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Abstract
This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to com-
pensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an 
offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through 
selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations 
in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics 
is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach 
based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread 
decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study 
of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method 
to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually 
growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline 
ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response.

Keywords  Neural network · Meta-optimization · Model predictive control · Anomaly mitigation

1  Introduction

Machine learning techniques, in particular, artificial neural 
networks (ANNs), have emerged as effective and popular 
approaches to identify complex behavior in nonlinear sys-
tems in the past three decades and enable accurate and 
robust control [1–3]. This is because it is often difficult to 
construct accurate, physics-based, control-oriented mod-
els due to the complexity and unknown dynamics of the 
systems. Thus, the use of the ANN can overcome these 
issues and allows to capture the nonlinear behavior and 
develop high-quality control strategies in the form of a set 
of predefined mathematical structures [4].

Among different classes of ANN control systems, ANN-
based model predictive control (MPC) has garnered 
significant interest due to its salient applicability to 

nonlinear model predictive control (NMPC) applications. 
ANNs serve as system models to forecast future dynamic 
behaviors, and these predictions then can be utilized by 
the controller to determine the optimal control inputs 
that minimize the predefined cost function. One of the 
key requirements of NMPC is an accurate system model 
of a simple mathematical structure to represent the non-
linear system behavior. Therefore, ANNs are highly desir-
able methods for identifying NMPC-compatible mod-
els. Moreover, MPC is able to easily incorporate input, 
output, and state constraints, which makes it a popular 
approach for many practical systems. ANN-based MPC 
has found broad uses in real-world applications, includ-
ing a water level regulation of a tank unit, a piezoelectric 
actuator, and a stirred tank reactor [5–7]. They all utilize 
the most commonly used ANNs as the main architecture 
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for system modeling, such as the multilayer perceptron 
(MLP) and radial basis function network (RBFN). An MLP 
consists of at least three layers of neurons (or nodes), 
where each neuron uses an activation function except 
for the input nodes. A RBFN is similar to MLP but neu-
rons utilize radial basis functions as activation functions. 
Furthermore, the recurrent neural network (RNN) is also 
a widely used ANN structure for MPC in both system 
identification and control [8, 9]. For example, Han et al. 
[10] proposed a self-organizing RNN to control the dis-
solved oxygen concentration in a wastewater treatment 
process. An RNN has a unique structure where the out-
puts from the previous step are fed into the current step, 
which makes it a good approximator for time series data. 
In addition, a fully connected cascade (FCC) network, 
which has direct connections from all input neurons to 
all output and hidden neurons, was applied by Negri 
et al. [11] in MPC for pressure control of a water tank.

Albeit, various ANNs are capable of improving compu-
tational efficiency and control performance, ANN-based 
MPCs suffer from the difficulty to compensate distur-
bances [12]. Mild disturbances caused by mismodeling 
and environment may be moderated by the receding hori-
zon technique. Nevertheless, actual mechanical systems 
all undergo slow paced degradation, arising from wear-
ing, tearing, corrosion, minor damage, and failure. This 
will cause the behavior drift of the actual system from the 
ANN model identified from the normal operation, leading 
to the deviation of the model prediction from the actual 
responses read from the sensors. Consequently, the per-
formance of the MPC synthesized for the nominal (original) 
system will be compromised, causing a nonzero steady 
state tracking error also known as an offset. Offset-free 
tracking for MPC has been accomplished by disturbance 
modeling and observer design by various groups [13–15]. 
Another approach in dealing with such disturbances is to 
employ an adaptive ANN model [16–18]. The adaptive 
ANN model updates its weights (or even a structure) in 
real-time with the online collected data. When the system 
dynamics is shifted, changes in the system are projected 
into the data, enabling the ANN to learn and capture the 
new dynamics. The foremost merit of this method is that 
no a priori information of the disturbance is required. 
Nonetheless, it also has several distinct disadvantages. 
First, often the adaptive ANN updates its weights at every 
time step (or in every few steps), even when it is not nec-
essary, which is computationally inefficient and makes it 
susceptible to noise when no anomaly is present. Second, 
usually to enable the online training, the selected ANN 
structure is too small to represent the actual system for 
a wide range of inputs and outputs. Lastly, there is lim-
ited measure to effectively circumvent overfitting or other 
training issues when the model is updated recursively, 

which may be a serious issue for safety–critical systems, 
such as vehicles and power plants.

