
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

Research Article

Optimized OpenCL™ kernels for frequency domain image high‑boost
filters using image vectorization technique

Ashutosh Satapathy1 · L. M. Jenila Livingston1

© Springer Nature Switzerland AG 2019

Abstract
Image high boost filtering uses high-boost filters to enhance the quality of an image, which has also seen in remote sens-
ing, satellite broadcasting, classroom monitoring, and many more real-time video processing applications and requires
its faster implementation. OpenCL is a widely adapted parallel programming framework that provides core level data
parallelism, and dedicated for heterogeneous parallel devices like from low cost DSP to high-end CPU, GPU and FPGA. In
this article, we have considered mostly used Ideal, Gaussian, Butterworth, and Laplacian of Gaussian frequency domain
high-boost filters and implemented channelized OpenCL kernels for their rapid execution. In addition to that, these
kernels are modified using image vectorization technique to optimize their time utilization by reducing the execution
time of these OpenCL kernels to half. At last, performance analysis is carried out for these two types of OpenCL kernel
implementations to determine their effectiveness with regard to time consumption and accuracy. Here, different image
performance evaluation metrics like entropy, standard deviation, mean absolute error, percentage fit error, SSIM, correla-
tion, and peak signal to noise ratio are applied to measure rightness of the above high-boost filters. From the results, we
have concluded that a vectorized Butterworth high-boost filter kernel is the suitable one to provide better results among
those filters, which might be highly adaptable in time bound real-time applications using various embedded devices.

Keywords  Image enhancement · OpenCL architecture · OpenCL execution model · OpenCL memory model · Image
high-boosting · Performance metrics

1  Introduction

An image in the spatial domain is the pictorial description
of various observations that explain thousands of mean-
ingful information about a specific environment. Most of
the real-world images recorded by sensing devices are
affected by various circumstances from which blurring
is one of the factors that causes image degradation due
to bad weather, poor illumination, improper focusing, or
image denoisification, which needs to be enhanced [1].
Image enrichment or image high boosting is one of the
key aspects in the fields of image processing and com-
puter vision that amplifies higher frequency components
in an image by keeping lower frequency components as

they are. Moreover, the real-time problems like remote
sensing, disaster monitoring, satellite broadcasting, and
traffic monitoring use image enhancement techniques
to boost the detail information present inside videos
and also require their quicker execution at the same time
[2–4]. Recent research on Image retrieval, representation
and classification have shown lots of interest on image
enhancement at their preprocessing stage. Content based
image retrieval (CBIR) system built on color histogram and
DWT extracts color and texture features [5], whereas CBIR
based on SIFT and SURF extracts scale, rotation and illu-
mination invariant features [6]. Bag of Features (BoF) rep-
resentation in image retrieval system lacks in spatial infor-
mation, which is improved with the help of histogram of

Received: 20 May 2019 / Accepted: 7 October 2019 / Published online: 16 October 2019

 *  L. M. Jenila Livingston, jenila.lm@vit.ac.in; Ashutosh Satapathy, ashutosh.satapathy2013@vit.ac.in | 1SCSE, Vellore Institute
of Technology, Chennai, India.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1445-9&domain=pdf

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

triangular regions [7]. Apart from the information retrieval,
Histogram based image representation of BoVW model
requires proper encoding of spatial information and it
was addressed by Zafar et al. [8]. Hybrid geometric image
representation of BoF model depends upon circular, tri-
angular, and rectangular region based histograms over an
image [9]. Recent image classification researches such as
makeup invariant face recognition [10], pose invariant 3D
face recognition [11], variance based facial image registra-
tion and recognition [12] or impact of asymmetric left and
right faces for accurate age estimation [13] uses convolu-
tional neural network to improve their accuracy level. In
all the cases, Image quality improvement of a degraded
image tries to raise the pixel values where the change of
intensities happens immediately by keeping other pixel
values as constant, i.e., pixels lie on the lines, curves, cor-
ners, or boundaries are the target areas for this enhance-
ment [14, 15]. So, the image high-boosting techniques
utilize different high-pass filters to extract high-frequency
images, which are added to their blurred images to pro-
duce the final outputs. An image from CalTech Face 1999
dataset [16] is smoothed by a Gaussian low pass filter and
its reconstructed image by a Butterworth high boost filter
with cutoff frequency 50 and order 2 are shown in Fig. 1.

Image high-boost filtering is one type of image
enhancement techniques, which can be accomplished
in the spatial domain or frequency domain [17]. Quality
enhancement in the frequency domain uses high boost
filters which are of two types: linear and nonlinear [17–20].
OpenCL is from the Khronos Group, a nonprofit organiza-
tion responsible for the creation, distribution, and main-
tenance of various applications in the field of parallel
programming, multimedia, graphics, signal, image, and
video processing. OpenCL kernel allows each work item
inside all the compute units to execute an instance of it
in a synchronous fashion so that the integrity of informa-
tion is repeatedly maintained throughout the program
execution. Before explaining two different types of kernel
approaches, it requires a prior understanding of multiple
models made inside the OpenCL building block along
with four different frequency domain high boost filters

normally used to raise the level of information presented
inside this multimedia content. In the end, OpenCL ker-
nels of those high-boost filters are designed for the faster
image enrichment, which are again optimized using image
vectorization techniques and tested on parallel computing
platforms from Intel and NVIDIA.

