solutions of the final
problem are provided for small values of the surface expansion (contraction) ratio and Reynolds number with the help of the
perturbation technique and non-linear shooting method. The velocity field, pressure and shear stress are evaluated analyti-
cally and numerically. Meanwhile, effects of all parameters are observed on the velocity field, pressure rise per wavelength
and shear stress profiles with the help of tables and different figures. Excellent agreement between solutions is found. Cur-
rent results are apparently matched with the classical problems of peristaltic flow in deforming and non-deforming walls.
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1 Introduction (expansion) together with peristaltic movement and
thoroughly pump urine from kidney into the bladder and
similarly the spermatozoa moves in this way in ducts. On

the other hand, the contraction and relaxation of mus-

Peristalsis is the mechanism of fluid transport through
elastic channels, chambers and pipes by means of sinu-

soidal waves. There are many agents that are producing
fluid motion in which some sources are very active and
prominent. For example pressure gradients and surface
(solid body, wall and plate) motion (deformation, peristal-
tic motion) may cause fluid motion. The phenomenon of
peristalsis has many applications in biology and engineer-
ing. In many physiological systems, the peristaltic motion
of different body parts are producing fluid transporta-
tion. The ureter’s muscles undergo repeated contraction

cles combined with peristaltic motion is also responsible
for digestion of food. Besides these, it is widely used in
manipulating the biomedical devices and machines, house
pumps, finger and roller pumps that are used to force
blood and other fluids. Due to its numerous applications,
the phenomenon has attracted many scientists, engineers,
mathematicians and tremendous research have been car-
ried out on peristaltic pumping [1-171].
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The first attempt is made by Shapiro [1] and he solved
the peristaltic flow problem for a two dimensional tube
with assumptions of small Reynolds number and long
wave length. He assumed a peristaltic wave of very long
wave length and the aspect ratio of wave length to the
diameter of tube is greater than four. The closed form
solutions of Shapiro for the modeled equations are very
famous and obviously reduced it to well-known Poiseuille
solutions. The problem of peristaltic flow is further ana-
lyzed by assuming the sinusoidal waves [6] and arbitrary
shapes waves [7]. The theoretical data is experimentally
verified in [8] and latest techniques and methods are pro-
vided. These analysis are propitious to the fundamental
concepts which can help us in analyzing the problems
and provide solutions to a new hydrodynamic systems.
The peristaltic flow problem for two dimensional channel
is solved numerically see [9, 10] and found excellent agree-
ment between the experimental and theoretical inquiries.

A lot of research articles are appeared in the literature
witch presents the flow between deforming and porous
walls [11-15]. Majdalani [12] extended the scope of
deformable channels flow and used similarity variables
for the solution of model problem. Matebese [16] studied
the flow model of a deformable channel where the gap
between walls in filled with porous medium and assumed
a variable magnetic field. A more complex model is stud-
ied by Khan Marwat and Asghar [17] and they investigated
the coupled effects of wall contraction (expansion) and
peristalsis in a deformable channel and recovered the
solutions of [1] for zero wall deformation ratio (a). A lot
of research work are available for static and moving walls
for both Newtonin, non-Newtonin and Jeffery fluids in
nano or in micropolar fluid, see [18-23]. Akram et al. [18]
analyzed the Peristaltic pumping of a Jeffrey fluid with
double-diffusive convection in nanofluids in the presence
of inclined magnetic field. Sadaf et al. [19] and Shehzadi
and Nadeem [20] discussed the fluid flow between walls
for peristaltic transportation in a chanel. Sadaf et al. [19]
discuss this phenominan for Nano fluid with MHD effects
while Shehzadi and Nadeem [20] consider a porous
medium with porous boundary conditions for this study
with out MHD effects.

For the best of auther’s informations, we include some
other slassical work in this section which are discussed by
[24, 25]. Saleem et al.[24] modeled the problem associated
with fow, heat, and mass transfer features of gyrotactic
microorganisms containing MHD Jefrey fuid over a verti-
cal cone with nanoparticles. Qasim et al. [25] examined
the effects of nonlinear thermal radiation on the flow of
Jeffrey fluid over a radially stretching sheet with variable
thermal conductivity.

