
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1463 | https://doi.org/10.1007/s42452-019-1532-y

Research Article

Empirical compliance equations for conventional single‑axis flexure 
hinges

Yunsong Du1   · Tiemin Li2

Received: 8 April 2019 / Accepted: 17 October 2019 / Published online: 24 October 2019 
© Springer Nature Switzerland AG 2019

Abstract
In consideration of the stress concentration, unified compliance equations for conventional single-axis hinges are pre-
sented. The relationship between the stress concentration and the compliance of corner-filleted flexure hinges is first 
analyzed. Considering the stress concentration, coupled with a wide range of geometrical parameters, empirical compli-
ance equations for conventional flexure hinges, are then obtained by using the exponential model. Subsequently, the 
proposed equations are unified. To verify the validity and accuracy of these equations, the characteristics of a bridge-type 
flexure-based mechanism are then analyzed by the proposed equations and finite element analysis, respectively. The 
results of compliances and displacement amplification ratios obtained by these two methods are in good agreement. It 
demonstrates that the empirical compliance equations could be obtained by exponential model, and these equations 
can be unified.
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1  Introduction

A flexure hinge, coupled with elastically regions and rigid 
beams, is a thin member that provides the relative rota-
tion between two adjacent rigid beams [1]. These hinges 
possess notable benefits such as no hysteresis, no friction 
losses, no need for lubrication, and ease of fabrication 
[1–7]. Therefore, flexure hinges have been widely used in 
various areas, such as automobile and aviation industries, 
inertial navigation industries, biomedical industries, com-
puters and fiberoptics industries, and so on [8–13]. These 
hinges are the basic elements of the flexure-based mecha-
nisms, which can be applied to a wide range of applica-
tions. For example, accelerometers are key components 
of inertial navigation systems. In order to guarantee the 
accuracy of accelerometers, these flexure hinges are used 
to test accelerometer transverse sensitivity. In biomedical 
industries, they have been used to be key components of 

scanners. They are designed based on three piezoelectric 
actuators and several flexure hinges. In order to obtain 
high frequency in all three axes, a compact and rigid struc-
ture should be adopted.

The compliance of flexure hinges can influence the 
mechanical design, topology optimization, and dynamic 
accuracy of flexure-based mechanisms [14]. Thus, many 
compliance equations for flexure hinges have been 
obtained to reduce the compliance modeling errors of 
flexure-based mechanisms, including polynomial approxi-
mation method, Castigliano’s theorem, and empirical 
equations obtained from FEA [15, 16]. Paros and Weis-
bord [17] introduced compliance equations for circular 
hinges, and these equations were simply and accurate. 
Smith et al. [18] presented empirical equations for ellipti-
cal hinges, and the characteristics were then verified by 
FEA. The prototype hinges were fabricated by a CNC mill-
ing machine. Subsequently, the bending moment was 
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applied on the developed hinges, and the compliance of 
the hinge obtained by experiments was in good agree-
ment with the theoretical arithmetic derived from those 
equations. Tian [19] introduced dimensionless empirical 
equations and graph expressions of three kinds of flexure 
hinges. The relationship between performances and geo-
metrical parameters were then discussed, and empirical 
equations were obtained by the least square polynomial 
approximation method. At last, the characteristics of the 
three hinges were compared which could provide design-
ers with a thorough understanding of these hinges and 
flexure-based mechanisms. Lobontiu et al. [20] investi-
gated the characteristics of corner-filleted hinges. And 
compliance equations were obtained by employing the 
castigliano’s first theorem. The relationship between the 
performance derived from these equations and geometri-
cal parameters was then discussed. It indicated that the 
proposed equations were accurate and cost-effective. In 
addition, the theoretical results were compared to experi-
mental values, and the errors were less than 8%. Meng [21] 
focused on the corner-filleted flexure hinge, and its stiff-
ness/compliance equations were presented. According to 
the FEA results, three stiffness/compliance equations with 
a wide range of geometrical parameters were obtained 
to overcome the influence induced by shearing. The com-
parisons with FEA indicated that the proposed empirical 
stiffness/compliance equations could enlarge the range 
of hinge thickness to hinge length. In addition, it could 
also improve the accuracy under large deformation. Yong 
[22] focused on the characteristics of circular hinges, and 
discussed the difference of the various compliance equa-
tions by using FEA. These equations were derived by dif-
ferent methods, and could be used in certain conditions. 
A proper scheme was then proposed to choose accurate 
equations according to the comparison. Subsequently, 
the empirical compliance equations, coupled with a large 
range of hinge parameters (hinge thickness/hinge radius), 
were obtained.

