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Abstract
The main idea of this study is to investigate and compare the efficiency of the dynamic relaxation methods (DRMs) in 
the form-finding of tensile membrane structures (TMSs). The form-finding process as a main stage in the design and 
construction of TMSs has been considered for finding an equilibrium configuration subjected to a specific prestress dis-
tribution. DRMs as a pseudo-dynamic analysis are an explicit iterative technique for the nonlinear analysis of structures. 
In the techniques, the static equilibrium of structures is solved by integrating the pseudo-dynamic equations in order 
to obtain the steady state of the pseudo-dynamic problem. In this study, the efficiency and generality performance of 
DRMs are compared through solving three selected TMSs. In order to achieve this purpose, seven schemes of the DR 
approach are selected based on combining the fictitious parameters including the time step, diagonal mass, and damp-
ing matrices which were proposed in the previous studies. Furthermore, a reference index is proposed by combining the 
total number of iterations and the overall duration of analysis in order to appropriately compare the schemes of the DR 
approach in the form-finding of TMSs.

Keywords  Tensile membrane structures · Dynamic relaxation method · Form-finding · Nonlinear analysis · Reference 
index

1  Introduction

Tensile membrane structures (TMSs) are well known as 
lightweight and cost-effective structures that are used for 
long span roofing components, such as buildings, stadi-
ums, and exhibition halls. Along with structural stability, 
TMS(s) attain an aesthetic architectural form [1, 2]. The 
coated fabrics utilized in the construction of a TMS are 
unable to resist flexure and shear forces. However, these 
materials can reduce not only temperature but also the 
costs of maintenance due to their self-cleaning properties. 
Such structures are able to tolerate external events through 
their membrane prestress in plane and anticlastic surface 
curvature. TMSs in comparison with traditional roofing 
materials also bear a lower structural load and more earth-
quake resistance produce due to the membrane’s elasticity. 

The stages of form-finding, static analysis, and patterning 
are considered as the preliminary design procedure of a 
TMS [3]. Furthermore, the initial design of a TMS includes of 
two primary steps: (1) determining an equilibrium form of 
a TMS and (2) implementing analysis of the form subjected 
to its service condition loads [4].

The surface geometry (i.e., form) of a TMS is not known 
a priori and so poses a challenge for designers. Hence, 
the form-finding process can determine the optimal form 
of structures which then satisfies the constraints of both 
architectural and mechanical requirements. To find the 
optimal form of a TMS with given boundary conditions, 
an initial prestress load is applied in both directions includ-
ing the warp and fill yarns in the fabric. A unique shape, an 
equilibrium stress state subjected to the prestress load and 
defined boundary conditions are adopted for the flexible 
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surface. Figure 1 provides an example of the form-finding 
process.

In order to implement the form-finding process, sev-
eral numerical methods have been proposed, such as the 
force density (FD) method [5], dynamic relaxation method 
(DRM) [6, 7], updated reference strategy [8] and particle 
spring systems [9]. At first, these methods were adopted 
and developed for implementing the form-finding of pre-
stressed membrane structures. In recent years, significant 
methods have been developed and several improvements 
have been proposed. To find the equilibrium form of mem-
brane structures, Sheck [10] introduced a simple linear 
method based on force densities. In this method, it was 
assumed that a structure can be modeled and considered 
by cable networks. Employing the surface stress density 
method as an iterative procedure, Maurin and Motro [11] 
proposed a new form-finding method for TMSs. In the 
surface stress density method, an isotropic stress tensor 
and an iterative procedure were considered for triangular 
elements. By achieving the convergence of the procedure, 
configurations were concluded that satisfy the conditions 
of the static equilibrium laws. Sanchez et al. [12] presented 
a novel approach for the conceptual design of fabric tensile 
structures. In order to obtain preliminary shapes of tensile 
structures, the proposed approach combined a form-find-
ing method with a surface fitting approach. With the FD 
method, the value of force density often depends on the 
researcher’s experience and can only be determined after 
several trial calculations. Hence, Ye et al. [13] introduced 
a modified FD approach for the form-finding of mem-
brane structures. According to their method, membrane 
stress and cable tension were utilized as initial conditions 
instead of as the assumed value of FD approach (i.e., the 