2 � Related work

Comparison between the various filters are done for
removing the fractional Brownian noise in Brain MRI
images whose produced outputs are low qualitative in
nature and also consume large amount of time during
their CPU implementation [21]. Shukla and Singh imple-
mented frequency domain Gaussian high-boost filter
using Matlab 7.8 for an image of size 128 × 128 pixels
that consumes around 80 ms for high boosting of various
noisy images [22]. Subsequently, Yano and Kuroki approxi-
mated the 2D Gaussian filter using multilayer convolution
of multiple binomial filters enabled with basic shift and
add operations for its faster implementation [23], while
the Gaussian kernel of an edge preserving bilateral filter
was approximated using raised cosines and MonteCarlo
sampling takes around 17 s on a Intel 4-core machine for
an image size of 512 × 512 pixels [24]. Nair and Sankaran
presented a center surround filter to reduce the speed and
memory requirement for color image dehazing in RGB, Lab
and HSV color spaces, but its computation cost is still high
for a small scaled image [25]. Preeti and vishvaksenan [26]
have compared CPU and GPU implementation of Gauss-
ian filter using OpenCV library packages. OpenCV enabled
with CUDA implementation speed up the 2D filtration on
a GPU than the CPU. Oza and Joshi also proposed a fast
bilateral filter implemented using CUDA for medical image
processing [27]. In both the cases filters are designed using
CUDA, which makes them not suitable for other parallel
platforms. Later Rakhshanfar and Amer created a cascaded
2D Gaussian filter to gain better image quality than the
standardize Gaussian filter that consumes an significant
amount of time for a 768 × 512 RGB image on a CPU, and
GPU respectively and make it not suitable for a time bound
real time application [28]. Due to the above limitations,
Mukherjee and Mukhopadhyay come with two fast hard-
ware architectures named Generalized Filter Architecture
(GFA) and Separable Filter Architecture (SFA) for the 5 × 5
Gaussian filter and tested on a field programmable gate-
way array (FPGA) [29].

Enhancing a 480 × 320 image by the Butterworth high
pass filter in frequency domain requires 0.702 s CPU time
in Matlab [30], and Matlab 7.8 implementation of this filter
requires roughly 90 ms to enhance a noisy 128 × 128 image
on a 4 core device [22]. To enhance the quality of an image,

Fig. 1   An example of image high boosting: a blurred image; b its
restored image. Image source: <http://www.visio​n.calte​ch.edu/
html-files​/archi​ve.html>

http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

Fan et al. worked on single-scale Retinex algorithm in HSV
and RGB color spaces independently and the enhanced
images from these color spaces are fused to compute the
loss. Gaussian filter was replaced by the Butterworth filter
in the Retinex algorithm for better image enhancement
[31], but the complexity of the model made it slower than
the brightness balancing method using the Butterworth
filter, developed by Zhao et al. [32]. In 1987, Chen, Huer-
tas and Medioni introduced the fast execution of a Lapla-
cian of Gaussian (LoG) convolution mask of variance σ
by decomposing into a Gaussian mask and a LoG mask
of variance σ1 < σ [33], but Wu implemented the fast LoG
convolution mask using the CUDA API targeted for only
NVIDIA GPU devices [34]. CUDA implementation of Lapla-
cian filter in the spatial domain speedup 200× on NVIDA
GeForce GT 620 GPU than AMD Phenom II X4 810 CPU
time [35]. Besides that, Bao and Sheng explained a com-
putational expensive parameterized logarithmic method
using LoG filter that divides an image into multiple equal
size blocks for better edge and contrast enhancement [36].
Arif, Li and Cheng suggested a minutiae extraction algo-
rithm (MEA) enabled with high boost filters for improved
finger print recognition, while enhancement using Lapla-
cian filter takes 0.354 s on a normalized finger print image
from FVC2004 on a 4 threaded core i3 CPU [37]. Recently,
Rafaela implemented the local Laplacian filter using Vul-
kan API and compared its performance speedup with
respect to its OpenCL and OpenGL implementation for
an 800 × 533 image [38].

3 � Opencl architecture

Parallel processing allows a multiple compute units work-
ing synchronously or asynchronously to accomplish a
particular task, which is impossible in a normal comput-
ing device having a few numbers of cores with a limited
amount of memory and network bandwidth. Various
parallel programming and API interfaces are available to
make use of such heterogeneous parallel platforms, and
some of them are OpenMP, MPI, OpenACC, CUDA, OpenCL,
and Renderscripts, which deliver bit, instruction, data, and
task level concurrency upon the heterogeneous parallel
devices [39]. OpenCL is one of the open source program-
ming standards for the heterogeneous parallel system like
CPU, GPU, and FPGA from different vendors that allows
programmers to develop efficient, reliable, and portable
kernels, which can be switched from one device to another
without any extra set of configurations. MAGMA, clAMDB-
LAS, clAMDFFT, BOLT C++, OpenCV, and JACKET like many
libraries use the OpenCL programming interfaces for GPU
acceleration as OpenCL built upon CUDA, CUBLAS, CUFFT,
CUSPARSE, and Trust like a vast set of boosting libraries.

Access to OpenCL native programming interface can also
be done through Python, C/C++, and Java languages. The
Khronos OpenCL programming framework is modularized
into the platform, execution, memory, and programming
models, and the detail explanation of those are presented
in the upcoming subsection [40].

3.1 � OpenCL platform model

OpenCL platform model includes multiple heterogeneous
parallel devices like CPU, GPU, FPGA, or DSP from differ-
ent brands, are connected to a single host machine for
the shake off building a heterogeneous parallel environ-
ment. Every device is made of multiple computation units,
which further consist of a bunch of processing elements
or work items where the actual kernel execution happens
simultaneously to make the whole operation faster. Data
transmission speed must be fast enough between the host
and device memories to mask the transmission bottleneck
with the high computational capability of each stream-
ing processor; in some cases, it is avoided by using shared
memory communication between the host and OpenCL
devices. Here, we have used Intel Xeon, HD Graphics P530,
and NVIDIA GTX 1050 Ti devices for image high boosting,
whose processing elements are segregated into 2, 6, and
4 computing units having 8192, 256, and 1024 work items
respectively [41–43].

3.2 � OpenCL execution model

OpenCL execution model mainly focuses on its two exe-
cution units, namely host and kernel program execution.
Here, the kernel program is targeted for multiple OpenCL
devices, while the host program runs on the host machine,
but the calling of these kernel programs happen from the
host program itself. Execution model projects all the pro-
cessing elements present inside an OpenCL device into
an N-dimensional index space, and the value of N can be
varied between one and three based on the application
requirement [40].