In order to address aforementioned limitations, in this 
paper we present a robust and feasible ANN-based MPC 
methodology to maintain generalized accurate model rep-
resentation and efficiently compensate for degraded per-
formance due to dynamic behavior shifts that are mostly 
caused by slow-paced anomalies of actual mechanical 
systems, such as wearing, tearing, fatigue, corrosion, and 
etc. It should be noted that rapid, abrupt system faults or 
failures are not the focus of consideration in the present 
study. The framework includes three key components: 
ANN meta-optimization, dual-net model, and MPC. In 
our methodology, the system dynamics is described by 
an ANN-based plant model in the NARMAX formulation, 
for which the MPC will be developed. Therefore, the first 
step is to determine the ANN architecture for salient model 
performance, which can be achieved though the meta-
optimization methods. ANN meta-optimization using 
evolutionary algorithms can be found in various litera-
tures [19–22]. In this effort the ANN topology of the plant 
model is optimized using the genetic algorithm (GA) to 
select the most appropriate values of the time window 
size of the input and output delays in the NARMAX for-
mulation and the size of the hidden layer that minimizes 
the training and validation error. The concept of the dual-
net model has been originally introduced by Puttige and 
Anavatti [23]. Specifically, both offline and online ANN 
models in the form of multilayer perceptrons (MLPs) for 
the desired system are trained. Then the two ANNs are 
connected in parallel with a switch to select the one that 
predicts actual system response more accurately during 
the previous epochs. It is shown that the dual-net model 
is able to outperform the individual model in quantita-
tive prediction. In this study, the dual-net model is built 
on the optimal MLP structure determined by the GA 
above. First the offline ANN model is trained beforehand 
in conjunction with the meta-optimization using a set of 
data of great diversity collected during previous nominal 
operations. The offline ANN remains unchanged through-
out the entire period of the current operation and serves 
two purposes: (i) to identify the extent of the deviation in 
system dynamics as a result of the slow-paced anomalies 
above to inform the users; and (ii) to be utilized by the MPC 
whenever the online ANN is not ready for use, such as poor 
prediction due to overfitting or other training issues. Once 
the offline ANN becomes available, the online ANN model 
is initialized as a duplicate copy of the offline ANN. Dur-
ing the operation, the online ANN is updated whenever 
the system model prediction deviates notably from the 
actual system response due to anomalies. Then the MPC 
is used to design optimal control trajectories given the 
prescribed cost function and constraints in the presence 
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of operational anomalies. Because of system degradation, 
its dynamics and responses read from sensors will devi-
ate from those of the nominal system, and the MPC syn-
thesized for the offline nominal system will exhibit steady 
state error even if it satisfies the control criteria. To tackle 
the issue, a dual-thread decision maker is proposed to 
manage the model updating and switch within the dual-
net model and coordinate its prediction with the MPC to 
compensate the degraded system performance.

It should be pointed out that online ANN updating to 
mitigate the disturbance in the ANN-based MPC is estab-
lished in literatures. Therefore, combining ANN and MPC 
is not the focus of the present study. Our objective is to 
combine the dual-net model and MPC and coordinate 
them in an organized manner during online operations 
to establish a deployable framework that safely maintains 
the performance level when the system is undergoing 
degradation. There are several novelties in the present 
effort that distinguish it from the existing work, including 
the use of GA-optimized ANN model in MPC, which to the 
best of our knowledge, has not been adequately inves-
tigated. The dual-thread decision maker to manage the 
online ANN updating and coordinate the dual-net model 
in MPC is also proposed, which serves as the cornerstone 
to organize the entire process for enhanced robustness 
and efficiency. Lastly, through the case study of numeri-
cal simulation, the feasibility of compensating degraded 
system performance in the presence of gradual anomalies 
by integrating the above key components is verified. The 
salient improvement in ANN prediction and control perfor-
mance obtained through the proposed methodology rela-
tive to the non-updating benchmark is also demonstrated 
and quantitatively characterized.

This paper is organized as follows. In Sect. 2, the pro-
posed framework/methodology of online ANN-based 
MPC, including GA-based meta-optimization, dual-net 
model, MPC, and dual-thread decision maker is described. 

In Sect. 3, a case study of controlling an unmanned quad-
rotor and the procedure of how to implement the anom-
aly is explained. The results of system identification and 
modeling using the GA, and prediction and control per-
formance of the proposed methodology are discussed in 
Sect. 4. Finally, Sect. 5 concludes the paper with a sum-
mary of achievements and future work.

2 � Online updated artificial neural network 
and model predictive control

2.1 � Methodology

The present methodology for online monitoring, prog-
nostics, and control of mechanical systems is illustrated 
in Fig. 1a. The physical plant is controlled by the control 
inputs determined by the MPC through optimization. 
There are two key components in the MPC module: the 
dual-net model and the optimizer. The dual-net model, 
comprised of two ANNs, is a digital representation of the 
physical plant, and uncovers the system dynamics and the 
relationship between control inputs and responses. It pre-
dicts the plant response at its current time given the his-
torical values of the response and the inputs of the actual 
plant. The difference between the predicted output and 
the actual output at the same time instant will be calcu-
lated, which can be used for: (i) driving an online machine 
learning algorithm to re-train the ANN in the dual-net 
model and update the weights throughout the opera-
tion to capture the latest plant dynamics. The details of 
online ANN training are given in the section below; and (ii) 
detecting anomaly of the system, e.g., consistent deviation 
of actual response from the predicted, within a specified 
time window may indicate the anomaly or the increasing 
severity of the anomaly, i.e., monitoring and prognostics. 
Note that (i) will only operate in the presence of anomaly 

Fig. 1   Schematic of the simulation overview
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as the sensor readings collected from the degraded sys-
tem provide valuable information to update the ANN 
model. One caveat to this approach is that sensor faults are 
assumed to be absent since all data-driven models require 
accurate data for training.

The structure of the dual-net model is shown in Fig. 1b, 
which includes two ANNs: online and offline, connected 
in parallel to a switch in the work flow. The offline ANN 
trained beforehand remains unchanged throughout the 
operation. When the system is in a normal status, deci-
sion maker selects the off branch in the switch to utilize 
the offline ANN for MPC configuration. On the other hand, 
when the system anomaly occurs and causes the deviation 
of the model-predicted response from the actual system 
response, the online ANN is re-trained during operation 
with the accumulated data to accurately capture the lat-
est system dynamics. One potential issue of the proposed 
methodology is that the online re-training of the network 
utilizing the biased training data may be overfitted, lead-
ing to poor control performance. Therefore, the decision 
maker decides in situ which model is better and should be 
used along with MPC by assessing the prediction accuracy 
of both models in the presence of anomalies. If the online 
updated ANN outperforms the offline ANN in prediction, 
the decision maker selects the on branch in the switch to 
use the former for MPC.