Here we present a model of fluid flow between peri-
staltically moving and deforming walls. More precisely,
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we study the consequences of deformable surfaces on
peristaltic flow in a two dimensional channel. Note that
the channel is contracting (expanding) with time. A set of
transformations is introduced such that the generalized
wall’s geometry is invoked in the new variables. In view
of these new variables, the governing equations are con-
verted into the simplest PDE's. Later on, the wall geometry
is specified and modified by the well-known peristaltic and
deforming walls shapes. Besides that, the assumptions and
approximation of long wavelength and small deformation
ratio are employed so that the governing PDE’s are con-
verted into an ODE. The ODE is new, simple and gives the
results of [17] for fixed and special value of the parameters.
Perturbation and numerical methods are used for the solu-
tion of modeled problem. The flow field properties have
been evaluated by numerical means and new results are
found for velocity components, pressure and shear stress.
The profiles of velocity field, pressure rise per wavelength
and shear stress are discussed in detail for different values
of Reynolds number and wall deformation ratio. Note that
the behavior of all these quantities is recorded in different
tables. The two different solutions are compared in tables
and graphs. The ranges of parameters are so chosen for
which error between the solutions is very negligible. New
results are also matched with [17] and further analysis of
the transformation in hand, may give rise to new research
problems. The advantage and usefulness of the transfor-
mation and approximation is very clear and obviously
converts the complex problem into a simplest one. The
last problem is easy to solve and provides accurate and
authentic results.

2 Mathematical formulation

We have taken two parallel plates and the gap between
walls is filled with viscous fluid such that the vertical dis-
tance between walls in 2h(x, t) where x represents the
horizontal axis, lie along the channel and t is time variable.
Note that y in normal to x-axis in vertical direction. Further,
it is assumed that the flow is two dimensional, therefore,
the velocity vector has two componenti.eu = u(x,y, t)and
v = v(x,y,t) which lies along x and y directions, respec-
tively. A sinusoidal waves are generated at walls with
speed c in the axial direction, whereas the space between
upper and lower walls changes with time. In other words,
the walls of the channels are contracting and expanding
in time t. The flow geometry is given in Fig. 1, however,
the upper wall is presented by the following mathemati-
cal form:

h(x,t) = a(t) + bsin(y) (1)
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Fig. 1 Flow geometry and channel under consideration

inwhichy = 27”()( — ct), such that the wave amplitude (b),
wavelength (1) and wave speed (c) are the known quanti-
ties in the above relation.

A deformable channel means that the parallel walls are
contracting and expending in y-direction only. Note that
the distance between walls is changing with space (x) and
time (t). The two dimensional flow problem is presented
in mathematical terms by considering the continuity and
Navier-Stokes equations. In addition, the body forces have
no role in flow region and finally the governing equation

are reduced to the following form:
% + Q =0
ox dy (2)

p ox

ou ou ou 10 0%u . d%u
MM p+v[— —] 3)

+uZ v = +
ot " Yox Yoy 2 oy

0 2 2
v v v _ 19p [av av] @
poy

ot TYox oy T ’lae top

In which the pressure (p), density (p), kinematic viscos-
ity (v = f) and absolute viscosity (u) are fluid thermo-

physical properties which describe the fluids behavior. The
thermal properties are assumed to be constant. The gov-
erning Eqgs. (2)-(4) are simplified with the help of transfor-
mations and new set of variables is introduced i.e.
X =xx1), n=n(xyt)wheres=L"andy = aln(h) + (1),
so that Eq. (2) is reduced to the following form:

Jau, ou ov
2ah,— +2h L4+ —T-o.
<oy S+ <2 ) an T on )

Note that u; and v, are defined in Eq. (6). The continuity
equation is eliminated by introducing the steam function
(y,) and the velocity components are defined such that

9 d . i }
u= aiy‘,v = —%. In view of the dimensionless stream

functiony = % the velocity components, defined in the
above relations are transformed as:

U1()(,7’],t) Wn+c

2h

1
vi(x,mt) = —Tx[awx + (5 - n)w,,]

where the subscripts are representing the partial deriva-
tives w.r.t. indicated variables. The well-known vorticity
equation is formed by eliminating pressure terms between
Egs. (3) and (4)

0¢, 0¢, 0¢, )
2 g2 a2 —
U= +Vay vV2¢, )
where &, = "—‘; - M= vy, V2= L + = Insertlng the

oy 0)(2
expressions for u, and v, from Eq. (6) into the vorticity func-
tion, we obtained that:

! 1
=& =vaHy, + aszzw” + (5 - n)

, 1
[ZGDHZV’W — oy, +oH y, + <§ B ]1>DH2W”’7] ®

+ 2V

where H = h* H = % andh, - " When \is large, then
5= 2%” will be a small quant|ty and similarly 62 — 0. In
view of these approximations, some of the factors will
become negligibly small i.e. H'— 0, H? — 0. Moreover, it is
also assumed that a is of small order. All these assertions
are invoked into Eq. (8) and finally we get a most suitable
candidate for the vorticity function:

61 = sV 9)

4h2

In view of the above definition for the vorticity function,
Eq. (7) is reduced to the following form:

vh, vh (1
TE Sp3 ¥ T 4h3 <§ - ")Wmm 4h2ﬂ OWy
v Ho? Hoc
" apz T gy VY T 5p
Hoc /1 _ v?
W<§ =) = 16h
The problem is further simplified by considering ¢,
a pseudo variable and assume that v is a function of ¢
instead of t that is, w = y(#, €) where ¢ is wall deformation

YR L (10)
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(contraction if negative) ratio see [14]. Finally, the simpli-

— 2
fied version of Eq. (10) is presented over here as: F="Fo+ReF, + O(Re ) (16)
8chh 8hh, 4hh, /1 4chh, /1
Yonnn > wam_ > Y — 0 (E_">Wnnn+4hanwnn_—x<§_”)Wnnn=o (n

The coefﬁcient% in Eq. (11) is simplified as:

4hh,
12

!/
=4 —4Re b +4pde(x — ct)

wheree = "I—:’ is deformation (contraction/expansion) ratio
1

which produces a(t) = a0(1 + %)E The other dimen-

0
. 2
sionless parameters are the wave number <6 = %" , the

Reynolds number(Re = g>,amp|itude ratio<(p = S and

v

the dimensional channel half spacing (a,) is defined at
t =0, x = 0. Itis assumed that the deformation ratio (a)
and wave number (5) are mall parameters, therefore, the

product term ¢ will also be a smajler quantity -
We set a; = % =4 —4Red, a,=2h,=26p,
4Hh?c

a3 = ——=4 Reéq. In view of above definitions for the
parameter, Eq. (11) becomes:

1
Wy + 25Wyy = S<§ - ")Wrmn +Rey, v, =0, (12)
where s = a; + a3 = 4e and Re = 2a, = 4 6¢. The bound-
ary conditions taken in [17] are used and reduced for the
current problem as:

d2
aty=0,n=l:y/=0,—w=0,
2 n?
dy (13)
aty=hn=1:y=F,— =-1
dn

In Eq. (13), F is related to non-dimensional mean flow
rate (Q) and Q = F + 1Twhere F is defined as:

1

F=/(w,,+c)dn=v/(1)+ch~ (14)

1

3 Perturbation solution of the problem

The perturbation solution of Egs. (12) and (13) is attempted
and considered that the Reynolds number (Re) and the
deformation ratio (s) are small parameters. The unknown
function (y) in Egs. (12) and (13) is expanded in term of Re
(a small quantity) and decomposed into more unknown
functions, whereas F is also expanded in term of small Re
as:

w =y, + Rey, + O(Re?) (15)
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Upon substituting the assumed solutions (15)—(16) into
Egs. (12), (13), we get the following differential systems:

3.1 Zeroth-order system

d*
Yo - _2s
dn?* dn?

dzllfo 1 d3l[/0
+ 5 ’
5(2 '7) dn?

subject to the boundary conditions:

1 Py,
at71=‘,llfo=0, :Or
2 dn? (18)

atn=1, yy=F, %:—1.