In image high boosting operation, the size of an index
space is the total number of pixels constitute an input
image and the index space creation happens during clEn-
queueNDRange() function execution by the host program
at the running time. Figure 2 shows, sixty-four work items
are visualized in a 1D, 2D, and 3D index space for better
understanding on the orientation of index space, and a
single cube in all three index spaces represents a work
unit, which carries three different coordinate values in
these NDRange representations.

The OpenCL execution unit uses certain terms like
work-item, work-group, global-id, local-id, work-group-
id, global-size, and local-size; those play significant roles

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

during kernel execution to deliver programming flexibility,
reliability, robustness, and faster computation of instances
on the index space. A work-item represents a processing
element in an OpenCL device, which has a unique coordi-
nate value in index space so-called its global-id. A cluster
of work-items is dedicated to a distinct task based on a
program requirement to form a work-group, and the coor-
dinate of a work unit inside its work-group indicates its
local-id. Like a work unit, a work-group has its work-group-
id; a unique id denotes its place inside the NDRange, and
its arrangement can happen in one, two, or three direc-
tions same as its index space dimension. Global-size of
an index space is the total number of work-items span

along its every dimension, whereas local-size stands for
the number of work-items span along each direction of
a work-group. These values are initialized and passed to
every kernel module using clEnqueueNDRange() API in a
host program, and for better understanding, these attrib-
utes are visualized in Fig. 3 using a two-dimensional index
space comprised of 64 processing elements.

As shown in the above figure, 64 work items are organ-
ized in a 2D index space of its global-size (Gx = 8, Gy = 8),
which is further divided into four work-groups of local-
size (Sx = 4, Sy = 4) each, i.e., 16 work units span over a
two-dimensional space to form a work-group. Here, (sx,
sy) stands for local-id of a work-item in its work-group,
whose global-id (gx, gy) calculation is completely depend-
ent upon its work-group-id (wx, wy), work-group-size (Sx,
Sy), and local-id (sx, sy) as given in Eq. 1.

3.3 � OpenCL memory model

The OpenCL memory model divides the device memory
into four regions based on their size, bandwidth, and
their availability to different processing units [40]. Global
memory is the largest memory region shared by all the
processing units present inside different compute units,
and any changes in the global memory by one work item
make these pieces of information clearly visible to other
work items too. The size of this memory is declared and
passed as a kernel argument by host program where a
variable is defined using the __global keyword inside the
OpenCL kernel that catches the argument. The constant
memory region is also shared by all the work items and
initialized by the main program like global memory, but

(1)global_id (gx, gy) = (wx ⋅ Sx + sx, wy ⋅ Sy + sy)

Fig. 2   1D, 2D, and 3D Index space of sixty-four work items

Fig. 3   OpenCL execution model

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

the information present inside the constant memory is
immutable throughout the kernels’ execution. The __const
keyword is used to capture the constant variable inside
the kernel normally declared by the host program, whose
CL_MEM_READ_ONLY flag is set to one for read-only
access by various processing units. Apart from global and
constant memories, each work-group is well linked with its
own local memory. Each work-item presents inside a single
work-group share its local memory, and its closeness to
processing elements make it faster than the previous two
memory regions, which is initialized by a keyword called
__local or local. In addition to that, every processing ele-
ment is associated with a set of registers called its private
memory, and read or write to this memory by a work item
is not visible to other work items in the same or from dif-
ferent work-group. In OpenCL memory model, speed of a
region is reciprocal to the size of this region, i.e., the largest
size of global memory makes it slower than other memory
regions, while smaller and adjacency private memory is
fastest among other memory regions, whose transmission
speed is about 1 TB/s (Fig. 4).

Overall, OpenCL enables a programmer for proper divi-
sion of information, while maintaining the synchronization
between these memory regions, which is normally done
through an explicit action so that information reaches to
work items correctly at each stage of processing.

3.4 � OpenCL programming model

An OpenCL programming model is responsible for the
creation of program and kernel objects before the device
execution and manages them, while their execution hap-
pens in parallel on different work items in a device. A host
application can have more than one program objects

dedicated for separate contexts, and each program objects
can initiate multiple kernel objects committed for different
functionalities in the applications. A declaration of a pro-
gram object is made using the cl_program keyword, and
it can be created from source code using clCreateProgram-
withSource() function or from a binary file using clCreate-
ProgramWithBinary() function. At last, the program is built
by clBuildProgram() function where both compilation and
linking happen; if the program object is created using the
first API, otherwise only linking is performed in case of sec-
ond API [44]. OpenCL programming model splits a multi-
thread program into a set of threads and distributes them
across the cores in an OpenCL device. So, a GPU having
many cores always executes an application faster than a
CPU or DSP with fewer numbers of cores.

4 � Frequency domain image highboosting

Image high boosting is a branch of image enhancement
operation used to improve high-frequency regions of an
image while keeping lower frequency regions as they are,
i.e., it is an arithmetic addition between an input image and
its scaled enhanced image produced by a high-pass filter
[45]. A frequency domain filtering works on a transformed
image that multiplies with a high pass filter matrix to pro-
duce the frequency map in the transform domain which
is then transformed back to yield the final one. In the fre-
quency domain filtering, an MxN image is first transformed
using various transformation techniques to create an array of
MxN frequency coefficients, representing the rate of change
in pixel intensities at each position on the input image
[46]. An MxN high-pass filter matrix is multiplied with the
MxN transformed image matrix, and the resulted matrix is

Fig. 4   OpenCL memory model

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

converted back using the inverse transformation technique
to get an enhanced image in the spatial domain.