However, these proposed methods ignore the influ-
ence of the stress concentration caused by changes in 
cross-section of flexure hinges, and few have got unified 
equations for conventional single-axis flexure hinges. In 
this work, the influence of the stress concentration caused 
by changes in cross-section is taken into account, and 
the empirical compliance equations can be determined 
by using FEA. Subsequently, the equations for different 
hinges determined by this method can be unified. In addi-
tion, the characteristics of a bridge-type flexure-based 
mechanism are discussed, which can verify the method 
and the corresponding equations.

The remaining sections are organized as follows. In 
Sect. 2, the compliance matrices of single-axis hinges are 
introduced. In Sect. 3, the relationship between stress 

concentration and the compliance of corner-filleted ones 
is discussed, and then the derivation of the empirical com-
pliance equations is described. In Sect. 4, the compliances 
of circular and rectangular ones are determined. In Sect. 5, 
unified empirical compliance equations are derived. In 
Sect. 6, amplification ratios of a flexure-based mechanism 
determined by FEA and empirical compliance equations 
are compared.

2 � Single‑axis flexure hinges

Single-axis flexure hinges, coupled with a constant width, 
contain corner-filleted, rectangular, elliptical, and so on. 
As illustrated in Fig. 1, a typical single-axis flexure hinge 
is comprised of the flexure hinge with a constant width 
and two rigid beams. The origin of the coordinate system 
xyz is located at the free end of the left rigid beam. The 
x-axis is in the longitudinal direction of the hinge, while 
the y-axis is in the height direction. Generally, the flexure 
hinge between the two rigid beams can be applied by a 
load with six components: two shearing forces, Fy, Fz; two 
bending moments, My, Mz; a force along the x-axis, Fx; and a 
moment around the x-axis, Mx. For two-dimensional appli-
cations, where all active and resistive loads are planar, only 
the in-plane components Mz, Fy and Fx have substantive 
effects on the flexure operation. The other components 
specified are out-of-plane agents that usually have a lesser 
magnitude, and therefore impact, on the flexure [1].

The deformation caused by the external load applied 
at the free end point a of the proposed hinge could be 
written as

where δ denotes the total deformation generated at the 
point a, F denotes an external load at the end point a, and 
C denotes the compliance.

Considering that the load, deformation, and compli-
ance is comprised of in-plane and out-of-plane submatri-
ces, the deformation can be also expressed as

(1)� = CF

Rigid beam

Flexure hinge

Fig. 1   External loads of the single-axis flexure hinge
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where δin = [δx, δy, αz]
T and δout = [δz, αy]T are the in-plane 

and out-of-plane deformation at the end point o, Fin = [Fx, 
Fy, Mz]T and Fout = [Fz, My]T are the in-plane and out-of-
plane external load, respectively.

The proposed two compliance matrices can be 
expressed as, respectively

where Cm−n denotes the compliance generated along the 
direction m caused by the load n.

3 � Corner‑filleted flexure hinges

Corner-filleted flexure hinges are very conventional. Their 
geometrical parameters are shown in Fig. 2. R denotes the 
radius of flexure hinge, t denotes the thickness, L denotes 
the length, W is the width, D is the depth, and H is the 
height.