3.2 First-order system

da* d? d3 dy, d?
Vi _ o W1+s<l—n> Vi adyp dyy

dn? dn? 2 dn? dn dn?’ 19)

with the following associated boundary conditions:

_ 1 — d2W1 —
A (20)
atn =1, y;, =F,, dln‘=0.

For slowly expanding or contracting walls, i.e. small
deformation rate € = 4s, it is appeared a small quantity in
biomechanics. Therefore, we can express y, as:

Wo = Voo + SWor +0(s?), (21)

Fo = Foo + SF17 + O(s?). 22)

Substituting the above equations for y, and F, into
Egs. (17), (18) and compare the coefficients of s,and s, we
get:

d4
Yoo =0, 23)
dn*
subject to the boundary conditions:
dZ
2
d
n="1 wy = Foo dL;oz_L
and
d* d? 1 d?
Yor _ 9 Yoo " <_ _’1> ‘//oo, (25)
dn* dn? 2 dn3

subject to the boundary conditions:
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_1 _ Pyy _
1T Ve =0 @ = (26)
n="1 yon =Fo, %};":O.

In the next few steps we have been evaluated the other
unknown terms of y by adopting the same procedure
used for y, and finally another set of problems (ODE'’s &
Bc’s) is formed. The component y, of y is further decom-
posed and expanded in term of s and the following set of
problems is formed:

d*wrg _ _dll/oo w0 27)
dn® dn dn?’
satisfying the following boundary conditions:
1 a?
=50 ¥0 =0 5 =0, (28)
d
n="1 wo=Fy 3’};0 =0.
and
d*yy _ _zdzll/m i (l _ >d3W1o _ dyoo d* w10 _ dyr1o d* oo
dn* dn? 2 dn3 dn dn? dn dn?’
(29)
and the boundary conditions are transformed to:
1 d’yy
n= EI WH = OI d}’]2 = 01 (30)
dyn,

n="1y;; =F,, =0.

dn
Solving the system of Egs. (23)-(25) and using the value
of Eq. (21) we get,
Woo(n) = —Foo — 1 + Coz’?2 - 2C03’13l (31)
Wor(n) = Cro + Cryn + Cip + Coan® + o + Cis1°, (32)
where
Cop =3 +6Fy, Co3=—-2—4Fy,

1
Cio = @(—mcoz — 15¢43 — 48F¢; ),

€y = L(—70c02 — 93¢o3 + 960Fy; ),

160
1
Ci3 = %(_HOC‘” +93¢y3 — 960Fy,; ),
1 —3Co3
Ciy = ﬂ(_"’coz + 3c03), Ci5 = >0

Therefore, Eq. (21) is converted into the following form
when Egs. (31)-(32) are substituted into it.

wo(m) = —Foo — 1+ Coon” — 2C03’13

(33)
+5(Cho + Cpn+ €l + 31 + Cun + Cisn°)
The solution of Egs. (27)-(29) gives,
wio(n) = dig + dyyn + dion® + dysn® + dyyn’
5 6 7 (34)
+disn” + dign” +dygn’,
_ 2 3 4
v (M) = e t+epntenn +e;n +epyn 35)
+e,5n° +e,gn° +eon’ +egn® +eon’,
where
1 2
dyo = m(140c02 — 140¢}, + 210¢y3
—336Cy,Co3 — 1892, — 13440F, ),
1
d., = ——(=1120c¢,, + 1120c?
n 13440( o+ 02
—1680cy; + 277¢o,Co3 + 1638¢,,),
1 2
42 = 3070 (2940cy, — 2716¢7, + 4074¢y;3
—6552¢0,Co3 — 3861¢2; + 80640F,,),
1 2
dy; = m(—3080c02 — 2184c}, — 3276¢;
+4788cy,Co3 + 2700c; — 53760F ),
1120c,, 1
dis = , = —(—448c2 + 672¢,,),
147 13440 15 13440( 02 )
—672¢4,Cp3 _288C(§3
g =——r " 17 = 23240 '
13440 13440
and
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So th