The model predictive control (MPC) module uses the 
dual-net model to generate a sequence of control signals 
for actuators at the desirable interval that drive the sys-
tem to follow the reference signal and to mitigate adverse 
effects arising from the anomaly. Our MPC is based on the 
receding horizon technique, and its cost function consid-
ers the model-predicted response relative to the reference 
and the temporal variations of the control signals over a 
specified time horizon. A numerical optimization program 
is then harnessed to determine the control inputs that 
minimize a performance criterion over the horizon. The 
detailed description of each component in Fig. 1 will be 
presented in the following sections.

2.2 � Genetic algorithm‑guided neural network 
modeling

Developing a mathematical model of a physical plant 
is often challenging due to its complexity and lack of 
knowledge in the behavior of the system. One approach 
to model the unknown system is to establish the input-
response relationship using the time series data generated 
from the system, i.e., data-driven modeling. The classical 
model, Nonlinear Auto-Regressive Moving Average with 
eXogeneous inputs (NARMAX) is a general and effective 
representation of the nonlinear discrete-time system as 
shown in Eq. (1) [24]

where u(k) and y(k) are respectively, the input and 
response at the current time step, nu and ny are input and 
output delays, respectively, and F(·) is a nonlinear function 
that quantitatively describes the NARMAX relationship and 
can be determined using available input-response data. 
Equation (1) clearly shows that the response y(k) at the cur-
rent time step depends on its historical values and the cur-
rent and previous inputs. In this paper, the artificial neural 
network (ANN) is used, which is one of the most widely 
used data-driven modeling approach to approximate the 
nonlinear function F.

Often a recurrent neural network (RNN) is used in the 
dynamic system modeling due to its salient capability to 
predict longer horizon. However, a multi-layer percep-
tron (MLP) is selected in the present work for two rea-
sons: (i) because our ultimate goal is to update the ANN 
model during the online operation, and the MLP features 
a simpler structure leading to a better choice for online 
updating; and (ii) the model cast in the NARMAX formula-
tion with GA-optimized input and output delays is able 
to capture the nonlinear dynamic behavior and allows a 
recursive use of this one-step ahead predictor. Further-
more, MLP is comprehensive enough to approximate any 
nonlinear continuous function by a three-layer (input, hid-
den, output) network structure [19]. Therefore, the number 
of hidden layers is constrained to be 1 in this work. The 
schematic of the ANN is shown in Fig. 2 and the associated 
equation is as follows

(1)y(k) = F(y(k − 1),… , y(k − ny), u(k),… , u(k − nu))

(2)
yn(k) = W (2) tanh (W (1)X (k))

X (k) = [1 y(k − 1) ⋯ y(k − ny ) u(k) u(k − 1) ⋯ u(k − nu)]
T

Fig. 2   A multi-layer perceptron (MLP) structure of ANN
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where W(1) and W(2) are the input-to-hidden and hidden-
to-output weight matrices, respectively. The hyperbolic 
tangent function is used as an activation function of the 
hidden layer herein. Given a dataset from a physical plant, 
constructing a high-quality ANN model is not straightfor-
ward. Due to the large number of model hyperparameters 
and data configurations to proceed ANN training, deter-
mining the optimal model inputs and the MLP structure 
for a given task using the trial and error approach can be 
time-consuming and tedious. Therefore, automated search 
of hyperparameters within a broad range is carried out 
to achieve the optimal MLP model for enhanced model 
accuracy that otherwise is not available through manual 
selection. Table 1 shows the hyperparameters of the MLP 
model that are identified for automated tuning, and the 
corresponding search range. For both the input and out-
put delays, the lower and upper limits are chosen to be 1 
and 30, respectively, and the number of neurons in the 
hidden layer is selected within the range of 1–50. Larger 
delays and hidden neurons usually improve the training 
accuracy but at the cost of increased size and complexity 
of an ANN. As a result it will require more training time 
and resource usage. Note that if optimal values within the 
search space are selected close to the upper limits, then 
the range must be extended to allow more freedom to 
the search. In addition to the size of the MLP, twelve dif-
ferent training algorithms are explored, including gradient 
descent (GD), Levenberg–Marquardt (LM), Bayesian regu-
larization (BR), BFGS quasi-Newton, and others. Indeed, the 
accuracy of the training algorithm during ANN training 
heavily depends on the specific data set, e.g., the noise 
level. 