Mostly used DFT technique uses sinusoidal functions
to describe clearly visible frequency values of an image
that influence image quality in the spatial domain without
capturing all frequency components in the image [47]. In
high-pass filtering, selected lower frequency coefficients
are excluded from the transformed image by equalizing
them to zero, and selection of lower frequency is strictly
dependent on the filter’s cutoff frequency, which is com-
puted by taking the distance between each coordinate and
DC component in two-dimensional frequency space [48,
49]. As all the image high boost filtering operation includes
high pass filters, mostly used four high pass filters and their
transfer functions in frequency domain are narrated below.

4.1 � Ideal filter

An ideal high-pass filter rejects all the frequency com-
ponents below its cutoff frequency by equating them to
zero without altering high frequencies in an image. The
rectangular frequency response of this filter prevents any
existence of a transition zone between its stop bands and
pass band regions, unlike other practical high pass filters
[50]. The transfer function H(k, l) value is suddenly raised
to one after its cutoff frequency, and a strict removal of
frequency components below the cutoff frequency brings
some sort of distortion in the texture of the output image.
The Point Spread Function (PSF) of an Ideal high-pass filter
is given in Eq. 2.

4.2 � Gaussian filter

The behavior of a Gaussian high-pass filter is like a bell-
shaped curve, whose response increases gently even after
the cutoff frequency to avoid such distortion in the case of
an Ideal filter. Unlike the ideal filter, the transition region
between its pass band and stop band is improved gradu-
ally until its value equals to one, and length of its transition
region reduces with the increase of its cutoff frequencies
[51, 52]. The transfer function of a Gaussian high-pass filter
is given in Eq. 3.

4.3 � Butterworth filter

A Butterworth high-pass filter allows frequencies above
its cutoff frequency in such a way that steady growth in
the response from fractional to uniform between its stop

(2)H(k, l) =

{

0 D(k, l) < Df

1 D(k, l) ≥ Df

(3)H(k, l) = 1 − e
−D2 (k,l)

2D2
f

band and pass band. As the cutoff frequency increases, It
brings its performance closer to an Ideal filter that obeys
strict rejection of frequency components below its cutoff
frequency [51, 52].

In the first order Butterworth filter, the roll-off rate from
pass band to stop band is 6 dB/octave (20 dB/decade); it
increases to 12 dB/octave (40 dB/decade) for a second
order and even improves to 24 dB/octave (80 dB/decade)
for a fourth order filter.

4.4 � Laplacian of Gaussian filter

Laplacian of Gaussian (LoG) filter’s frequency response
is the second order derivative of Gaussian function that
highlights the sections where the change of intensity
levels happened frequentlyWhen a change in the pixel
intensities arises on the input, its response is +ve on the
darker side and –ve on the lighter side that creates a thin
edge between these two sides [53]. The PSF of a LoG high-
pass filter having cutoff frequency Df is mathematically
expressed in Eq. 5.

In this filtering operation, an image is first filtered using
a Gaussian filter to clear any unwanted noises; those can
be sensitive for finding Laplacian zero crossings in the
image. Smooth, localize, and separable nature of the
Gaussian filter removes false edges and minimizes error
while maintaining the computational efficiency.

5 � Opencl kernel approaches

OpenCL kernel objects are initialized using a program
object with the help of the __kernel qualifier, created
using clCreateKernel() function and passed as an argu-
ment using clSetKernelArg() API by the host program
[44]. After successfully passing all the device buffers and
kernel name as arguments, clEnqueueNDRangeKernel()
API executes such kernel by creating a single instance
per work unit in the NDRange. All the kernels written in
C languages are targeted for C99 compiler, whose data-
types are inspired directly from C basic data types and
some vector data types like float2, int3, and char4, which
are obtained by combining multiple basic data types in
a single container [54]. As kernels are compiled and built

(4)
H(k, l) =

1

1 +
[

Df

D(k,l)

]2n

(5)H(k, l) =

[

D2(k, l)

2D2
f

− 1

]

e

−D2(k,l)

2D2
f

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

during host program execution; writing a kernel requires
clear attention because a minor fault causes difficult to
identify errors exist in it.

Figure 5 shows, input images stored on the host mem-
ory are coming from various input devices like external
media drives, visual sensors, or any real-time applications.
In a channelized OpenCL kernel operation, a single RGB
image is first captured using an OpenCV cv::mat() con-
tainer and then given to cv::split() library function, which
extracts red, green, and blue channels of a colored image
and saves them in different cv::mat() variables. Later,
three independent OpenCL cl::clEnqueueCreateBuffer()
functions transfer these channels’ information from host
memory to device memory, whose parameters CL_MEM_
USE_HOST_PTR and CL_MEM_READ_WRITE create three
device buffers and maps the information from host buffers
to the corresponding device buffers [55]. Multiple chan-
nelized OpenCL kernels are executed for the creation of
frequency domain image matrices from the spatial image
matrices using Discrete Fourier Transformation (DFT), fil-
tration, and Inverse Discrete Fourier Transform (IDFT) for
transforming them back to the spatial domain after the
filtration operation. Apart from that, there is a separate
OpenCL kernel for the creation of the filter matrix, which
will be applied independently to the transformed chan-
nels’ data after the OpenCL DFT kernel execution. This
filter creation kernel runs separately from the image fil-
tration process to reduce the time consumption, which
is done at an early stage of DFT kernel execution. After
the DFT transformation, filter matrix is multiplied with
transformed matrices to boost the high-frequency compo-
nents of these channels without changing their lower fre-
quency components, and IDFT Transformation is taken on
those restored channels to convert them back into spatial
domain image matrices. After those successive kernel exe-
cution, all the channels are copied to the host buffer using
cl::clEnqueueMapBuffer() function, and the enhanced red,
green, and blue channels are merged using cv::merge()
function to generate the final enhanced RGB image, which
is then sent to the output device for displaying purposes

[55]. Here, the device execution time incorporates the total
amount of time taken between transferring the channels’
information from host memory to device memory and
sending back the modified channels’ information to host
memory after the image enhancement, whereas the whole
image high boosting operation processing time contains
the time span between an RGB image’s split() and merge()
operations.