1
215040
— 448cy, (5¢11 +2(5¢1; + 6(cy3 4 ¢14)) ) +3360¢;5 — 75(66¢; + 3¢o3) €15

— 2(2240d,, + 3360d, 5 + 3808d,,,
+5(784d,5 + 774d,¢ + 749d,, + 21504F,,)) },

{2240c¢,, + 3360c,; — 672¢43 (5¢;; + 8¢y, + 9¢13) + 3584c¢;, — 5940¢3C14

1
3270 {28cy,(40c;; + 80c,, + 99¢;5 + 104c,,)

+12¢03(140¢;; + 3(77¢1, + 91¢y3 + 95¢44) ) + 75(38¢q, + 45¢03) €15
— 4(280cy, + 420c,; + 462¢,, + 455¢;5
—4(140d,, + 210d,¢ + 252d,, + 280d,5 + 300d, + 315d,,)) },

2151040 {~3co3(21728¢;, + 34944c,, + 41184c,5 + 43340c,, + 43325¢;5)

— 20, (23520¢;; + 64(679¢;, + 819¢,;3 + 858¢y,) + 54175¢;5)
+2(23520c,, + 32592¢,5 + 34944¢,, + 34320c,5 — 47040d,, — 624964 ;
—74592d,, — 84240d, s — 92070d,, — 98525d,, + 645120F;; )},

c 11¢;; 13¢y,  57¢43 5c14+1235c15
02\ 48 40 160 14 3584

3Co3
+ 333560 {36(728¢;; + 1064c,, + 1200c;3 + 1235¢,,) + 43925¢;5 }

— 96{770c,; + 819¢;3 + 798¢, + 750¢;5 — 14(110d,, + 93d,5 + 111d,,)
~1755d,5} + 184140d, 4 + 197050d,, — 4F,,

L(—2c02c11 + 26, — 4dy; +3¢p3),

24

1

@(_3503C11 —4CpC1p — 363 — 9di3 + 6d14),
1

5(_3%3‘312 —3CpC13 — 2C14 — 8y + 5d25),
1

210
1

336

{=9¢43€13 — 8Coy€14 + 5(C15 — 535 + 3dy6) }
{=2(6c3¢14 + 5¢0y¢15 + 18dy5) + 214, },

ﬁ(—wcqu - 49¢,, ).

at,

() = wr0(m) + syq ()

= Y,

(1) = dyg + dyyn + diyn® + dysn® + dign* + disn® + dygn® + dyyn’
+s{egteyntenn’ +e s +eunt +esn’ +egn® +en’
+egn® +eon’) }
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Fig.2 The axial velocity u, is graphed for different s and a Re=0.0025, b Re=0.0625, c Re=0.25 and d Re=0.475

Table 1 The two solutions are
presented for u,at =0.4949,
when s=0.1 and 0.5

Table 2 The two solutions are
presented for u, at 7=0.4949
when s=-0.1and -0.5

Re Numerical solution Perturbation solution Percent error

s=0.1 s=0.5 s=0.1 s=0.5 s=0.1 s=0.5
0.0025 2.6578 3.2789 2.65759 3.27406 0.00790 0.147829
0.0625 2.7580 3.4166 2.75768 341110 0.01160 0.161238
0.2500 3.0724 3.8489 3.07045 3.83937 0.06351 0.248218
0.4750 3.4526 4.3730 3.44577 4.35329 0.19821 0.452761
0.5000 3.4951 44316 3.48748 4.41040 0.21855 0.480682
Re Numerical solution Perturbation solution Percent error

s=-0.1 s=-0.5 s=-0.1 s=—0.5 s=-0.1 s=-0.5
0.0025 2.3496 1.7377 2.34936 1.73289 0.010216 0.277571
0.0625 24312 1.7828 2.43096 1.77754 0.009872 0.295915
0.2500 2.6874 1.9240 2.68599 1.91706 0.052495 0.362013
0.4750 2.9969 2.0942 2.99201 2.08449 0.163435 0.465821
0.5000 3.0314 2.1131 3.02602 2.10310 0.177791 0.475488
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Hence,

w(n) = —Foo — N+ Coon” + 2¢31° + S(Cw + O+ C + 3 + 515'75)