To efficiently assess the influence of these hyperpa-
rameters on MLP performance within a broad space and 
automatically select the highest-performance configu-
rations for a specific problem, the meta-optimization 
method is utilized. Meta-optimization is essentially to 
use one optimization method to tune the parameters 
of another optimization method, i.e., the ANN training 
process. Evolutionary methods are widely exploited for 
this purpose; therefore, a genetic algorithm (GA)-based 
hyperparameter optimization module is also devel-
oped. An overview of our GA-based meta-optimization 

workflow is shown in Fig. 3. The GA is one of the most 
popular meta-optimization techniques inspired by bio-
logical evolutionary concepts [25]. It is motivated to 
evolve an initial population of random gene sequences, 
toward a final population of “fit” gene sequences that 
demonstrate optimal performance on a fitness function. 
The fitness function is used to assess the performance of 
a given gene sequence, i.e., the hyperparameter config-
uration. These genes can be represented as bit-strings, 
double vectors, integer vectors, or a mixture of these. 
For our problem, double vector gene representations 
are used to encode the network hyperparameters-of-
interest. After a population of genes is evaluated on 
the fitness function, they are ranked based on fitness. 
Operations, such as selection, crossover, and mutation 
are used to evolve the population of genes to maximize 
fitness. Particularly in this work, Gaussian mutation, 
scattered crossover and stochastic uniform selection 
algorithms are applied. The penalty (or fitness) func-
tion is computed by decoding the gene sequences into 
physically useable hyperparameters, training an MLP 
model using the hyperparameters, and computing the 
final MLP cost on the validation set, which is found by 
computing the mean squared error (MSE) on the pre-
dictions. Once the stopping criteria of the GA is met, 
e.g., a maximum number of the generation is reached 
or a minimum penalty is achieved, the genes of high-
est performance in the population are decoded into the 
selected hyperparameters.

Table 1   Hyperparameters of interest and their types and range for 
the ANN model

Hyperparameter Type Parameter range

Input delay Integer [1–30]
Output delay Integer [1–30]
Hidden layer neurons Integer [1–50]
Training algorithm Integer (list index) [1–12]

Fig. 3   Flowchart describing the genetic algorithm for ANN hyper-
parameter optimization
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2.3 � Model predictive control

Model predictive control (MPC) consists of three parts: the 
cost function, the optimizer, and the system model. In this 
paper, the system model is represented by the dual-net 
model as described above. That is, the MPC takes the pre-
dicted response (yn) over a specified time horizon from the 
dual-net model and the reference response (yr) as inputs, 
and generates the control signals over another time hori-
zon determined by a numerical optimization problem that 
minimizes the following performance criterion, viz., cost 
function over the specified horizon:

where N1 is the minimum costing horizon; N2 is the maxi-
mum costing horizon; Nu is the control horizon, and yr is 
the reference input, yn is the predicted ANN output, and ρ 
is a control weighing factor. According to Eq. (3), the cost 
function includes not only the mean squared error (MSE) 
between the reference response and the ANN predictions, 
but also the changes in the control signal u as a penalty 
term, where 𝜌 > 0 is the penalty parameter. Therefore, ρ 
decides how much the change in control input is allowed. 
Larger N2 and Nu will improve the control performance, 
but it will increase the computational load during both 
the offline and the online stage. The goal of MPC is to 

(3)

J =

N2
∑

j=N1

(yr(k + j) − yn(k + j))2 + �

Nu
∑

j=1

(Δu(k + j))2Δu(k + j)

= u(k + j) − u(k + j − 1)

compute [u(k + 1),… , u(k + Nu)] by minimizing Eq. (3) for 
every control epoch. For our simulation study, N1, N2, Nu 
and ρ are selected empirically, which yield consistent and 
reliable performance in this work. Selecting these control 
parameters is not critical since they do not have impact 
on the steady state error caused by the disturbance due 
to the dynamic shifts of the system as studied herein. The 
stability of ANN-based MPC is proved by the Lyapunov 
synthesis method in literatures [26, 27]. Most widely used 
algorithms to solve this type of optimization problem are 
Newton, quasi-Newton and Levenberg–Marquardt related 
methods. In this paper, a bounded BFGS quasi-Newton 
method is adopted because of its computational efficiency 
and reliability.

2.4 � Dual‑thread decision maker

There are two Boolean logic threads that govern the entire 
online anomaly detection, ANN model updating, and 
compensation process, which is termed the dual-thread 
decision maker hereafter. As shown in Fig. 4, Eoff and Eon 
refer to the mean squared prediction errors of the offline 
and online ANNs (or MLPs) relative to the actual system 
response, respectively, for a specified time window.

The first logic thread, on the left, is for the anomaly 
detection and model updating. There are a variety of 
anomaly detection approaches, including clustering, 
nearest neighbors, statistical, subspace, classifier and 
others [28, 29], and their applications have been reported 

Fig. 4   Flowchart describing 
the dual-thread decision maker
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in numerous systems [30–33]. Nevertheless, finding the 
optimal one is out of scope of this research as our primary 
focus is to investigate the feasibility of the methodology to 
maintain system performance by updating the ANN model 
and MPC design during the operation using online data, 
especially when the plant experiences a slow-paced deg-
radation or drift in system dynamics. Therefore, we employ 
the out-of-limits (OOL) approach, which is the most widely 
used method [34]. OOL simply uses predefined threshold 
values, denoted as τ in Fig. 4, and alerts whenever the 
difference between the sensor and the predicted data 
exceeds the threshold value.

