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Abstract
Mesoparticles with characteristic sizes larger than all known molecules and smaller than usual nanoparticles can easily 
penetrate inside living cells. Thus, they appear to be especially promising for cancer theranostic application. However, 
presence of mesoparticles can strongly perturb physico-chemical properties of the biological media in which they are 
incorporated, it is crucial to know a magnitude of such perturbations. For example, thermal properties of liquid solutions 
with dispersed mesoparticles are crucial for development of theranostic approaches based on photoacoustic effect. In 
this paper, thermal transport in nanofluids formed by carbon flurooxide (CFO) mesoparticles is reported. A significant 
non-linear enhancement of the thermal conductivity of the nanofluids (up to 85%, in comparison with initial basic 
liquids) depending on volume fraction of the dispersed CFO mesoparticles was found. It was revealed that the thermal 
conductivity rise can be explained by existence of interfacial layers between the mesoparticles and the hosting liquids.
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1 Introduction

Nanofluids, initially defined as stable colloidal solutions 
of nanoparticles with sizes smaller than 100 nm, is one of 
the most remarkable kind of two-phase media with excit-
ing thermophysical properties [1, 2]. Water, oils, organic 
solvents and glycols are usually used as hosting liquids for 
the nanofluid preparation. Studying of thermal properties 
of the colloidal solutions is important for efficient develop-
ment of their various multidisciplinary applications [3–7].

Experiments based on transient hot-wire [8–10], hot 
disk [11], 3ω method [12], thermal constants analyzer [13, 
14], steady-state parallel plate [7, 15], temperature oscil-
lations [16], cylindrical cells and thermal comparator [17] 
were carried out for thermal conductivity estimation of 
nanofluids. A lot of different models based on: specific 
heat transfer mechanisms [7, 18], influence of Brownian 

motion of nanoparticles [19, 20], nanoparticle aggrega-
tion and cluster formation [21, 22], impact of specific sur-
face of the suspended nanoparticles [23], nanoparticle 
size [24], effects of interfacial thermal resistance [25–27] 
were developed for description of thermal conductivity 
enhancement of the nanofluids. Development of multi-
scale models and a better understanding of the effects and 
processes occurring at the nanoparticle/fluid interface are 
important to predict transport properties of the nanofluids 
for their numerous applications.

A lot of thermal transport studies in carbon-based 
nanofluids based on nanodiamonds, nanotubes and gra-
phene were already carried out [28]. Due to relatively high 
thermal conductivity of the carbon nanomaterials [29, 30], 
their dispersion in liquids allowed to improve heat transfer 
efficiency of the nanofluids.
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Previously, synthesis of a new kind of luminescent 
carbon-based nanomaterial, named carbon flurooxide 
(CFO), by an electrochemical etching of silicon carbide 
in HF-based solutions, was reported [31]. The CFO is an 
organic-like species of  CxHyOzFt chemical composition, 
easily soluble in polar solvents (water, alcohols) and con-
sisting of 1-10 nm jellyfish-shape particles, which could be 
considered either as organic macromolecules or as few-
layer graphene-like mesoparticles, surrounded by con-
tinuous organic chains on the edges. The structure of the 
CFO is akin to the structure of such irregular biopolymers, 
as humic acids, melanins, etc., that is why high biocom-
patibility of the CFO could be expected. Indeed, the CFO 
possess an amazing ability to penetrate easily inside the 
living cells, and these mesoparticls were already success-
fully used as fluorescent cell labels and sonosensitizers for 
theranostic application [32]. As for thermal transport in the 
CFO-based nanofluids, it has never been studied before. 
However, precise estimation of thermal conductivity of the 
nanofluids could be especially important for photothermal 
theranostic approaches involving the CFO mesoparticles.

In this paper, results of thermal conductivity meas-
urements performed on the CFO-based nanofluids are 
reported. Polyethylene glycol, oil and water were selected 
as basic hosting liquids. Photoacoustic technique with 
piezoelectric detection was used for the first time as an 
efficient non-destructive and noncontact tool to study 
thermal transport in the nanofluids. In particular, depend-
ence of thermal conductivity on concentration of the CFO 
mesoparticles was studied in details.

2  Experimental details

2.1  Colloidal solution preparation

The CFO mesoparticles were fabricated via electrochemi-
cal etching of low-resistivity grade (0.7 mΩ cm) n-type 
3C-SiC bulk polycrystalline substrate, according to previ-
ously reported protocols [31, 33]. In brief, the anodization 
was performed in HF (48%)-ethanol (1:1, v/v) mixture for 
3 h at 25 mA/cm2. After the etching, the wafer was gen-
tly washed several times with deionized water and then 
naturally dried in ambient conditions. The brown layer of 
porous SiC and CFO mixture, formed onto the substrate 
after anodization, was collected by mechanical scratching 
giving a powder. To separate the CFO and porous SiC, the 
powder was dispersed in ethanol, the porous SiC precipi-
tate was removed by centrifugation, while the supernatant 
was allowed to dry in ambient conditions giving the CFO 
powder. Structural features as well as chemical composi-
tion of the fabricated CFO nanopowder are described in 
details elsewhere [31, 33]. Spatial model of the CFO mes-
oparticles, derived from the model structural formula [31] 
after molecular mechanics optimization (MM2 algorithm, 
Chem3D) is presented on Fig. 1. A planar graphene/fluori-
nated graphane core surrounded by bulky alkyl backbones 
bearing the carboxylates and other substituents can be 
seen. In order to fabricate a nanofluid sample, the CFO 
mesoparticles were dispersed in water, PEG-200 and Vase-
line oil without using any surfactant and finally the formed 
solutions were ultrasonicated.