quantitative relationships between membrane stress, cable 
tension, and force density were established), and the unbal-
anced force of each node was employed to control the 
error. Barnes [14] described a DRM-based numerical proce-
dure with kinetic damping (called the kinetic DRM) for the 
form-finding, analysis, and fabrication patterning of TMDs. 
In the kinetic DRM, damping factor is equal to zero. Passing 
from a peak point of the kinetic energy diagram indicates 
that the kinetic energy has a reducing trend. Using the 
result of this time leads to divergence process. From the 
viewpoint of a practicing membrane engineer, Wakefield 
[7] reviewed the selection and application of appropriate 
analysis techniques and demonstrated that DRM may be 
considered as the preferred form-finding method. Lewis 
[15] discussed the advantages and limitations of three 
approaches, namely transient stiffness, FD, and DRM. In 
addition, the study provided insight into their applicabil-
ity as the numerical tools of design in fabric structures. 
Recently, Alic and Persson [16] introduced a form-finding 
method established by a hybrid of DRM and isogeometric 
membrane elements. The elements were developed based 
on non-uniform rational B-splines (NURBS). The results of 
this study revealed that the discretization and shape of 
elements effectively impressed on the form-finding. This 
procedure can be used to quickly find form-finding since, 
in NURBS’ description of the curved geometry well, form-
finding may be performed with a coarse mesh. Other engi-
neering problems have also demonstrated the successful 
application of isogeometric analysis [17, 18].

The main contribution of the present study is to investi-
gate the effectiveness of different DRM-based strategies in 
the form-finding of TMSs. In the DRM techniques, the ficti-
tious mass, damping, and time step factors impress on their 
stability and speed of convergence. Hence, the efficiency 
and generality performance of DRMs based on combin-
ing the proposed fictitious parameters including the time 
step, diagonal mass, and damping matrices are compared 
through solving three selected TMSs. Furthermore, a ref-
erence index as an efficient criterion is proposed by the 
combination of the total number of iterations and overall 
analysis duration. The results show that the reference index 
can be adopted for comparing the generality performance 
of DRMs. In addition, the DR approaches can be efficiently 
used as a suitable tool in the form-finding of TMSs.

2 � Standard dynamic relaxation approach

Day [19] first introduced the dynamic relaxation (DR) 
approach whose theory was developed and details pre-
sented in the studies by Barnes [6], Lewis [1], and Topping 
and Ivanyi [20]. In the finite element method, the vector of 

Fig. 1   Form-finding of a TMS. Starting with the geometry at the top 
and ending up with the form-found hypar, at the bottom, where all 
nodes are in equilibrium
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displacements X can be obtained through the vector of 
nodal loads P and structural stiffness matrix S, as follows:

In the nonlinear analysis of structures, the stiffness 
matrix S(X) is expressed as a function of displacements. 
The nonlinear system of structures can be solved by an 
iterative procedure. Hence, DRM was introduced as an 
explicit iterative technique for this purpose. In the DR 
technique, the static state of Eq. (1) is converted into the 
artificial dynamic state by adding artificial fictitious inertial 
and damping forces, as follows:

where Mn and Cn are the fictitious mass and damping 
matrices in the nth iteration of DRM, respectively. 𝐗̈n and 
�̇n are the acceleration and velocity vectors in the nth 
iteration of DRM, respectively. For the simplicity of this 
method, the matrices are always assumed as a diagonal 
matrix.

The DR technique was formulated based on the sec-
ond-order Richardson method and was considered as 
the response of the steady state in an artificially dynamic 
system [21]. The fundamental relationships of the explicit 
DRM are obtained by the central finite difference tech-
nique as follows [22]:

where tn, mn
ii
 and cn

ii
 are considered as the fictitious time 

step, ith diagonal element of fictitious mass, and damping 
matrices in the nth iteration of DRM, respectively. Also, q 
is the number of degrees of freedom and rn

i
 is the residual 

force of the ith degree of freedom. The vector of the resid-
ual force �n is defined in the nth iteration as:

In order to achieve the numerical stability of the DR 
approach, the fictitious matrix M is calculated based on 
the Gershgorin theorem as follows [22]:

Furthermore, the critical damping is obtained for ficti-
tious damping as follows:
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where �min is the lowest frequency of structure, which is 
calculated based on the Rayleigh principle:

By assigning an acceptable residual error, � , the DRM can 
be converged to the solution of Eq. (1). Therefore, the algo-
rithm of the DRM can be expressed as:

(1)	 Defining �, �0, �̇−1∕2 = � and t0.
(2)	

(3)	 Calculating the internal force vector and applying 
boundary conditions.