(2)

[
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out

]
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in

0
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out
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(3)C
in =

⎡
⎢⎢⎣

Cx−Fx 0 0

0 Cy−Fy Cy−Mz

0 C�z−Fy C�z−Mz

⎤
⎥⎥⎦

(4)C
out =

[
Cz−Fz Cz−My

C�y−Fz C�y−My

]

3.1 � The influence of the stress concentration

The stress and strain distribution caused by the unit axial 
load should be first analyzed to investigate and explain the 
compliance calculation errors. Without loss of generality, 
L = 5 mm, W = 30 mm, R = 5 mm, t = 2 mm, and D = 10 mm. 
FEA model is carried on by the software ANSYS 14.0. As 
shown in Fig. 3, the left rigid beam is fixed, while the right 
rigid beam is free, and the load (1 N) is applied on the 
free end. The stress and strain of the surfaces with same 
colors are equal, and the surfaces with equal stress and 
strain are not vertical to the x-axis, and they are also not 
parallel to each other, which is inconsistent with the basic 
theoretical stress assumptions. The reason is that the cross-
section changes along the flexure hinge, which can affect 
the stress distribution, so that the basic theoretical stress 
analysis equations are no longer applied. Such changes in 
cross-section cause a local increase of stress, referred to as 
stress concentration. Therefore, the proposed stress con-
centration can lead to the compliance calculation errors.

To explain the phenomenon clearly, the axial stress 
distribution obtained by FEA and basic theoretical stress 
assumptions along the x-axis of a selected flexure hinge, 
can be compared in Fig. 4. The load (1 N) is applied on the 
free end, and the FEA stress is used as a benchmark for 
comparing with the theoretical stress. Compared with the 
theoretical values, the FEA values are larger at the loca-
tions where cross-section changes, which is in accordance 
with the distribution of the stress concentration.

As shown in Fig. 5, a corner-filleted one, coupled with 
particular rigid beams, must be selected to further inves-
tigate stress concentration. And it is comprised of three 
main parts: rectangle hinge with a constant width, rigid 
beams next to flexure hinge, and rigid beams away from 
flexure hinge. Then, the compliance proportions (ratios of 
total compliance) and compliance calculation errors of the 
second and third parts are discussed.

The compliance proportions and compliance calcula-
tion errors of the second parts are shown in Fig. 6. The 
compliance proportions of the three main compliance 
components increase, including bending compliance Fig. 2   Geometrical parameters of a corner-filleted flexure hinge

Fig. 3   FEA results: a stress distribution; b strain distribution
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Cα-Mz, shear compliance Cy-Fy and axial compliance Cx-Fx, 
as illustrated in Fig. 6a. And the axial compliance propor-
tions are much larger than other’s. As depicted in Fig. 6b, 
axial compliance calculation errors are relative large. While 
shear and bending compliance calculation errors increase 
first and then decrease sharply. In addition, when the value 
of t/L is more than 0.9, these two compliance calculation 
errors increase again.

The compliance proportion is multiplied by the compli-
ance calculation error as an evaluation factor. Figure 7a 
shows the evaluation factors of the second parts. It shows 
that the axial evaluation factors exhibit an increase from 

1.5 to about 6.5. These values are relative large, and stress 
concentration should be considered when calculating 
axial compliance. While the shear and bending evalua-
tion factors are almost zero, and thus the stress concentra-
tion can be ignored when calculating these compliances. 
In contrast, the evaluation factors of the third parts are 
depicted in Fig. 7b. It can be seen that the evaluation fac-
tors are all below 1, especially the evaluation factors of the 
bending compliance, which are almost zero. It indicates 
that the influence on these parts is small, and the stress 
concentration can be ignored. The reason is that the third 
parts are away from the hinge, and the cross-section is 
constant. Meanwhile, similar results can be derived when 
R/L changed due to the proposed reason, but not illus-
trated herein.

3.2 � Empirical compliance equations

According to the analysis above, we can see that the stress 
concentration should be considered when deriving the 
axial compliance equation, while it can be ignored when 
calculating the other compliance components. Subse-
quently, the compliance components of corner-filleted 
flexure hinges are then obtained by using FEA, the deri-
vation of these equations can be shown as follows.