The first logic is divided into two stages, respectively, 
comparing Eoff and Eon against the threshold value τ in 
the given order. Recall that the offline ANN models the 
dynamics of the original, nominal system. Therefore, when 
the criterion Eoff > τ is true, it indicates the presence of the 
anomaly. The second criterion of Logic 1, i.e., Eon > τ is used 
to determine necessity of updating the online ANN model. 
If the online ANN has already been updated and allows 
accurate prediction, making Eon > τ false, then the online 
ANN updating becomes unnecessary (no update will be 
performed). On the other hand, if there are continuously 
growing anomalies or training failures that cause Eon > τ to 
be true, then the online ANN will be updated again until 
the prediction error reaches below the threshold. Several 
points should be noted: the online ANN is initialized with a 
copy of the offline ANN, that is, initially, the weights of the 
online ANN are the same as those of offline ANN. This will 
actually reduce the training time since the training process 
will not begin with randomly assigned weights, and the 
weights of offline ANN are essentially a good starting point 
for the online ANN updating. Moreover, when the anomaly 
is detected for the first time, the online ANN will also be 
updated immediately because of Eon = Eoff > τ.

Although updated, the online ANN does not guar-
antee to be utilized by the MPC. This is because online 
ANN training is highly susceptible to the overfitting and 
other related issues that may provide inaccurate predic-
tion. If used by the MPC, it may deteriorate system per-
formance or even lead to system failure. The second logic 
thread (on the right from the figure) and the switch in 
the dual-net model are introduced to prevent this issue. 
That is, the second logic thread compares the accuracies 
of the offline and the updated ANNs when predicting 
the actual plant responses for a specified time window, 
and then decides the action of switch. If the updated 
ANN outperforms the offline ANN, i.e., Eon < Eoff, then the 
switch is turned on and the updated ANN is used in MPC 
to compute the control actions and vice versa (as shown in 
Fig. 1b). Throughout the entire process both logic threads 
operate independently at every time step to determine 

when to update the online ANN and which model to use 
for MPC reconfiguration.

2.5 � Dealing with overfitting for online training

Updating the ANN using the online data is a formidable 
task mainly due to the overfitting issue. This is because 
the range and the diversity of the online operational data 
is usually extremely limited. For example, if the objective 
of an unmanned aerial vehicle (UAV) during the operation 
is to maintain its flight at a certain altitude, then the data 
collected online from the UAV will have a small range in 
altitude variation. This is critical in ANN training since the 
foundation of ANN is to train a generalized model using a 
wide range of data. Moreover, once the controller is active 
in the closed loop, the operators no longer have direct 
manipulation on the control inputs applied to the physi-
cal plant. In other words, we can only provide reference 
values that the controller will strive to meet. Therefore, 
when the online data is accumulated with the controller 
in the loop, the data will depend on the control scheme. 
For instance, the control weighing factor (ρ) in MPC intro-
duced in Sect. 2.3 restricts the changes in the input, and 
eventually restrains the diversity of data.

Accordingly, actions are required to prevent the ANN 
from overfitting. The effects of the data volume used for 
online ANN update is first investigated. We start with data 
sets of small sizes, and eventually find through trials that 
increasing the data volume reduces the overfitting effect, 
and the larger data volume is favorable to creating more 
generalized ANN models. However, an inordinately large 
data volume could significantly increase the data accumu-
lation time and slow down the response rate of mitigating 
the disturbance. For this particular work, we decide to use 
2 h of data accumulated online to update the ANN. The 
data volume will vary depending on the systems, distur-
bances and objectives.

Other than increasing the data volume, the technique of 
early stopping for ANN training is also used with the stronger 
condition. Early stopping is a way to terminate ANN training 
when the performance error of the validation set begins to 
grow while the performance error of the training set contin-
ues to decrease. This means that the ANN is being overfitted 
to the training set, and the network is losing its generality. 
Whenever this event occurs, the training algorithm counts 
the number of occurrences. Once the number exceeds the 
predefined value, the training stops. Stronger condition 
refers to reducing this predefined value and increasing the 
ratio of the validation set with respect to the training set.

Lastly, another means we take to mitigate the over-
fitting issue during online training is to apply Bayesian 
regularization (BR) as the training algorithm. Although 
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Levenberg–Marquardt (LM) is found to be the excellent algo-
rithm for the offline ANN modeling, due to its fast conver-
gence rate, there is a large chance of being overfitted for the 
online use (see Sect. 4.1 below). In other words, LM allows 
more rapid changes in the weights than the BR within one 
iteration. Applying early stopping in conjunction with BR is 
found to be a good option for the present work.

3 � Case study and numerical experiment

To verify the concept of the online ANN updating and 
degraded performance compensation, an unmanned quad-
rotor system is chosen to represent the actual plant, which 
has a well-known, physics-based mathematical model that 
is easily accessible. MPC for unmanned quadrotors has been 
demonstrated recently by several groups [35–38]. Zhang 
et al. [27] recently proposed ANN-based MPC for formation 
flight of multiple unmanned quadrotors, which uses RNN 
to update the weight parameters at every time step that is 
different from our approach based on the dual-net model.

3.1 � Plant model

A simple schematic of the quadrotor is displayed in Fig. 5, 
where (Ω1, Ω2, Ω3, Ω4) are angular velocities of each rotor. 
The full equations of motion are given by [39],
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where (x, y, z) and (θ, ϕ, ψ) represent translational and 
rotational motions in the body fixed coordinate system, 
respectively; (Ixx, Iyy, Izz) are the area moment of inertias 
about each body frame axis; (u1, u2, u3, u4) are the inputs 
that create motions in the directions of (z, θ, ϕ, ψ), respec-
tively; Ωr is the relative speed of rotors; Jr is the rotor’s 
inertia; l and m are the arm length and the total mass of 
the quadrotor, respectively; and g is the gravity. Moreo-
ver, inputs (u1, u2, u3, u4) are computed by multiplying the 
transformation matrix as shown in Eq. (5) [39].

here Kf and Km are the aerodynamic force and moment 
constants, respectively. The actual system has 4 inputs 
with 3 translational and 3 rotational motions. In order to 
simplify the problem to verify the feasibility of our meth-
odology, only the yaw angle (ψ) and the altitude (z) of the 
quadrotor are considered in this work.