(4)	 Determining the residual forces, artificial mass and 
damping matrices.

(5)	 Updating the time step t.
(6)	 Calculating �̇n+1∕2 and �n+1.

(7)	 If ‖‖�n+1‖‖ ≤ �, stop the DR algorithm.
(8)	

(9)	 If n ≤ nmax, continue the iteration of the DRM from 
the step (3).

3 � Modifications of the standard DRM

The iterations are inherently unstable in the standard DRM 
because the numerical time integration is utilized for solving 
the differential equations of motion [23–26]. Hence, the sta-
bility of DRM depends on fictitious parameters including the 
time step, diagonal mass, and damping matrices. Therefore, 
new techniques have been proposed for calculating these 
fictitious parameters. In the following section, some of the 
selected techniques are expressed.

3.1 � Optimal time step

Kadkhodayan et al. [27] proposed an optimal time step 
based on minimizing residual forces. In this study, the fol-
lowing relation was introduced for the rate reduction in the 
nodal residual forces’ sum of squares, ZR:

The following internal forces at time tn + Δt are also 
obtained using the finite difference technique:

In Eq. (10), the rate of changes in the internal forces (i.e., 
ḟ n+1∕2 ) is approximately assumed to be 
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the minimization of parameter ZR, the optimum time step 
is obtained as:

It should be noted that the second-order derivative of 
ZR with respect to tn+1 is always positive so that Eq. (11) 
produces the highest convergence rate. Sometimes, an 
extremely small or a very large value is obtained for the 
time step, which may cause numerical instability [25].

3.2 � The modified DRM

Rezaiee-Pajand and Alamatian [23] proposed a modified 
DRM, called mdDR, based on minimizing the error of dis-
placement between two iterations in which DRM obtains 
the convergence. In the mdDR technique, the new formu-
las were proposed for the fictitious mass and damping. In 
the nth iteration of the DR technique, the displacement 
error can be defined as follows:

where X∗ is the answer of Eq. (1).
By minimizing the displacement error and assuming 

the constant value for the fictitious time step, the fictitious 
mass is defined as follows:

For each of freedom degrees, the diagonal elements of 
the fictitious damping matrix are also determined as [21]:

In fact, the mdDR technique can enhance the conver-
gence rate of DRM and can reduce its computational cost 
[23].

3.3 � Fictitious damping factor technique

The artificial damping factor is presented as the lowest 
eigenvalue (or minimum frequency) of the artificial dynamic 
system. Furthermore, many researches have employed the 
Rayleigh principle for obtaining the upper bound of the low-
est eigenvalue, �min. Thus, the quick convergence of the DR 
technique can be obtained by exploiting a better evalua-
tion of �min [24]. Based on this concept, Rezaiee-Pajand and 
Sarafrazi [21] and Sarafrazi [28] proposed a new scheme for 
finding �min , which used a combined step from the power 
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iterative scheme. In fact, the power iterative process can con-
verge on the highest eigenvalue. Assuming a as the upper 
bound of the highest eigenvalue, the lowest eigenvalue 
of �−1� can be obtained by applying the power iterative 
method on the matrix [�−1� − a�] . The works by Rezaiee-
Pajand and Sarafrazi [21] and Sarafrazi [27] demonstrated 
that this approach is superior than the modified DRM for 
selection of the fictitious mass, i.e., Equation (13). Therefore, 
Rezaiee-Pajand and Sarafrazi [21] introduced this strategy 
for updating the damping factor as:

where u is the eigenvector of �−1�. This proposed scheme 
is started from �0 = � and �0 = 1.

It should be noted that the lowest eigenvalue is first 
obtained from Eq. (16) and is compared with that of Rayleigh 
concept. Finally, the minimum value is utilized for updating 
the artificial damping factor.