Unlike the channelized OpenCL kernel operation,
an RGB image saved on the host memory is moved to
an OpenCV cv::mat() container, which is then given
to cv::cvtColor() function to generate RGBA image
and store them in a separate mat() variable. OpenCL
cl::clCreateImage() library function with parameters
CL_MEM_READ_WRITE and CL_MEM_USE_HOST_PTR
initiates an image buffer and maps information from
host buffer to it (Fig. 6). Like channelized OpenCL ker-
nels, here also multiple kernels are used for filter matrix
creation, DFT, and IDFT conversion of the image matrix
and filtration of the image matrix, but a single kernel is
run for each RGBA image instead of a distinct kernel for
each channel of an image. OpenCL read_only image and
write_only image data types are used to capture input
and output images, whose image_format having image_
channel_order is set to CL_RGBA [56]. The OpenCL DFT
kernel generates frequency domain transformed image
matrix from its spatial matrix, and its output is propa-
gated to filtration kernel that also receives filter matrix
as one of its inputs. The OpenCL filter kernel runs simul-
taneously with the DFT kernel to create the filter matrix,
whose output is later supplied as an input to filtration
kernel. After multiplying the image matrix with a trans-
formed image matrix, IDFT kernel converts the trans-
formed image matrix to its spatial domain. All OpenCL
kernels use read_imagef() function to capture channels’
pixel values in a float4 vector data type variable at a par-
ticular position. Unlike channelized OpenCL kernel, all
the operations are performed on RGBA channels’ values
at a particular instance using a float4 variable, whose
make the kernel execution time faster than three simple

Fig. 5   Dataflow diagram of
channelized OpenCL kernels’
device execution

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

OpenCL kernels for three channels respectively. After
all successive kernels executions, the enhanced image
information is mapped back to the host buffer using
clEnqueueMapBuffer(), and it is then provided as an
input to cv::cvtColor() for converting it back from RGBA
to RGB image [55]. At last, the final image is propagated
to the output device to store or exhibit purposes. Like
previous kernel executions, here the total execution time
of an image high boosting is the time gap between two
cv::cvtColor() functions, which includes device execution
time starts by transferring image data from host buffer
to device buffer and ends after transfer it back to host
buffer. Overall, as the image vectored OpenCL kernel
operates on all the channel values at the same time, it
not only optimizes program execution but also reduces
time complexity without hampering the image quality.

Tables 1 and 2 present the OpenCL kernel implemen-
tation for Ideal, Gaussian, Butterworth, and Laplacian
of Gaussian high-boost filters using channelization and
image vectorization techniques. As we have seen, the
two-dimensional float2* data pointer variable in a chan-
nelized kernel is used to hold the real and imaginary part
of a single channel in an image, whereas the float4 type
ipixelValueR and ipixelValueI capture and process the real
and imaginary part of four channels in an RGBA image,
which reduce separate invocation of the channelized
OpenCL kernel for each channel of a colored image to one.
So, the computational cost involved with the host pro-
gram while three times passing the kernel parameters and
queuing the kernels to index space during channelized
kernel implementation are successfully eliminated by the
employment of the image vectorized kernels. In the end,
the __read_only image2d_t and __write_only image2d_t

Fig. 6   Dataflow diagram of
vectored OpenCL kernels’
device execution

Table 1   Channelized OpenCL kernel of the above high-boost filters

Id
ea
l

__kernel void ideal_kernel (__global float2* data,int height,int width,int CUTOFF)
{ uint index = get_global_id(0); int U = index / width; int V = index % width;
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2), 2.0);
float H = 1.0+((sqrt(D)>CUTOFF)?1.0:0.0); data[index].x = data[index].x * H;

data[index].y = data[index].y * H; }

G
au

ss
ia
n __kernel void gauss_kernel (__global float2* data,int height,int width,int CUTOFF)

{ uint index = get_global_id(0); int U = index / width;int V = index % width;
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2),2.0);
float H = 2.0 - pow(2.72, (-1.0 * D / (2.0 * pow(CUTOFF, 2.0))));
data[index].x = data[index].x * H; data[index].y = data[index].y * H;}

Bu
�e

rw
or
th

__kernel void bw_kernel (__global float2* data, int height, int width,
int CUTOFF, float Ord)

{ uint index = get_global_id(0); int U = index / width; int V = index % width;
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2),2.0);
float H = 1.0 + 1.0 / (1 + pow (CUTOFF / sqrt(D), 2 * Ord));
data[index].x = data[index].x * H; data[index].y = data[index].y * H; }

Lo
G

__kernel void LoG_kernel (__global float2* data,int height,int width,int CUTOFF)
{ uint index = get_global_id(0); int U = index / width; int V = index % width;
float Freq = pow(CUTOFF, 2.0);
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2),2.0);
float H = 2.0 - (1.0 - D / Freq) * pow(2.72, -1.0 * D / (2.0 * Freq));
data[index].x = data[index].x * H; data[index].y = data[index].y * H;}

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

inside the filter kernels in Table 2 are the data types for
the input and output images that map the pixels in two-
dimensional index space.

6 � Results

In Image high boosting, a filter is applied one time on the
transformed data irrespective of its cutoff frequency and
degree, which not only reduces the overall computational
complexity but also makes the operation quite faster than
the spatial domain image filtration. All those four filters
were first implemented using C and OpenCV on Xeon E3
1225 V5, and later, the channelized and vectored OpenCL

kernels were created and run on Xeon E3 1225 V5, HD
Graphics P530, and GTX 1050 Ti devices while maintain-
ing the accuracy level in all those implementations. The
dedicated framework on which all the high boost opera-
tions are carried out listed in Table 3, and various blurred
images were used during the enhancement operation to
produce their enhanced images displayed in Fig. 7.