3.2.1 � Axial compliance

Based on the previous analysis, to calculate the axial com-
pliance, both corner-filleted hinge and the rigid beams are 

Fig. 4   Axial stress distribution

Fig. 5   Corner-filleted flexure 
hinge with particular rigid 
beams

Fig. 6   Results of the second 
parts: a compliance propor-
tions; b compliance calculation 
errors



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1463 | https://doi.org/10.1007/s42452-019-1532-y	 Research Article

all considered. The restraint, geometrical parameters and 
external load of a selected corner-filleted hinge are shown 
in Fig. 8. External load is applied on surface D, and surface 
A is fixed.

Figure 4 shows axial stress distribution along the x-axis. 
We can see that it is comprised of two regions. One is a vari-
able region (above the straight line) related to the corner-
filleted hinge. The other one is a constant region (below the 
straight line) which is almost in accordance with the basic 
theoretical stress curve. The uniform distributed load is 
applied on the surface D of the hinge for keeping the defor-
mation of the rigid beams constant, and thus the deforma-
tion of the constant region can be derived easily. Meanwhile, 
according to the theories of mechanisms of materials, the 
equation involved all the geometrical parameters affecting 
the deformation of the variable region can also be obtained. 
Without loss of generality, α represents the total deforma-
tion of the selected hinge, αs denotes the deformation of 
the constant region (the rigid beams), and αx denotes the 
deformation of the variable region (the corner-filleted 
hinge). Then, the proposed deformations can be expressed 
as, respectively

(5)� = �s + �x

(6)�s =
FLt

ES
=

F(2R + L + 2W)

ED(2R + t)
=

PLt

E

(7)�x = k
PLmRi

Etj

where Lt denotes the total length, F is the axial load, S is the 
area, E is the Young’s modulus, and k denotes the constant 
coefficient which is independent of geometrical param-
eters, material properties and the loads; m, i and j are the 
indexes corresponding to the geometrical parameters.

The external load σ is 1 Mpa, as illustrated in Fig. 8. Defor-
mation generated along axial direction can be obtained 
by FEA. In addition, geometrical parameters are taken as 
W = 30 mm, D = 10 mm. Firstly, the hinge length is 5 mm, 
the hinge radius is 5 mm, and the value of t is varied from 
0.5 mm to 5 mm to analyze the relationship between t and 
αx, as shown in Fig. 9. It indicates that they have the expo-
nential relationship. The logarithm of the values of the hori-
zontal and vertical coordinate are obtained. And then least 
square method is applied. To obtain the unified dimension, 
the index is revised, and j = 0.6890. Then, the hinge length 
is 5 mm,the hinge thickness is 1 mm, and the value of R 
is varied from 1 mm to 10 mm to analyze the relationship 
between R and αx. Finally, the hinge radius is 5 mm, the 
hinge thickness is 1 mm, and the value of L is varied from 
0.5 to 5 mm to analyze the relationship between L and αx. 
Similarly, the index i and m can be obtained as 1.3129 and 
0.3761, respectively.

To get the proposed k, f(k) could be expressed as

(8)f (k) =

(∑
i

�xi − k
PLmRi

Et
j

i

)2

Fig. 7   Trends of evaluation fac-
tors: a the second parts; b the 
third parts

Fig. 8   Restraint, geometrical 
parameters and external load
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For minimizing f(k), k could be given as

The constant coefficient can be obtained as kt = 6.6585, 
kR = 7.0307 and kL = 6.9544 in terms of the relationship αx − t, 
αx R and αx L, and then the average value can be calculated 
as k = 6.8812. Hence, the total axial deformation and the axial 
compliance can be given as follows

3.2.2 � Bending compliance

According to the previous analysis, stress concentration can 
be ignored when calculating bending compliance. There-
fore, only the corner-filleted flexure hinge between the 
two rigid beams is selected. As shown in Fig. 8, a bending 
moment is impacted on the surface D, and the other three 
surfaces could be fixed. According to the theories of mecha-
nisms of materials, the equation involved all the geometrical 
parameters affecting θ can be written as

(9)k =

∑
i

�
pLmRi

Et
j

i

�xi

�

∑
i

�
PLmRi

Et
j

i

�2
.