3.4 � Residual energy minimizer time step

By minimizing the unbalanced energy function in each 
iteration, Rezaiee-Pajand et al. [25] introduced a new ficti-
tious time step. Based on their study, the residual energy 
of a structural system can be expressed as a function from 
the residual force and displacement vectors. Thus, in the 
n + 1th iteration of the DR technique, this function (i.e., UBE) 
is obtained from the following formula:

By replacing out-of-balance force from Eq. (5), the func-
tion UBE can be expressed as:

Therefore, the unbalanced energy function defined in 
Eq. (18) is minimized respect to the time step and the fol-
lowing two values are concluded as:
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For minimizing the UBE function, the second-order 
derivative of UBE respect to the fictitious time step is 
greater than zero:

Thus, one of two values of Eq. (19) is selected based 
on the satisfaction of the condition which is introduced 
in Eq. (23).

4 � Finite element method for the nonlinear 
analysis of TMS

This section presents the finite element method for the 
nonlinear analysis of TMSs. For this purpose, the plane-
stress triangular element is employed for describing three-
dimensional membranes. Furthermore, the approach for 
obtaining the geometric stiffness matrix of membrane 
structures is presented.

4.1 � The plane‑stress triangular element

In this section, the stiffness matrix and force vector of 
the plane-stress triangular element (Fig. 2) are presented 
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in the global 2-D coordinate system [29]. In this study, a 
local coordinate system is first assumed for each element 
in the 3-D membrane structures. It should be noted that 
this approach shall be referred to as the local coordinate 
system of the element.

As seen from Fig. 2, the displacement vector of the ele-
ment nodes is expressed as:

For the plane-stress case, a linearly elastic stiffness 
matrix as a constant matrix is obtained, which is a 6 × 6 
two-dimensional stiffness matrix as [29]:

with

where h and A are the thickness and area of the element, 
respectively. E and v are Young’s modulus and Poisson’s 
ratio of material. Also, the parameters of b and c are 
expressed as:

The nodal force vector for each element in the local coor-
dinate system is also defined as:

where �x , �y and �xy are the stresses of plane elasticity.
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Fig. 2   Plane-stress triangular element
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4.2 � The geometric stiffness matrix of plane‑stress 
triangular element

For each triangular element, a geometric stiffness matrix is 
defined based on the gradient of the nodal force vector Fe 
(Eq. 28) as [30]:

where

In fact, the explicit elastic and geometric stiffness matri-
ces are provided by using Eqs. (25) and (30) for plane elastic-
ity problems. In the next stage, three-dimensional rotational 
effects of each element should be considered. This issue is 
expressed in the following section presents.

4.3 � Geometric stiffness matrix in 3‑D space

The tangential stiffness matrix of a TMS includes of three 
components in the three-dimensional space. The elastic 
stiffness matrix is adopted as the first component and is 
obtained in the 2-D plane-stress stiffness based on Eq. (25). 
For this purpose, columns and rows of zeroes are added 
the stiffness matrix in the appropriate location. In fact, 
the columns and rows are assumed for the local z-coor-
dinate. Based on the in-plane geometric stiffness matrix, 
the second component is obtained from the plane-stress 
stiffness matrix defined in Eq. (29). The out-of-plane geo-
metric stiffness matrix is assumed as the third component 
and is expressed as the geometric effect. This component is 
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et al. [30]. For describing the geometric effect, small rigid 
rotations are assumed and the change in the nodal force 
vector of element is computed in this approach. Hence, the 
geometric effect is constructed by using the relationship 
from rigid body mechanics [30]. According to the relation-
ship, a small rigid body rotation shown by the vector � is 
first assumed, and then the change of vector F can be pre-
sented as:
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Fig. 3   Triangular finite element 
in its local coordinate system 
[30]
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The more detail of this approach can be found in Spill-
ers et al. [30].

5 � Form‑finding procedure of TMS

In this study, the form-finding procedure of TMSs is pre-
sented using the DR approaches with the finite element 
theory mentioned above. For achieving this purpose, seven 
schemes of the DR approach are selected and their efficiency 
is compared in terms of the total number of iterations and 
the overall duration of analysis. In the schemes, the combi-
nation of DRM modifications are considered based on the 
combination of the fictitious time, mass, and damping which 
are presented in  Sect. 3. The schemes are given in Table 1.