In Fig. 7a–e images are the distorted images, which are
first added with Poisson, Gamma, Exponential, Uniform,
and impulse noises separately, then these noisy images
are filtered by Ideal, Gaussian and, Butterworth low-pass
filters. The detail information regarding the parameters of
these noises and the corresponding applied filters are pre-
sented below of each image. The motto behind the use of

Table 2   Vectored OpenCL kernel of the above high-boost filters

Id
ea
l

__kernel void ideal_kernel (__read_only image2d_t orimage,__read_only image2d_t
oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage, int height,
int width, int CUTOFF) { uint index = get_global_id(0);int u = index / width;
int v = index % width; float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0) + pow(width/2-abs(v-width/2),2.0);
float H = 1.0 + ((sqrt(D) > CUTOFF)? 1.0 : 0.0);
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H);}

G
au
ss
ia
n

#define EXP 2.72
__kernel void gaussian_kernel (__read_only image2d_t orimage, __read_only
image2d_t oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage,
int height,int width, int CUTOFF)
{ uint index = get_global_id(0); int u = index / width;int v = index % width;
float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0)+pow(width/2-abs(v-width/2),2.0);
float H = 2.0 - pow(EXP, (-1.0 * D / (2.0 * pow(CUTOFF, 2.0))));
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H); }

Bu
�e

rw
or
th

__kernel void butterworth_kernel (__read_only image2d_t orimage,__read_only
image2d_t oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage,
int height,int width, int CUTOFF,float Ord)
{ uint index = get_global_id(0); int u = index / width;int v = index % width;
float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0)+pow(width/2-abs(v-width/2),2.0);
float H = 1.0 + 1.0 / (1 + pow (CUTOFF / sqrt(D), 2 * Ord));
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H);}

Lo
G

#define EXP 2.72
__kernel void LoG_kernel (__read_only image2d_t orimage, __read_only image2d_t
oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage,int height,
int width, int CUTOFF)
{ uint index = get_global_id(0); int u = index / width; int v = index % width;
float Freq = pow(CUTOFF, 2.0); float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0)+ pow(width/2-abs(v-width/2), 2.0);
float H = 2.0 - (1.0 - D / Freq) * pow(EXP, -1.0 * D / (2.0 * Freq));
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H);}

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

these distorted smooth images to check the accuracy level
of those above high-boost filters with respect to outputs
and their respective originals. For OpenCL DFT, IDFT, and
filtering operations, global_size of the index space is the
total number of pixels present in the input image, but the
local_ size reduces to the total pixels along the horizontal
and vertical direction of the workgroup. These global_size
and local_size values set to 65,536 and 256 for a 256 × 256
image in the case of vectored filter kernel, but the local_
size sets to 1024 for Xeon E3 1225 V5 and GTX 1050 Ti in
the case of channelized filter kernel implementation. For
our evaluation, the following sample codes inside the host
program set the size of the index space and each work-
group present inside it.
size_t global_size = Image.rows * Image.

cols, size_t local_size = 256;/*DFT &
IDFT*/

size_t global_size = Image.rows * Image.cols,
size_t local_size = 256;/*Filtering*/

clStatus =  clEnqueueNDRangeKernel(comm
and_queue_highboost, kerne, 1, NULL,
&global, &local, 0, NULL, NULL);

Figure 7f–j are the sample output images from the
Ideal, Gaussian, Butterworth or LoG high-boost filters at
different cutoff frequencies. Various image performance
evaluation metrics were used to estimate correctness of
the produced images with the help of the above four filters
with regard to their inputs; higher values of signal-to-noise
ratio (SNR), peak signal-to-noise ratio (PSNR), Entropy, Cor-
relation, and Structural Similarity Index (SSIM) and lower
mean absolute error (MAE), standard deviation (SD), and
percentage fit error (PFE) values indicate better image
enhancement [57, 58]. Table 4 carries the metric values,
computed over those five distorted smoothed images by
applying an Ideal filter at cutoff frequencies 30, 40 and 50
i.e., it represents the qualitative nature of an Ideal filter on
various noisy environments. Table 5 lists out, the compu-
tational cost of various implementations of an Ideal filter
at the same cutoff frequencies on heterogeneous plat-
forms. It indicates the total time taken by an Ideal filter for
a particular image at a given cutoff frequency on different

platforms. The OpenCV-C implementation of an Ideal filter
is dedicated to CPU only, whereas the non-vectorization
(channelization) and vectorization implementation of this
filter are targeted to CPU and GPU from different vendors.
As we have moved to better platforms, the ratio between
the channelized and vectorized kernel’s execution time
increases at a significant amount. Similarly, Tables 6, 8 and,
10 explain performance metrics of the Gaussian, Butter-
worth and, LoG filters, while Tables 7, 9 and, 11 describe
the evaluation time with regard to each and every images.
At last, Table 12 sum up the mean metric values of all the
five images from those above filters.

As explained earlier, Tables 4, 6, 8 and 10 convey the
performance metrics of output images from the five
images by the Ideal, Gaussian, Butterworth, and LoG fil-
ters having cutoff frequencies at 30, 40, and 50, whereas
Tables 5, 7, 9 and 11 exhibit the time consumption by the
channelized and vectored kernels of those filters at 30, 40,
and 50 for those five images. Table 12 shows the overall
Correlation, SSIM, SNR, and PSNR values increase with
an increase of the cutoff frequency of an Ideal filter, but
PFE, SD, MSE, RMSE, MAE, and Entropy values decrease at
the same time. The rigid frequency response of an Ideal
high-boost filter brings some sorts of artifacts in the final
image, which is not present in the original one as shown in
Fig. 7f. The higher standard deviation at cutoff frequency
30 indicates better detail enhancement than the cutoff
frequency at 50, i.e., as the cutoff frequency reduces, the
relationship between the pixels is loosely maintained in
the enhanced image than its source image. The entropy of
an image specifies the amount of information is needed
to successfully encode an image and its value 0.75792 at
(Df = 30) implies more information is required than 0.75434
at (Df = 50) in case of the Ideal Filter.