(10)

� =
F

ED(2R + t)

[
6.8812 ⋅ R ⋅

(
R

t

)0.3129

⋅

(
L

t

)0.3761

+ L + 2W + 2R

]

(11)Cx−Fx =
1

ED(2R + t)

[
6.8812 ⋅ R ⋅

(
R

t

)0.3129

⋅

(
L

t

)0.3761

+ L + 2W + 2R

]
.

(12)� = k ⋅
M

ED
⋅

LmRi

tj
= K ⋅

P

E
⋅

LmRi

tj

where k is the constant coefficient which is independent 
of the geometrical parameters, material properties and the 
loads; m, i and j are the indexes corresponding to the geo-
metrical parameters.

Similarly, the deformation along the x-axis can be read 
by FEA directly. Geometrical parameters are selected as 
W = 30 mm,D = 10 mm. Firstly, the hinge length is 5 mm,the 
hinge radius is 5 mm, and the value of t is varied from 1 mm 
to 5 mm to analyze the relationship between t and θ, as 
shown in Fig. 10. To obtain the unified dimension, the index 
is revised, and j = 2.6676. The index m and i can be obtained 
as 0.4833 and 0.1843, respectively. According to the princi-
ple of minimizing variance, coupled with the relationships 
θ − t, θ − R and θ − L, the constant coefficients kt, kR and kL are 
derived. And then the average value can be calculated as 
k = 29.7502.

Fig. 9   Relationship between αx and t 
Fig. 10   Relationship between θ and t 

Therefore, the compliance equations of Cα−Mz can be 
expressed as

Similarly, the indexes corresponding to the geometrical 
parameters can be obtained by using exponential models 
and least square method. The indexes corresponding to 
the geometrical parameters t, L, and R can be obtained as 
2.6720, 0.7693 and 0.9027, respectively. While the constant 
coefficient can be obtained by the principle of minimiz-
ing variance, and it is 43.9226. The compliance equation 
of Cy-Mz can be expressed as

(13)C�−Mz =
29.7502

EDt2
⋅

(
L

t

)0.4833

⋅

(
R

t

)0.1843

.
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3.2.3 � Shear compliance

According to the previous analysis, stress concentration 
can be ignored when calculating shear compliance. There-
fore, only the corner-filleted flexure hinge between the 
two rigid beams is considered. Similarly, for the compli-
ance Cy-Fy, the indexes corresponding to the geometrical 
parameters t, L, and R can be obtained as 2.6547, 1.0770 
and 1.5777, respectively. The constant coefficient is 
75.3279. In addition, for the compliance Cα-Fy, the indexes 
corresponding to the geometrical parameters t, L, and R 
can be obtained as 2.6757, 0.7712 and 0.9044, respectively. 
The constant coefficient is 43.6875. Thus, Cy-Fy and Cα-Fy can 
be expressed as, respectively

3.3 � Validation

In order to verify the accuracy and validity of the empiri-
cal compliance equations derived above initially, the errors 
between the results calculated by empirical equations and 
FEA are analyzed. Without loss of generality, corner-filleted 
flexure hinges are selected. R = 10 m, L = 5 mm, W = 30 m, 
D = 10 mm, and the value of t is varied from 0.5 to 10 mm. 
Errors between the results derived from the empirical equa-
tions of main compliance components and FEA are illus-
trated in Fig. 11. The calculation errors of the three main 

(14)Cy−Mz =
43.9226

EDt
⋅

(
L

t

)0.7693

⋅

(
R

t

)0.9027

.

(15)Cy−Fy =
75.3279

ED
⋅

(
L

t

)1.0770(R
t

)1.5777

+
� ⋅ E

G
⋅ Cx−Fx

(16)C�−Fy =
43.6875

EDt
⋅

(
L

t

)0.7712

⋅

(
R

t

)0.9044

.

compliance components are all below 10%, and it proves 
that the values calculated by empirical equations are almost 
coincident with the FEA values.

4 � Circular and rectangular flexure hinges

Geometrical parameters of the rectangular flexure hinge are 
shown in Fig. 12, including the hinge length L, the hinge 
thickness t, the side height h, the width W, the total height 
H and the total depth D [23].