2.2  Experimental measurements

Thermal conductivities of the CFO-based nanofluids 
were evaluated from photoacoustic measurements 
using a sandwich structure shown in Fig. 2. The structure 

Fig. 1  Structural chemical model of a CFO mesoparticle. Color of atoms: C—grey, F—yellow, O—red, H—white
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containing the nanofluids is irradiated through a transpar-
ent capping cover by a laser of 405 nm wavelength with 
modulated intensity. The laser light is locally absorbed 
by a special absorbing layer. The laser-induced heating 
occurring in the layer is transferred through the studied 
fluid toward an aluminum substrate. The thermo-elastic 
stresses generated in the aluminum plate are transmitted 
through an acoustic buffer toward the piezoelectric trans-
ducer. Thus, the main mechanism of the photoacoustic sig-
nal formation is based on photothermal transformation 
and thermoelastic effect. Time delay between the heating 
beginning in the absorbing layer and the recorded bend-
ing of the whole system depends on thermal conductivity 
of the studied fluid. The characteristic coordinates of the 
sandwich components represented in Fig. 2 are the fol-
lowing: ln = 140 μm, la = 1040 μm, lb = 2040 μm, lstr = 2740 
μm. Thicknesses of the nanofluid, aluminum substrate, 
acoustic buffer and piezoelectric transducer can be easily 
deduced from the corresponding values of the coordinates 
mentioned above. Photoacoustic signals were detected in 
a frequency range from 2 to 23 Hz. Amplitude-frequency 
characteristic (AFC) and phase-frequency characteristic 
(PFC) are measured with a lock-in amplifier. Typically, AFC 
characterizes portion of energy which transfer through 
liquid layer, and PFC defines time delay between starting 
of heating and arising of a registered response depending 
on the modulation frequency.

2.3  Experimental data treatment

Theoretical simulation of AFC and PFC of the generated 
photoacoustic signals allows estimation of thermal prop-
erties of the studied nanofluids. Quasi-stationary approxi-
mation of the signal formation in the sandwich structure is 
considered. Firstly, spatial distribution of the variable com-
ponent of the temperature � in the structure is calculated. 

The temperature profiles can be evaluated by solving heat 
diffusivity equation [34] transformed according to thermal 
wave formalism:

where � is the angular frequency, c, �, k are the specific 
heat, the density and the thermal conductivity in the con-
sidered structure, respectively. The assumption that almost 
all power of irradiation is absorbed in the thin absorbed 
layer was used:

here I is the intensity of the absorbed radiation.
Additionally, limitation of temperature at the infinity 

was also assumed:

Equation (1) was numerically solved for the multilayered 
structure, considering the conditions (2) and (3) with the 
use of finite difference method.

Then, spatial distribution of the thermoelastic stresses 
arising in the sandwich structure are described in frames 
of a rigid normal assumption, as reported earlier [35]. The 
voltage appearing on electrodes of the piezoelectric trans-
ducer can be expressed as function of the elastic stresses 
detected by the transducer [35]:

where �(z) is the spatial distribution of the thermoelastic 
stresses, E is the Young’s modulus, � is the Poisson’s coef-
ficient, �T (s) is the thermal expansion coefficient of the 
material. This equation can be used to fit experimental 
amplitude–frequency and phase–frequency dependen-
cies of the photoacoustic responses.

3  Results and discussions

Typical amplitude–frequency and phase–frequency char-
acteristics of the photoacoustic signals for water, PEG-200 
and Vaseline oil are shown in Fig. 3. One can see variation 
of the curve slopes which can be related to different physi-
cal properties of the studied liquids ensuring different 
conditions for propagation of the thermal perturbation 
through the sandwich structure. Such features of the curve 
behavior allow reliable estimation of the liquid/nanofluid 
thermal conductivity. Experimental amplitude and phase 
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Fig. 2  Scheme of the multilayered structure for thermal conductiv-
ity measurements
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frequency characteristics were fitted with the experimen-
tal ones with use of least square method. Consequently, 
thermal conductivity of nanofluid was evaluated as a fit-
ting parameter [36]. Thermal conductivity values for water, 
PEG-200 and Vaseline oil were found to be, respectively: 
0.57 ± 0.04, 0.19 ± 0.02 and 0.14 ± 0.02 W/m K. These values 
are in good agreement with those reported in literature: 
0.6 W/m K for water [37], 0.2 W/m K for PEG-200 [38] and 
0.13 W/m K for Vaseline oil [39].