3.2 � Offline model training and reference signal

For system identification, two separate offline MLPs are 
trained with the model structure described in Sect. 2.2, 
each representing a multi-input single-output (MISO) 
system. In other words, two MLPs are trained to predict 
the yaw angle and altitude, separately. This is a more suit-
able approach than training a single ANN that represents 
a multi-input multi-output (MIMO) system, because the 
model accuracy can be compromised if two totally differ-
ent motions are modeled from the same set of weights. 
Also if both ANNs are not separated, they need to be 
updated simultaneously for both the yaw angle and the 
altitude. On the other hand, if the ANN is only responsible 
for estimating a single state, then the ANN updates can be 
performed independently. Again, the online ANN model is 
initialized as a copy of the offline ANN model at the begin-
ning of the simulation.

In the numerical experiments, random step reference 
signals are implemented for both yaw angle and altitude. 
For the yaw angle, the magnitude of each step is chosen 
randomly between -10 and 10 degrees with respect to the 
previous angle. Here, the period of each step is also chosen 
randomly between 10 and 20 s. Similarly, the altitude refer-
ence signal is produced by a series of random step functions 
with a period between 15 and 30 s, and its amplitude varies 
between − 5 and 5 from the previous step. A short interval 
of the prescribed references and actual outputs are shown 
in Fig. 6. Gaussian sensor noise is added with the magnitude 

(5)

⎡

⎢

⎢

⎢

⎣

u1
u2
u3
u4

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

Kf Kf Kf Kf
0 −Kf 0 Kf
Kf 0 −Kf 0

Km −Km Km −Km

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�
2
1

�
2
2

�
2
3

�
2
4

⎤

⎥

⎥

⎥

⎦

Fig. 5   Schematic of the quadrotor
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of 0.01 rad and 0.1 m to the yaw angle and the altitude 
response, respectively.

3.3 � Anomaly

The slow shift of the dynamics is obtained by prescribed 
degradation of blades of the quadrotor and associated aero-
dynamic parameters. In the quadrotor system, Eqs. (6) and 
(7) are used to represent the propulsion force/moment of 
the vehicle

(6)Fi =
1

2
�ACT r

2
�

2

i
and Fi = Kf�

2

i

(7)Mi =
1

2
�ACDr

2
�

2

i
and Mi = Km�

2

i

where Fi is the aerodynamic force produced by rotor i, 
Mi is the aerodynamic moment produced by rotor i, ρ is 
the air density, A is the blade area, CT and CD are aerody-
namic coefficients, r is the radius of blades. In this work, Kf 
and Km are altered continuously as a prescribed function 
during the first few hours of the simulation to mimic the 
slow-paced blade degradation arising from deformation, 
wearing, and yielding. Figure 7 shows the magnitude of 
the modified aerodynamic constants of all four rotors 
with respect to time. The aerodynamic force constants are 
assumed to be equal for all four rotors to avoid any pitch 
and roll motions. The aerodynamic moment constants are 
assumed to be equal for rotors in pairs: (1, 3) and (2, 4) 
for the same reason. These changes will introduce distur-
bances in system models, leading to steady state errors.

Fig. 6   Reference signals and actual outputs

Fig. 7   Aerodynamic force (left) and moment (right) constants
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4 � Results and discussion

4.1 � Artificial neural network hyperparameter 
selection

We first describe the results of using the genetic algo-
rithm (GA) and the data produced by the physics-based 
quadrotor model to select hyperparameter for ANN 
training. Figure 8 illustrates the training data used to 
identify the dynamics along the axes of the yaw angle 
(top) and the altitude (bottom). The left column rep-
resents the input (angular velocity) and the right col-
umn represents the output (yaw angle and altitude). As 
described above, constraints on the angular velocity of 
the rotor, i.e., Ω1 = Ω3 and Ω2 = Ω4 are imposed to allow 
the system to vary only in the yaw angle and the alti-
tude while keeping the pitch and the roll axis fixed. The 
input data is created by a series of random step functions 
with periods chosen randomly between 0.1 and 2 s. The 
yaw angle is limited to 5 revolutions and the maximum 
operational range in altitude is set to be ± 100 meters. 
The Gaussian noise is added to the output data, and the 
magnitudes of the noise are 0.01 rad and 0.1 m for yaw 
angle and altitude, respectively.