It is noted that the fourth and seventh schemes are 
proposed in this study. To compare the performance and 
efficiency of the schemes, the criteria proposed by Rezaiee-
Pajand et al. [24] are used. The efficiency degree for the 
number of iterations, Ei

I
, and the one related to the analysis 

duration, Ei
T
, as the criteria are calculated as follows:

where Ii and T i are the total number of iterations and the 
overall duration of analysis for ithe DR scheme, respec-
tively. According to the criteria, zero value represents 
the scheme with the highest number of iterations (or the 
analysis duration is high). In other words, the grade 100 
represents the DR technique with the lowest number of 
iteration and time [24].

In this study, a reference index (RI) is introduced by com-
bining the criteria presented based Eqs. (37) and (38) in 

(37)Ei
I
= 100 ×

(
Iimax − Ii

Iimax − Ii
min

)

(38)Ei
T
= 100 ×

(
T i
max − T i

T i
max − T i

min

)

order to obtain an overall comparison. The RI parameter is 
obtained by calculating the average of the criteria as:

In fact, the criterion can be efficiently used as an appropri-
ate and convenient criterion instead of two criteria. A higher 
value of the RI parameter represents the scheme with the 
highest performance.

6 � Illustrative examples

The schemes of DRM shown in Table 1 were applied to 
three different examples. All DR schemes were pro-
grammed in FORTRAN and calculations were carried out 
on the computer with processor AMDE-450 1.65 GHz, 4 GB 
RAM. The acceptable residual error (i.e. ε) was same for 
all solutions and was assumed to be equal to 10−4. In all 
examples, the structure was discretized using triangu-
lar elements, and the surface topology was defined by 
a trial shape which is used in the first step of the form-
finding analysis .

6.1 � Spherical cap

The spherical cap shown in Fig. 4 was considered as the 
first example. A Young’s modulus of 10,000 ksi and a 
Poisson’s ratio of 0.3 are assumed for the structure. The 
spherical cap has a radius of 4.76 in, a central angle of 10.9 
degrees and a thickness of 0.01,576 in. The initial prestress 

(39)RI =
Ei
I
+ Ei

T

2

Table 1   Schemes of the DR technique

Scheme Fictitious parameters

Mass Damping Time

DRM 1 Equation (6) Equation (7) tk= 1
DRM 2 Equation (6) Equation (7) Equation (11)
DRM 3 Equation (6) Equation (7) Equation (19)
DRM 4 Equation (13) Equation (16) tk= 1
DRM 5 Equation (13) Equation (7) tk= 1
DRM 6 Equation (13) Equation (14) tk= 1
DRM 7 Equation (13) Equation (16) Equation (19)

Fig. 4   Spherical cap
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values in the warp and fill directions is assumed equal to 
2500 ksi. The form-finding of the structure is investigated 
subjected to two loading conditions: Case (1) 10 kip forces 
acting at nodes 1, 11, 12, 13, 14, 15, 16, and 17 along the 
negative Z-direction; and Case (2) 10 kip forces acting at 
nodes 1 to 17 along the negative Z-direction. The border 
nodes are fixed.

Tables 2 and 3 provide the results of the form-finding 
procedure for the two loading cases. The RI parameter is 
able to compare the DR schemes. As shown in Table 2, 
schemes 2, 3, 7 are the best techniques for solving the 
Case 1 loading condition. However, based on Table 3, for 
the Case 2 loading condition, it is obvious that schemes 5 
and 6 are able to solve the form-finding of the structure. 

Table 2   Comparing the results 
of the DR schemes for the 
loading condition Case 1

Scheme Number of iterations in each load-
ing step loading

Ii Ei
I

T i(s) Ei
T

RI

1 2 3 4

DRM 1 63 57 55 54 229 0 1.41 22.97 11.48
DRM 2 33 27 28 31 119 100 1.04 72.97 86.48
DRM 3 31 33 31 36 131 89.09 0.84 100 94.55
DRM 4 38 35 36 38 147 74.54 1.26 43.24 58.89
DRM 5 60 55 53 52 220 8.18 1.58 0 4.09
DRM 6 54 50 48 47 199 27.27 0.92 89.18 58.22
DRM 7 30 36 42 39 147 74.54 0.84 100 87.27

Table 3   Comparing the results 
of the DR schemes for the 
loading condition Case 2