According to the method of deriving compliance equa-
tions for the corner-filleted flexure hinge, empirical com-
pliance equations for the rectangular flexure hinge can be 
expressed as [23] 

Geometrical parameters of the circular flexure hinge are 
shown in Fig.  13, including the hinge thickness t, the 
hinge radius R, the width W, the total height H and the 
total depth D [6].

Empirical compliance equations for circular flexure hinges 
in terms of stress concentration can be written as [6] 

(17)

Cx−Fx =
1

ED(2h + t)

[
4 ⋅ h ⋅

(
h

t

)0.0709

⋅
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+ L + 2W

]
,

(18)C�−Mz =
16.5350

EDt2
⋅

(
L

t

)0.8856

,

(19)

Cy−Fy =
5.2749

ED
⋅

(
h

t

)0.0124

⋅

(
L

t

)2.8996

+
� ⋅ E

G
⋅ Cx−Fx ,

(20)Cy−Mz = C�−Fy =
8.3802

EDt
⋅

(
L

t

)1.8826

,

(21)Cx−Fx =
1

ED(2R + t)

[
3.908R

(
R

t

)0.622

+ 2(R +W)

]

Fig. 11   Errors generated from empirical equations

W

H

D
L

t

h

Fig. 12   Geometrical parameters of the rectangular flexure hinge
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5 � Conventional single‑axis flexure hinges

The rectangular, circular, and corner-filled flexure hinges 
are especially conventional, and thus they have been 
widely used in applications. According to Sects. 3 and 4, 
we can see that the empirical compliance equations for 
conventional single-axis flexure hinges have similar forms, 
and therefore these equations can be unified. The axial 
compliance of conventional single-axis flexure hinges can 
be given as

where cx is the constant coefficient, H is the total height 
of rigid beams, Lz is the total length of flexure hinge, and 
fx(r,R,t) is the exponential model related to corresponding 
geometrical parameters.

The shear compliance of conventional single-axis flex-
ure hinges can be given as

where cy is the constant coefficient, and fy(r,R,t) is the 
exponential model related to corresponding geometrical 
parameters.

(22)C�−Mz =
16

EDt2

(
R

t

)0.43

(23)C�−Fy =
16.58

EDt

(
R

t

)1.427

(24)Cy−Fy =
17.3

ED

(
R

t

)2.412

+
�E

G
Cx−Fx

(25)C�−Fy =
16.55

EDt

(
R

t

)1.429

.

(26)Cx−Fx =
cxt

EDH

(
fx(r, R, t) + Lz

)

(27)Cy−Fy =
cy

ED
fy(r, R, t) +

�E

G
Cx−Fx

The bending compliance of conventional single-axis 
flexure hinges can be given as

where cz is the constant coefficient, and fz(r,R,t) is the 
exponential model related to corresponding geometrical 
parameters.

Similarly, the compliance equations of Cy-Mz and Cα-Fy 
can be expressed as

where cyz is the constant coefficient, and fyz(r,R,t) is the 
exponential model related to corresponding geometrical 
parameters.

6 � Applications

Corner-filleted flexure hinge are typical single-axis hinges, 
and thus they are chosen as basic elements of bridge-
type flexure-based mechanisms. These mechanisms can 
be used to constitute the piezo-driven stages to magnify 
the displacement of piezo actuators. The displacement 
of a piezo actuator is limited to several tens of microns, 
and thus applications with several tens to several hun-
dreds of microns require these bridge-type flexure-based 
mechanisms. Specifically, corner-filleted hinges with two 
rigid beams can be considered as a whole part which can 
be used to form the mechanism. As shown in Fig. 14, the 
developed mechanism is comprised of eight corner-fil-
leted hinges and several rigid beams. Its compliance and 
displacement amplification ratios are further investigated 
to verify the previous analysis.

Table 1 lists the key geometrical parameters and mate-
rial properties. The eight corner-filleted hinges with rigid 
beams possess same characteristics such as material, 
structure, and geometrical parameters.