The process of the MLP hyperparameter selection 
using the GA as shown in Fig.  3 is then conducted, 
and the results are listed in Table 2. For the validation 

purpose, the entire GA-based selection is repeated two 
times. For each, 30 populations are created for 20 gen-
erations, which leads to a total of 600 individual designs. 
As the generation increases, we are able to observe a 
trend of the solution. Towards the end of each run, most 
of the populations have similar selections of hyperpam-
eters with respect to those listed in the table. The input 
delay saturates to around 10 and the output delay con-
verges to around 20. This implies that the window size of 
the delayed output has more impact toward the predic-
tion accuracy compared to that of the inputs. The opti-
mal number of the hidden neurons show more variance 
than the input/output delays, although the difference 
in model accuracy within this confined range of hidden 
neurons is negligible. The range of hidden neurons is 
found to be approximately between 25 and 40. Moreo-
ver, for most of the populations, the training algorithm 
converges to Levenberg–Marquardt (LM) method. LM is 
a reasonable choice for the single-layer MLP in our case 
study because it is known as an accurate method for non-
linear function fitting with fast computational speed. If 
the size and the layer of the ANN are larger, this method 
is likely to be eliminated since it does not cope well with 
complex networks. As a reminder, Bayesian regulariza-
tion (BR) method is applied for online training instead of 
LM method (see Sect. 2.5 above). The final choice for the 
MLP structure is a window size of 10 for the input delay 
(for each input), 20 for the output delay, 36 neurons in 

Fig. 8   Input (left) and output (right) of the ANN training data
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the hidden layer, and the LM method for the training 
algorithm. In summary, the MLP model for the yaw and 
the altitude dynamics will each have 40 input nodes, 36 
hidden nodes and 1 output node (Table 2). Note that the 
GA-based meta-optimization is only used for offline MLP 
training due to its large computational cost. 

4.2 � Anomaly compensation by ANN‑based MPC

The result of anomaly prediction and compensation by 
the dual-net model is presented in this section. The sta-
tus of dual-thread decision maker is displayed in Fig. 9, 

where the value of “0” and “1” represents false and true, 
respectively, in the dual-thread logic. Figure 9a, b show 
the status of Logic 1 and Logic 2, respectively, where blue 
represents the yaw angle and brown the altitude. We can 
see from Fig. 9a that updating occurs when both online 
and offline prediction errors are beyond the threshold 
value, which are 0.02 rad for the yaw angle and 0.2 m for 
the altitude in this case study. Once Logic 1 becomes true, 
the online data starts to be collected for two hours, and 
such a period of data accumulation is determined through 
trial-and-error, and exhibits great potential to mitigate the 
overfitting issue for online training. The data accumulation 
is followed by the online ANN training and updating, and 
the moment of this update is indicated by the peak values 
(greater than one) from the same curve. As the anomaly 
causes the deviation in ANN prediction of both the yaw 
angle and the altitude, Logic 1 becomes true for both out-
puts. Then the system continuously updates both online 
ANNs until the requirements of the prediction accuracy are 
satisfied. For the online ANN of the yaw angle, after four 
updates, its prediction reaches the desired accuracy and 
below the required tolerance value, and Logic 1 is reset 

Table 2   Selected hyperparameters for ANN model by the genetic 
algorithm

Input delay Output delay Hidden 
neuron

Train 
algo-
rithm

Run 1 12 21 36 LM
Run 2 10 18 26 LM
Final choice 10 20 36 LM

Fig. 9   Dual-thread decision maker status: a Logic 1 and b Logic 2
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to zero. For the altitude, Logic 1 immediately turns back 
to one right after one update, indicating that the error of 
prediction cannot reach below the prescribed tolerance in 
a consistent manner. The status of Logic 2 that manages 
the switch and utilization of the dual-net model for MPC is 
shown in Fig. 9b. When Logic 2 is true, the predicted values 
of the online ANN is more accurate than the offline ANN, 
allowing MPC to utilize the online ANN. Otherwise, Logic 
2 becomes false and the offline ANN is used in the MPC. 
The figure verifies that the online ANN mostly outperforms 
the offline ANN in response prediction, especially after one 
update for the yaw angle and two updates for the altitude, 
as the former is dominantly used in the MPC after 4 h.

The curves of the prediction error for the two responses, 
the yaw angle and the altitude, viz., the discrepancy 
between the model predictions and the actual plant 
response are depicted in Fig. 10a, b, respectively. Two 
sets of results obtained from the offline ANN (red) and 
the dual-net (green) models are presented. In the former 
only the offline trained ANN is used throughout the entire 
simulation, while the latter uses the dual-net model gov-
erned by the dual-thread decision maker for online updat-
ing and MPC model selection. Note that MPC performance 

depends on the prediction accuracy of the ANN models, 
and a large prediction error will lead to MPC degrada-
tion. It indicates that by updating the ANN following the 
dual-thread decision maker above, the prediction errors 
can be reduced to 2°–3° for the yaw angle and 0.2–0.3 m 
for the altitude. Throughout the entire simulation, the 
online updated ANNs allow more accurate evaluation of 
the responses, except for few spikes within the first two 
or three updates. The spikes signify that the updated 
ANNs may suffer from slightly poor model generalization. 
In other words, the networks are overfitted due to the 
restricted training data. Fortunately, as more online data is 
collected for training, the network generality is improved 
significantly, producing more consistent prediction mani-
fested by the well bounded and smooth error.

Figure 11 shows the actual responses of the plant at 
the 3rd, 6th, 9th, and 12th hour of the simulation involv-
ing the MPC. Similar to Fig. 10, two sets of results, the 
offline ANN (red) and dual-net (green) are presented. The 
corresponding reference signal is shown in blue in the 
same figure. The results for the yaw angle and the alti-
tude are shown in the left and the right column, respec-
tively. It is observed that as the anomaly becomes more 

Fig. 10   Prediction errors of the offline ANN and the dual-net models for the a yaw angle; and b altitude
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severe, the responses produced by the MPC based on 
the offline ANN model deviate more from the desired 
references. Eventually, the steady state errors of the 
responses are approximately 15° and 1  m, when the 
anomaly reaches its maximum. On the other hand, when 
the dual-net model is employed following the protocol 
above, the responses remain closer to the reference 

signal. In fact, because of its ability to capture variations 
in plant dynamics, the dual-net model outperforms the 
offline ANN model in response prediction throughout 
the simulation and steers the plant to reach the time-
dependent reference signals even subject to continu-
ously increasing anomaly.