The amplitude–frequency dependencies of the CFO-
based nanofluids using PEG-200 as basic liquid with vari-
ous particles concentrations expressed in terms of volume 

fraction are shown in Fig. 4a). The global curve behavior is 
similar to that shown in Fig. 3 for the initial basic liquids. In 
addition, the higher the volume fraction of the CFO is, the 
higher the amplitude of the recorded photoacoustic signal 
is. Thermal conductivities of the CFO nanofluids deduced 
from the fitting of the amplitude–frequency dependencies 
(in water, PEG and Vaseline oil) as function of volume frac-
tion of the mesoparticles can be seen in Fig. 4b). Significant 
thermal conductivity rise depending on the CFO concentra-
tion can be observed. The maximum thermal conductivity 
enhancement is observed at the 0.16 volume fraction in 
Vaseline oil (up to 85%). It should be noted that the thermal 

Fig. 3  Typical amplitude–frequency and phase–frequency characteristics of the photoacoustic signals for basic liquids. The scatters corre-
spond to the experimental points and the solid lines are the theoretical fittings

Fig. 4  a The amplitude–frequency dependencies of the CFO-based 
nanofluids using PEG-200 as basic liquid with various volume frac-
tions of mesoparticles. The inset illustrates dependence of the 
amplitude on the volume fraction at the modulation frequency of 
18 Hz; b thermal conductivities of the CFO nanofluids as function 

of volume fraction of the mesoparticles. The scatters correspond 
to the values deduced from the photoacoustic characteristics, the 
dashed and the solid lines are the theoretical fittings according to 
the classical Maxwell model and modified Maxwell model, respec-
tively
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conductivity of the nanofluids nonlinearly increases with 
increasing of volume fraction.

For description of such thermal conductivity increase, the 
effective medium approximation based on Maxwell model 
was considered. The classical Maxwell model is used for 
solid–liquid mixtures with relatively large size of particles or 
their low concentrations [23]. Maxwell’s formula shows that 
the effective thermal conductivity of nanofluids depends on 
(i) thermal conductivity of spherical particle ( kp ), (ii) thermal 
conductivity of base fluid ( kfl ) and (iii) volume fraction of the 
solid particles ( �):

The effective thermal conductivity of nanofluids evalu-
ated from the classical Maxwell model (Eq. (5)) should lin-
early increase along the volume fraction rise in a low concen-
tration range. This fact is, indeed, in a good agreement with 
our obtained experimental results for the volume fraction 
range <0.06 (see dashed lines in Fig. 4b). In contrast, when 
the volume fraction is >0.06, a significant deviation of the 
classical Maxwell model from the experimental results with 
highly pronounced non-linear rise of thermal conductivity 
can be stated.

Thus, a modified Maxwell model was applied for a better 
description of the non-linear thermal conductivity behavior. 
Indeed, according to a three component model of Yu and 
Choi [40], a nanofluid can be represented as a composition 
of nanoparticles, fluid and an interfacial layer surrounding 
the nanoparticles. This layer appears as a result of interfacial 
interaction between atoms of solid and fluid [41, 42]. Being 
dependent on nanoparticle volume fraction, continuously 
increasing specific area of the interfacial layers is supposed 
to be responsible for the overall enhancing the thermal con-
ductivity [18, 22, 43, 44]. Thus, the addition of the interfacial 
layer leads to a modified Maxwell model with corresponding 
replacement of the thermal conductivity of a solid particle 
kp by a new thermal conductivity of a particle kp,eff  including 
its adjacent interfacial layer:

here � = kfl∕kp is the ratio of the interfacial layer thermal 
conductivity ( kfl) to particle thermal conductivity ( kp) , 
� = h∕r is the ratio of the layer thickness ( h) and the nano-
particle radius (r).

Thus, the resulting effective thermal conductivity of a 
nanofluid can be expressed as follows:
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where kfl is the thermal conductivity of the basic hosting 
fluid, kp,eff  is the effective thermal conductivity of the nano-
particles (according to Eq. 6) and � is the volume fraction 
of nanoparticles in the nanofluids.

An excellent agreement between the modified Maxwell 
model according to the Eq. 7 (see continuous lines) and 
experimental data from Fig. 4b) allows to conclude on a key 
role of the interface nanolayer [45] in thermal transport of 
the CFO-based nanofluids.

4  Conclusion

In summary, thermal conductivity of the oil-, PEG- and 
water-based nanofluids composed by CFO mesoparticles 
were evaluated by means of photoacoustic approach with 
piezoelectric detection for the first time. The obtained exper-
imental values of thermal conductivities are situated in the 
range from 0.1 to 1 W/m K. Significant non-linear thermal 
conductivity enhancement (up to 85%, in comparison with 
initial basic liquids) depending on volume fraction of the 
CFO mesoparticles were described in frames of modified 
Maxwell model. In particular, such thermal conductivity 
behavior was explained by influence of nanolayers at the 
interface between the mesoparticles and hosting liquid.
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