+ Re{dm +dyn+ dign® + dysn® + dign® + dis + dien® + dygn’

2 3 4 5 6 7
+5(eg+epn+enn’ +esr +eun’ +esn +egn® +epn

+eign® + e19119)}

4 Results

The governing equation are reduced into a simplest ODE
with the help of useful transformations and established
approximations. The final problem contains several dimen-
sionless parameters and perturbation method is used for
the solution of this problem for small value of the param-
eters involved in the problem. Moreover, a numerical
solution of final problem is also formed. Effects of all the
parameters i.e. surface deformation and peristaltic motion
are seen on the flow characteristics and field quantities.
Response of the main flow to the different parameters s
and Re is also noted in different graphs. Both the veloc-
ity components, pressure, pressure rise (drop) per volume
flow rate, and shear stress profiles are presented in dif-
ferent figures. A set of different results against different
parameters is formed and the new observations are pre-
sented in graphs and tables.

Besides that the two different solutions for each of
these quantities are compared in different tables and
excellent results are found.

4.1 Axial velocity

The axial velocity is graphed in Fig. 2 and this figure has
four subplots. Effects of the parameter s are seen on axial
velocity for positive Re. The two different solutions for
the velocity component are also compared in this figure.
The two solutions are exactly matched for wide range
of parameter values and these assertion are reflected in
Fig. 2. The variation in axial velocity profiles are noted
for different s and the deformation rate is changed from
positive to negative and fixed Re. It is confirmed that
the two solutions are exactly matched for this range of s
whereas the error in analytical solution is negligibly small.
The perturbation and numerical solutions are compared
in Tables 1, 2 and these solutions are found at different
points about the mid line of channel. The positive (nega-
tive) values of s are representing the walls expansion (con-
traction) ratio. The similar and symmetrical graphs in Fig. 2
are decreased with the decreasing of s. In Table 1, the axial
velocity component (u,) is calculated about the mid of the
channel fors > 0and different Re. In Table 2, the perturba-
tion and numerical solutions are matched for s < 0 and
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different Re. The differences between the two solutions are
very small in the limiting values of governing parameters.
It is observed that the error is minimum for fixed value 0.5
of the constants ¢, h, Fy, Foy, F1o, @and Fy, Re has values in
the interval 0 <Re< 0.5 and wall expansion (contraction) s
has small values. Note that the solution strictly varies with
F and s small variation in F gives rise to significant changes
in error between the two solutions. Any small changes in
sand Re creates variation in F. For manipulated choices of
s, Re and different parts of F, it is suggested that F must be
unity or smaller in order to produce more accurate results.
In view of these restrictions, the analytical solution pro-
vides good results for bit larger values of the perturbation
parameters involved in the problem.

4.2 Normal velocity

Profiles of normal velocity are graphed in Fig. 3 and conse-
quences of different parameters are seen on it. The figures
are plotted for different s and Re and anti-symmetric pro-
files of the normal velocity are increased with decreasing
of s where s lies in the interval —0.5 <5< 0.5. Note that the
normal velocity vanishes at the midway of the channel
i.e.n=0.5, therefore, the flow properties are calculated at
the mid points of center line and upper plate. For all such
points, the two solutions are also compared to each other.
In Tables 3, 4, the analytical solutions are compared with
numerical solutions for small values of s and different Re.
However, it is noted that the differences between results
are negligibly small when 0<Re<0.8 and | s | <0.5. The
two solutions are also graphed in Fig. 3 which are exactly
overlapped. Moreover, the two solutions for this velocity
component are exactly same and the results are shown in
the respective figures.