A LoG filter sharpens edges and curves present inside
an image, which ultimately boosts the overall image qual-
ity, but the similarity between the input and output has
slightly destroyed due to the excessive improvement of
high-frequency regions. As given in Table 12, the source
images are quietly preserved during high boosting opera-
tion by the Gaussian high-boost filter contradict to other
filters. As we have seen in Table 12, SSIM and PSNR values
(0.5999, 0.6108, 0.6197) and (16.34, 16.54, 16.64) respec-
tively are strong enough compare to other. In contrast to
that, LoG’s Entropy and SD values are (7.5936, 7.59646,
7.59042) and (57.18, 55.29, 53.84) demonstrate better
contrast enhancement. At the same time, SSIM and PSNR
values are (0.5597, 0.5668, 0.5759) and (15.65, 15.85, 16.04)
signify the low restoration of the original image quality
due to high contrast enhancement. A Butterworth filter
tries to make a tradeoff between the output image quality
from a Gaussian filter and enrichment of high-frequency
regions by a LoG filter (Fig. 8). In the end, the first order

Table 3   Framework specification

Components Specification

Processor Intel Xeon E3-1225 v5
Memory DDR4 8 GB 2133 MHz
Graphics processor (integrated) Intel HD Graphics P530
Graphics processor (dedicated) NVIDIA GTX 1050 Ti
Operating system Windows Server 2012 R2
Packages C, OpenCV, OpenCL
Image Size = 256 × 256, Bit Depth = 24.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

Fig. 7   Enhanced images f–j
generated from their distorted
smoothed images a–e with the
help of Ideal, Gaussian, But-
terworth and LoG high boost
filters

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

Butterworth filter performs a little better than its second
order and much better than its higher-order at a given Df.

OpenCV implementations of all those above filters
consume significant amounts of times on Xeon E3 1225,
which reduce with the increase of its cutoff frequency
Df except for the LoG filter. In case of a LoG high-boost
filter, there is an increase in the computational cost with
regard to the cutoff frequency, while high-boosting
using a higher-order Butterworth filter runs a bit longer
than its lower order as shown in Fig. 9. Here, a first-order
Butterworth filter having a cutoff frequency at (Df = 30,

Df = 40) consumes (0.1446 s, 0.1318 s) on CPU, but it
again increases to 0.1384 s for this filter of order two
and cutoff frequency at 50. The Channelized OpenCL
implementations of these filters approximately reduce
the overall computational costs by 20 percentages on
the CPU, which diminish further by factors of 3 and 9 on
Intel HD Graphics P530 and NVIDIA GTX 1050 Ti respec-
tively. As the channelized kernel implementations are
called separately for Red, Green, and Blue channels by
the host program, context switching between the host
and device create a bottleneck on their execution time,

Table 4   Performance metrics
of an Ideal high boost filter
with respect to frequency
Df = 30, 40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30) 7a 7.7983 15.340 450.139 21.216 56.41 15.38 21.60 3.435 0.6959 0.9269
7b 7.4957 63.283 4.35e03 65.989 47.90 04.33 11.74 73.37 0.6494 0.9436
7c 7.7872 51.620 3.29e03 57.332 62.89 06.24 12.96 51.16 0.5897 0.9406
7d 7.7709 50.677 3.04e03 55.108 60.24 06.65 13.30 50.52 0.5747 0.9692
7e 7.0439 17.265 513.203 22.654 35.03 09.57 21.03 25.66 0.4175 0.9037

(Df = 40) 7a 7.7656 14.089 390.330 19.757 54.83 16.00 22.22 3.198 0.7053 0.9341
7b 7.4758 63.374 4.32e03 65.771 46.86 04.36 11.77 73.46 0.6566 0.9504
7c 7.8003 51.661 3.23e03 56.868 61.61 06.31 13.03 55.29 0.5977 0.9476
7d 7.7677 50.724 2.98e03 54.636 59.14 06.72 13.38 50.59 0.5834 0.9756
7e 7.0027 17.114 493.308 22.210 34.34 9.748 21.20 25.64 0.4293 0.9119

(Df = 50) 7a 7.7379 13.139 352.755 18.782 53.86 16.44 22.66 3.135 0.7144 0.9392
7b 7.4589 63.418 4.30e03 65.603 46.15 04.38 11.79 73.49 0.6635 0.9556
7c 7.7966 51.664 3.19e03 56.470 60.73 06.37 13.09 55.32 0.6052 0.9531
7d 7.7620 50.752 2.95e03 54.341 58.52 06.77 13.42 50.62 0.5923 0.9798
7e 6.9713 17.028 475.972 21.817 33.89 09.90 21.35 25.63 0.4430 0.9193

Table 5   Computation time of an Ideal high boost filter in seconds with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C
Xeon E3-1225
Channelization

OpenCL-C
Xeon E3-1225
Vectorization

OpenCL-C
HD Graph-
ics P530
Channeli-
zation

OpenCL-C
HD Graph-
ics P530
Vectoriza-
tion

OpenCL-C
GTX 1050 Ti
Channelization

OpenCL-C
GTX 1050 Ti
Vectorization

(Df = 30) 7a 0.154 0.126 0.082 0.056 0.031 0.019 0.009
7b 0.158 0.126 0.085 0.055 0.031 0.018 0.009
7c 0.157 0.127 0.084 0.055 0.031 0.019 0.009
7d 0.161 0.126 0.085 0.056 0.031 0.018 0.010
7e 0.159 0.127 0.083 0.055 0.030 0.018 0.009

(Df = 40) 7a 0.152 0.124 0.082 0.055 0.030 0.018 0.009
7b 0.154 0.125 0.083 0.055 0.031 0.018 0.009
7c 0.153 0.125 0.083 0.054 0.031 0.018 0.009
7d 0.155 0.124 0.084 0.055 0.031 0.017 0.009
7e 0.154 0.125 0.083 0.054 0.030 0.018 0.009

(Df = 50) 7a 0.150 0.124 0.081 0.053 0.030 0.018 0.008
7b 0.149 0.123 0.082 0.054 0.030 0.017 0.009
7c 0.148 0.125 0.082 0.054 0.031 0.017 0.008
7d 0.151 0.124 0.082 0.054 0.031 0.017 0.009
7e 0.148 0.124 0.081 0.053 0.030 0.017 0.008

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

which will be further optimized by processing all chan-
nels by a single kernel using the image vectorization
technique.