Scheme Number of iterations in each load-
ing step loading

Ii Ei
I

T i(s) Ei
T

RI

1 2 3 4

DRM 1 41 39 39 41 160 6.25 1.04 38.63 22.44
DRM 2 37 39 38 38 152 56.25 1.05 36.36 46.310
DRM 3 39 38 40 41 158 18.75 1.21 0 9.38
DRM 4 41 38 41 41 161 0 0.96 56.81 28.41
DRM 5 36 35 36 40 145 100 0.87 77.27 88.63
DRM 6 37 38 38 38 151 62.50 0.77 100 81.25
DRM 7 38 36 38 38 150 68.75 1.00 47.72 58.23

Fig. 5   Form-finding model of the spherical cap subjected to the loading condition Case 1
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For the membrane structure subjected to two load-
ing conditions, the models of the form-finding obtained 
based on all DR schemes are same. The models are shown 
in Figs. 5 and 6. 

6.2 � A fat stretched membrane

The second test case is the flat stretched membrane 
shown in Fig.  7. The Young’s modulus of material 
is 30,000 ksi and the Poisson’s ratio is 0.3 for the flat 
stretched membrane. The thickness of this structure 
is set equal to 0.004167 in. The initial pre-stress values 
in the warp and fill directions is considered as 80 ksi. In 
this example, the form-finding procedure of the struc-
ture is  subjected to two loading conditions: Case (1) 
100 kip forces acting at nodes 1–9 along the negative 
Z-direction; and Case (2) 10 kip forces acting at nodes 2, 
4, 5, 6 and 8 along the negative Z-direction. The border 
nodes as nodal supports are fixed.

For the two loading cases, Tables  4 and 5 compare 
the results of the DR schemes in the form-finding proce-
dure. Tables 4 and 5 also provide the RI parameter of the 
schemes. Table 4 indicates that the schemes 2, 5, and 6 can 
be adopted as the suitable methos for the Case 1 loading 
condition. Furthermore, for the Case 2 loading condition, 
Table 5 clearly shows that schemes 2, 5, and 6 outperform 
the other DR schemes for the form-finding of the structure. 

The DR schemes obtained the same form-finding for the 
membrane structure subjected to two loading conditions. 

Fig. 6   Form-finding model of the spherical cap subjected to the loading condition Case 2

Fig. 7   Flat stretched membrane

Table 4   Comparing the results 
of the DR schemes for the 
loading condition Case 1

Scheme Number of iterations in each load-
ing step loading

Ii Ei
I

T i(s) Ei
T

RI

1 2 3 4

DRM 1 68 70 72 73 283 64 1.68 41.57 52.79
DRM 2 70 59 69 70 262 92 1.44 68.54 80.27
DRM 3 78 70 93 84 325 8 2.05 0 4
DRM 4 70 70 71 71 282 65.33 1.77 31.46 48.39
DRM 5 71 65 57 65 283 64 1.16 100 82
DRM 6 69 59 63 65 256 100 1.41 71.91 85.96
DRM 7 82 86 74 89 331 0 1.88 19.10 9.55
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Table 5   Comparing the results 
of the DR schemes for the 
loading condition Case 2

Scheme Number of iterations in each load-
ing step loading

Ii Ei
I

T i(s) Ei
T

RI

1 2 3 4

DRM 1 68 70 72 73 283 64 1.9 20.95 42.48
DRM 2 70 59 62 70 262 92 1.44 64.76 78.38
DRM 3 78 70 93 84 325 8 2.12 0 4
DRM 4 70 70 71 71 282 65.33 1.55 54.28 59.81
DRM 5 71 65 57 65 258 97.33 1.2 87.62 92.48
DRM 6 69 59 63 65 256 100 1.07 100 100
DRM 7 82 86 74 89 331 0 1.91 20.00 10

Fig. 8   Form-finding model of the flat stretched membrane subjected to the loading condition Case 1

Fig. 9   Form-finding model of the flat stretched membrane subjected to the loading condition Case 2
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Figures 8 and 9 present the form-finding model of the flat 
stretched membrane subjected to the Case 1 and 2 load-
ing conditions, respectively. 