4.3 Pressure distributions is compared
with classical model

The profiles of pressure distribution are plotted against
n for different s & Re. Note that we found a mathematical
relation for both normal and axial pressure gradients. It
is obtained by putting the expressions for u; and v, from
Eq. (6) into Eq. (3) and get the following results.
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Fig. 3 The normal velocity v, is graphed for different s when a Re=0.0025, b Re=0.0625, cRe=0.25, d Re=0.475

Table 3 The two solutions are Re Numerical solution Perturbation solution Percent error

shown for v;at #=0.2424 when

s=0.1and 0.5 s=0.1 s=0.5 s=0.1 s=0.5 s=0.1 s=0.5
0.0025 —0.1695 —0.2258 —0.169502 —0.225945 0.00118 0.05867
0.0625 -0.1788 —0.2385 —0.178824 —0.238640 0.01342 0.11103
0.2500 -0.2079 -0.2780 —0.207956 —0.278309 0.02693 0.11103
0.4750 —0.2427 -0.3252 —0.242915 —-0.325913 0.08851 0.21877
0.5000 —0.2465 -0.3304 —0.246799 —-0.331202 0.12115 0.24215

Table4 The two solutions are Re Numerical solution Perturbation solution Percent error

shown for v, at #=0.2424 when

s=—0.1and -0.5 s=—0.1 s=-0.5 s=-0.1 s=—0.5 s=-0.1 s=-05
0.0025 -0.1413 —0.0847 —0.141280 —0.0848361 0.014156 0.016043
0.0625 -0.1489 —0.0889 —0.148916 —0.0891006 0.010744 0.225139
0.2500 -0.1727 -0.1022 —0.172780 —0.1024270 0.046302 0.221621
0.4750 -0.2012 -0.1181 -0.201416 —0.1184190 0.107241 0.269382
0.5000 —0.2044 -0.1199 —0.204598 —0.1201960 0.096775 0.246264
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The non-dimensionalized axial pressure gradient is
defined bellow and normalized with ﬁ—z

h_36_p—1_ +£ _i(l_ ) +& 2 (39)
omox  glm T g¥n T g\ T )¥m T 16V

The appropriate definition for pressure rise per wave-
length is:

2z

d
Ap, = / ﬁdx. (40)

0

The pressure rise per wavelength (Ap,) is computed
by substituting the above approximations of the series
formi.e. FO = Fyy + sFy; and F1 = Fy + sFy;. By inserting
the approximated relations, the pressure rise per wave-
length is equipped with new quantities and the profiles

are graphed against volume flow rate (Q) in Fig. 4. Note
that the pressure rise per wavelength increases with the
increase of s. The profiles are changed linearly with Qand
these observations are confirmed from [17].

On the other hand Eq. (4) is used for evaluation of nor-
mal pressure gradient. The expressions for u,and v, are sub-
stituted into Eq. (6). Later on, y is used from Eq. (37) and
a standard relation is obtained for the pressure gradient.

0

04

-0.8

Fig. 5 Normal pressure gradient is graphed for different s

Fig.4 The graphs of pressure rise per wavelength against Q are shown (a) Re=9.0, F1=0.3, (b) Re =12.72, F1=0.025, c Re=12.72, F1=0, d

Re=12.6, F1=0.25 and matched with [17]
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Table 5 The two solutions are

o \E g Ty n Numerical solution Perturbation solution Percent error
shown for(%) = (%)
" A s=0.1 s=05 s=0.1 s=05 s=0.1 s=05
0.0100 —0.8020 -0.8118 —0.779433 —-0.802667 2.81385 1.12504
0.0240 —0.7584 -0.7673 -0.741064 —-0.760378 2.2659 0.9022
0.4760 —0.0021 —0.0021 —0.002310 —0.002190 10 4.2858
0.5240 —0.0021 —0.0021 —0.002310 —0.002190 10 4.2858
0.9760 —0.7584 -0.7673 —0.741064 —-0.760378 2.2859 0.9022
. a, \* h? op
h? dp, sRe /1 sRe /1 2 Table 5, solutions for(—") = (—")are compared. It
L =__(__7]>W +_(__;7) v, on Repv? \ dn
pv2 on 8 \2 T8 \2 m @1) is confirmed that the normal pressure gradient decreases
Re Re (1 with increase of s for|s| < 10.
+ ?Wnrl T g\ M JWann:

Remember that Eq. (4) is used for the solution of normal
pressure distribution. Later on it is integrated between 1/2
and n and used the boundary conditions given in Eq. (13).
However, Eq. (41) gives the non-dimensionalized form of
normal pressure gradient and it is scaled by Re. It is
graphed in Fig. 5 for different s. The normal pressure drop
vanishes at the midway of the channel for small s. In

=05 Re = 0.0025
Is=-0.5,-0.3,-0.1, 0.1, 0.3, 0.5

0 0.1 0.2 0.3 0.4 0.5
7
(@)
s=0.5 i
Re=0.25 _

s=-0.5,-0.3,-0.1, 0.1, 0.3, 0.5

N W B OO N O ©
L

-
T
L

o

5 Wall shear stress

We used Newton’s law of viscosity for evaluation of shear
stress. Effects of s and Re are calculated on shear stress:
The law has the following well-known mathematical form:

s=0.5 1
Re=0.0625

s=-0.5,-0.3,-0.1, 0.1, 0.3, 0.5 i

Re = 0.475
s=-0.5,-0.3, -0.1, 0.1, 0.3, 0.5

N W A OO0 O N ® ©O O

7

(d)

Fig.6 The shear stress profiles are graphed against # for different s and a Re=0.0025, b Re=0.0625, c Re=0.25 and d Re=0.475
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Table 6 The two solutions are Re Numerical solution Perturbation solution Percent error

shown for shear stresses when

n=0.2525,5=0.3,-0.3 s=0.3 s=-0.3 s=0.3 s=-03 s=0.3 s=-03
0.0025 3.4658 24934 3.46008 2.48758 0.165314 0.233962
0.0625 3.5879 2.5567 3.58118 2.55030 0.187648 0.250951
0.2500 3.9749 2.7567 3.95962 2.74629 0.385896 0.379057
0.4750 44528 3.0011 441374 2.98148 0.884960 0.658062

ou ov number (Re) and deformation ratio (s) of the channel have
= p<a—1 + 0—1 . (42)  been observed on the flow quantities. All results in the cur-
y X

The shear stress in the above equation is evaluated by
putting the expressions for u, and v,. The values of veloc-
ity components are noted in Eq. (6) and substituted into
Eq. (42) and we get:

‘E = ﬂ4ll/ym- (43)
where g, = 4HTUZ' In dimensionless sense, we have,
T
T=—=Y,,. 44
ba ' (44)

Effects of different parameters are illustrated on the
characteristics of the shear stress profiles in Fig. 6. For dif-
ferent s and fixed Re, the profiles are approaching zero
at the center line. It is noted that it is increasing with the
increase of s for —0.5<5<0.5. The shear stresses is also
increased with the increase of Re and it is changed line-
arly with #. The two solutions for z are matched in Table 6
for different values of Re and s=0.3. Only those numerical
values of 7 are considered for which the error between
the two solutions is of significant order. The numerical and
analytical solutions are matched for s=—0.3 and different
Re.

6 Conclusion

Viscous fluid flow in deformable and peristaltically mov-
ing walls in studied and different flows field properties are
examined for small values of deformation rate and wave
number. Set of variable is defined in such a way that the
governing partial differential equation are transformed
into a single ODE'’s with boundary conditions. New vari-
ables are formed and used for the simplification of the
equation of motion. Well-established approximations and
assumption are used for further simplification of modeled
equations. These simplification procedures helped us to
simplify the governing PDE’s and converted them into a
boundary value ODE, which is simplest one and easy to
solve. The joint effects of physical parameters i.e. Reynolds
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rent analysis give rise to considerable influence on flow-
field characters. Abrupt changes in pressure rise against
volume flow rate (Q) are noted for large Re and profiles
of [17] are also recovered. The solution of the last ODE is
attempted by two methods. The two different solution are
matched in different figures and tables and the two solu-
tion are same for small value of Re and s. The problem of
peristaltic flow in a channel of deformable walls is formu-
lated in a convenient form with the help of established
mathematical simulations and gives the bench mark solu-
tions. Moreover, effects of peristalsis and deformation are
analyzed independently and jointly.
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