Fig. 11   Plant responses: a yaw angle and b altitude, produced by MPC using the offline ANN and the dual-net models
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As shown in Figs. 9b and 10a, for the yaw angle, the 
dual-net model starts to participate in MPC for anomaly 
compensation before the 3rd hour, and continues till the 
end of the simulation. The use of the online ANN to miti-
gate degraded performance of the altitude control occurs 
before the 3rd hour, and dominates over the offline ANN 
from the 4th hour till the end. As a result, improved per-
formance by the dual-net model is evident. It is clearly 
shown that at the end of the simulation the actual plant 
responses of both the yaw angle and the altitude pro-
duced by the online updated ANN-based MPC match 
the reference signals very well. To quantitatively charac-
terize the performance of the dual-net model relative to 
the offline ANN, the numerical errors are computed and 
presented in Table 3, where the prediction error denotes 
the deviation between the ANN prediction and the actual 
plant response. The control error refers to the discrep-
ancy between the prescribed reference signal and the 
actual plant response. The values listed in the table are 
computed by taking the absolute mean of the entire error 
vectors collected throughout the simulation. It is found 
that the prediction errors and the control errors of using 
the offline ANN in the presence of anomaly are approxi-
mately 4× greater for the yaw angle and 2× greater for the 
altitude than that of the dual-net model. Both graphical 
and numerical results verify the feasibility of recovering 
the performance by updating the online ANN during the 
operation subject to gradually increasing anomaly.

5 � Conclusion

A methodology is proposed to integrate the dual-net 
model, which consists of the offline and online ANNs, and 
the model predictive control (MPC) to compensate for 
the degraded performance caused by slow-paced, con-
tinuously growing anomalies in mechanical systems. The 
foremost novelty lies in the combination of the dual-net 
model with MPC and the dual-thread decision maker to 
independently determine and organize the online ANN 
model updating and the model switch for MPC. The new 
elements proposed will improve the online learning/
updating efficiency and ANN model robustness, and 

hence, opening up new possibilities to realize operational 
autonomy for mechanical systems with anomalies on the 
computing resource-limited platform.

The ANN system identification/modeling based on 
the MLP is used to construct the offline baseline model, 
and further improved in prediction accuracy by the GA 
to select the optimal network structure and hyperparam-
eters, including the time window size for input and out-
put delays and the hidden layer size, and also the train-
ing algorithm. Such an optimized MLP is used to initialize 
another copy of the online ANN model, which along with 
the offline ANN model forms the aforementioned dual-
net model and will be updated online as necessary. The 
dual-net model is then combined with the MPC for online 
synthesis of control actions to be applied to the physi-
cal plant. Under the dual-thread decision maker frame-
work, new ANN updating and switch schemes for MPC 
are proposed. That is, when the ANN prediction accuracy 
is worse than the prescribed threshold value, the system 
is triggered to accumulate the operational data for a 
specified period of time followed by online ANN training 
using the accumulated data, in which the structure of the 
online ANN remains unchanged and only the weights are 
updated. Both the offline and the online ANNs run in paral-
lel throughout the simulation and are compared with the 
actual plant response, and the one exhibiting better pre-
diction accuracy is selected for MPC prediction in the next 
horizon. Finally, the case study of the unmanned quadro-
tor model is undertaken to verify the proposed methodol-
ogy through numerical simulation. The dual-thread deci-
sion maker and the dual-net model demonstrate salient 
performance in both the accuracy of predicting the actual 
plant response and the quality of system control subject 
to growing anomaly. In summary, the updated ANN-based 
MPC outperforms that solely based on the offline ANN in 
the presence of anomaly as manifested quantitatively by 
4× and 2× reduction in the control and the prediction 
error. The results verify the feasibility of compensating 
the degraded performance caused by the shifts in system 
dynamics.

Despite salient results, there are several limitations in 
the current method for ANN updating. The authors imple-
mented several techniques to address the overfitting 
issue. However, there are still few spikes of errors remain-
ing in the predicted results. This will be more critical when 
the online data is even less diverse. Therefore, switching 
model for MPC synthesis is used as an additional means of 
security to ensure desirable MPC performance and stable 
operation. The root of the overfitting issue is attributed to 
the large number of fitting parameters (about 1500) dur-
ing online training. Nonetheless, most of the anomaly sce-
narios (e.g., loose-fitting, wearing, fatigue, and other) occur 
in a gradual manner and cause incremental variations in 

Table 3   Comparison of control and prediction errors between the 
offline ANN and the dual-net model

Offline ANN Dual-net

Yaw angle Control error (°) 11.89 2.27
Prediction error (°) 8.01 1.81

Altitude Control error (m) 1.115 0.426
Prediction error (m) 0.375 0.159
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system dynamics. Therefore, updating the entire network 
weights each time may be unnecessary in terms of both 
resource usage and model quality. The future research will 
focus on further investigating and mitigating these issues.
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