(28)C�−Mz =
cz

EDt2
fz(r, R, t)

(29)Cy−Mz = C�−Fy =
cyz

EDt
fyz(r, R, t)

R DW

H
t

Fig. 13   Geometrical parameters of the circular flexure hinge Fig. 14   Structure of the developed mechanism
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As the boundary conditions of the developed mecha-
nism can be easily determined, coupled with the charac-
teristics of flexure-based mechanisms, the results obtained 
by FEA must be accurate. FEA is carried on by the software 
ANSYS 14.0. As shown in Fig. 15, there are four main sur-
faces, two input points and a displacement output point. 
The displacement output point is on the surface D, while 

the two input points are on the surface A and C, respec-
tively. External forces can be applied on the two input 
points.

The characteristics of the developed flexure-based 
mechanism depend on angle θ when the length of the 
mechanism is fixed. The comparison between the the-
oretical value derived from the empirical compliance 
equations and the FEA value is studied, and the results 
are shown in Fig. 16. As shown in Fig. 16a, an exponen-
tial relationship exists between the input compliance and 
the angle θ. As illustrated in Fig. 16b, the output compli-
ance of the mechanism will increase when the value of θ 
increases, and they maintain a linear relationship. Gener-
ally, the theoretical results are in accord with FEA results, 
and it proves that the empirical compliance equations 
are accurate.

The amplification ratios of the developed flexure-
based mechanism are determined by FEA and the 
empirical compliance equations. The theoretical arith-
metic contains the values in terms of the rigid beams 
and that without rigid beams. And the results obtained 
by the two methods are illustrated in Fig. 17. There are 

Table 1   Characteristics of the 
developed mechanism

Characteristics

Young’s modulus, E (GPa) 210
Poisson’s ratio, ν 0.30
a (mm) 30
b (mm) 37.5
d (mm) 30
l(mm) 145
L (mm) 5
t (mm) 2
R (mm) 5
W (mm) 5
D (mm) 10

Fig. 15   Detail of the developed 
mechanism

1F 2F

Output point

Input point Input point

Surface D

Surface B

Surface CSurface A

Fig. 16   Compliance of the 
amplify mechanism: a input 
compliance; b output compli-
ance



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1463 | https://doi.org/10.1007/s42452-019-1532-y

three wave lines. For the black line, it indicates that the 
amplification ratios determined by ignoring the rigid 
beams increase when the value of θ is less than 2.5, and 
then they decrease when the value of θ is more than 2.5. 
For the blue and red lines, they almost coincide, and 
they increase first and then decrease. In addition, when 
the value of θ is less than 3, the theoretical ratios deter-
mined in terms of the rigid beams is smaller than the 
ratios determined by FEA. By contrast, when the value 
of θ is over 3, the theoretical ratios are larger. What’s 
more, the theoretical ratios determined in terms of the 
rigid beams are in accordance with the ratios deter-
mined by FEA, while the theoretical ratios determined 
without the rigid beams are much larger than their 
ratios. It demonstrates that the rigid beams should be 
considered when calculating the amplification ratios 
of this developed flexure-based mechanism, and the 
proposed compliance method and the corresponding 
equations are accurate.

7 � Conclusions

According to the analysis of stress concentration, the 
relationship between the deformation and geometrical 
parameters can be obtained, and thus the exponential 
model is proposed. Based upon, the empirical compliance 
equations for three hinges and the conventional hinges 
are determined. A bridge-type flexure-based mechanism 
is then designed by using eight hinges with rigid beams. 
Its characteristics are then determined by FEA and these 
equations. From what we have discussed above, we can 
easily arrive at the following conclusions:

1.	 For single-axis flexure hinges, stress concentration is 
in relation to the axial compliance but not in relation 
to the bending compliance and shear compliance.

2.	 For single-axis flexure hinges, empirical compliance 
equations determined by exponential model can be 
unified.

3.	 The amplification ratios calculated by FEA are in 
accordance with the theoretical arithmetic derived 
from empirical equations. It indicates that the compli-
ance calculation method and the corresponding equa-
tions are valid.
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