6.3 � Practical example: Kresge auditorium

The efficiency of the DR schemes was further tested on a 
real structure. The roof of the Kresge auditorium at MIT, 
shown in Fig. 10, was constructed using a TMS and sup-
ported at three points. The shape of the building in plan 
was scaled from drawings, as well as the height of the 
parabolic openings along the borders.

These are the fixed nodes which were used in the DR 
schemes. While the plan dimensions and fixed elevations 
were based on the Kresge auditorium, the prescribed load 
and other parameters were chosen arbitrarily to generate 
a shape just for the purposes of visualization. The Young’s 
modulus was considered as 10,000 ksi while the Poisson’s 
ratio was 0.3. The thickness of this structure was taken as 
0.01576 in. The initial prestress values in the warp and fill 
directions was assumed equal to 300 ksi. The load was 
applied at inner joints, which was equal to 10 kip.

Table 6 presents the comparison of the results of the 
DRM schemes in the form-finding procedure. The RI 
parameter of the schemes is also shown in Table 6.

As obvious from Table 6, the schemes 4, 3, and 2 are 
the best techniques. The schemes of DRM found the same 
form-finding for the membrane structure. The form-find-
ing model of the Kresge auditorium is shown in Fig. 11.

7 � Discussion

In order to evaluate and compare the performance of dif-
ferent DR schemes in the form-finding of TMSs, the pre-
sent study calculated the RI average of each scheme by 
using the results of the examples. Table 7 provides the 
value of the RI average of the schemes.

Column Gi lists the grades of each scheme based on 
the RI average. Based on the value of the RI average, the 
schemes are graded from one to seven, as indicated in 
Table 7. According to the obtained grades, the higher rank-
ing schemes with the good performance are schemes 2, 6, 
4, and 3, respectively. Furthermore, scheme 1 (i.e., standard 
DRM) shows the worst performance.

Fig. 10   Kresge auditorium [31]

Table 6   Comparing the results 
of the DR schemes for the 
form-finding of the Kresge 
auditorium

Scheme Number of iterations in each loading 
step loading

Ii Ei
I

T i(s) Ei
T

RI

1 2 3 4

DRM 1 126 127 137 173 563 0 1.92 39.53 19.77
DRM 2 58 89 81 100 328 74.84 1.56 67.44 71.14
DRM 3 49 83 89 101 322 76.75 1.24 92.25 84.49
DRM 4 49 54 60 81 249 100 1.14 100 100
DRM 5 118 121 130 165 534 9.24 1.85 44.96 27.09
DRM 6 106 113 124 160 503 19.11 2.35 6.21 12.65
DRM 7 72 98 150 215 535 8.98 2.43 0 4.46
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8 � Conclusions

The present study investigated the assessment of the effi-
ciency of different DRMs which were used for the form-
finding of TMSs. To achieve this purpose, the comparison 
was implemented based on the following criteria: the total 
number of iterations, the overall duration of the analysis, 
and a proposed reference index (RI). The current work 
introduced the proposed RI by combining the total num-
ber of iterations and the overall duration of analysis. Based 
on the results of the illustrative examples, the following 
conclusions were obtained:

•	 The results confirm that comparing both the total 
number of iterations and the overall duration of anal-
ysis is not appropriate for the purposes of the study. 
Hence, the proposed RI criterion instead of two criteria 
is adopted as the best criterion for assessing the effi-
ciency of different DRMs.

•	 In the more cases of the study’s examples, the 
results imply that the efficiency of the standard DRM 
(scheme 1) is not suitable in comparison with other 
schemes. Thus, the standard DRM can not be consid-
ered as a reliable approach in the TMS form-finding.

•	 Based on the obtained average of the RI, the schemes 2, 
6, 4, and 3 have the high performance and can be recog-
nized as the reliable schemes in the form-finding of TMSs.

•	 It is worth emphasizing that the best performance 
of the form-finding is obtained by the scheme 2 (i.e., 
the  optimal time step approch  proposed by Kadk-
hodayan et al. [27].

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding au-
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Fig. 11   Form-finding model of 
the Kresge auditorium

Table 7   Value of the RI average 
for the DR sachems

Scheme Average of RI Gi

DRM 1 29.792 7
DRM 2 72.516 1
DRM 3 39.284 5
DRM 4 59.1 3
DRM 5 58.858 4
DRM 6 67.616 2
DRM 7 33.902 6
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