In the image vectorization technique, at first, an RGB
image is converted to an RGBA image, which is given to
a filtration kernel for further processing. As the context
switching happens one time between the host and device
before image high boosting, it minimizes the overall com-
putational time of the channelized kernel to half on GTX
1050 Ti GPU. Not only that, it has shown a significant rise

in the kernels’ speed by a factor of 1.33 and 1.6 on the
Intel CPU and GPU respectively. Figure 10 exhibits, the
Ideal and Gaussian kernels processing times deplete with
respect to cutoff frequency Df, but the time taken by a
LoG kernel improves as the cutoff frequency increases. Like
OpenCV implementation, both channelized and vectored
image kernels execution costs are proportional to the
order of a Butterworth filter at a given Df, but these values
are inversely related to the cutoff frequency of this filter
at a constant order. Irrespective of the cutoff frequency,

Table 6   Performance metrics
of a Gaussian high boost filter
with respect to frequency
Df = 30, 40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30) 7a 7.7881 13.794 383.599 19.586 56.55 16.08 22.29 3.160 0.7164 0.9381
7b 7.4665 63.325 4.32e03 65.708 48.04 04.37 11.77 73.42 0.6583 0.9543
7c 7.7857 51.608 3.22e03 56.785 63.15 06.32 13.04 63.14 0.6002 0.9516
7d 7.7733 50.676 3.00e03 54.777 60.69 6.704 13.36 50.57 0.5897 0.9775
7e 7.0256 16.783 480.418 21.918 35.01 9.863 21.31 25.61 0.4351 0.9155

(Df = 40) 7a 7.7521 12.708 337.615 18.374 54.99 16.63 22.85 3.122 0.7281 0.9432
7b 7.4502 63.398 4.29e03 65.535 46.98 04.39 11.80 73.48 0.6670 0.9592
7c 7.7908 51.645 3.17e03 56.333 61.72 06.39 13.11 55.31 0.6099 0.9571
7d 7.7691 50.733 2.96e03 54.403 59.56 06.76 13.41 50.62 0.5993 0.9815
7e 6.9862 16.777 465.161 21.567 34.33 10.00 21.45 25.61 0.4500 0.9224

(Df = 50) 7a 7.7256 11.966 310.032 17.608 54.03 17.00 23.22 3.104 0.7371 0.9467
7b 7.4359 63.430 4.28e03 65.417 46.29 04.41 11.82 73.50 0.6733 0.9626
7c 7.7843 51.662 3.14e03 56.009 60.77 06.44 13.16 55.34 0.6173 0.9611
7d 7.7628 50.763 2.93e03 54.168 58.88 06.80 13.45 50.63 0.6071 0.9841
7e 6.9581 16.791 453.077 21.569 33.89 10.11 21.57 25.61 0.4640 0.9280

Table 7   Computation time of a Gaussian high boost filter in seconds with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C
Xeon E3-1225
Channelization

OpenCL-C
Xeon
E3-1225
With Vec-
torization

OpenCL-C
HD Graphics
P530
Channeliza-
tion

OpenCL-C
HD Graphics
P530
With Vec-
torization

OpenCL-C
GTX 1050 Ti
Channelization

OpenCL-C
GTX 1050
Ti
With
Vectoriza-
tion

(Df = 30) 7a 0.158 0.126 0.085 0.056 0.032 0.019 0.010
7b 0.158 0.127 0.082 0.055 0.031 0.020 0.009
7c 0.159 0.127 0.083 0.056 0.030 0.019 0.010
7d 0.160 0.126 0.082 0.055 0.029 0.020 0.010
7e 0.157 0.126 0.085 0.055 0.031 0.019 0.010

(Df = 40) 7a 0.151 0.125 0.084 0.055 0.031 0.018 0.010
7b 0.152 0.127 0.082 0.054 0.031 0.019 0.009
7c 0.154 0.126 0.083 0.055 0.030 0.019 0.009
7d 0.151 0.125 0.082 0.055 0.029 0.019 0.009
7e 0.150 0.125 0.084 0.054 0.030 0.018 0.010

(Df = 50) 7a 0.147 0.124 0.083 0.055 0.031 0.018 0.009
7b 0.146 0.126 0.082 0.054 0.030 0.018 0.009
7c 0.147 0.124 0.081 0.055 0.030 0.018 0.009
7d 0.148 0.125 0.082 0.054 0.028 0.019 0.009
7e 0.144 0.124 0.083 0.054 0.030 0.018 0.009

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

the computational cost of a vectorized Gaussian kernel
over a 256 × 256 RGB image is slightly lower than its Mat-
lab implementation over a 128 × 128 gray image [22] and
sufficiently lesser than its Matlab implementation over a
512 × 512 RGB image on a 4 core CPU machine [24]. Sur-
round filter using Gaussian weights dehazes an 267 × 188
image in HSV, Lab and RGB color spaces in (0.299 s, 0.689 s,
0.610 s) [25]; CPU and CUDA implementation of 5x5 Gauss-
ian filter for single channel image on a core i5 and 384

NVIDIA GPU consumes 13 s and 7 ms respectively [26]. In
contrast to that, CUDA enabled bilateral filter enhances
a 256 × 256 gray image in 1.8 ms, but its CPU implemen-
tation takes 0.083 s, similar to the vectorized Gaussian
kernel execution on a 256 × 256 RGB image. [27].GFA and
SFA for a 2D 5x5 Gaussian filter on FPGA Virtex 6 takes
(0.371 ms s, 0.394 ms) for a 256x356 gray image, which are
quite faster than our vectorized Gaussian kernel, but their
unique implementations are limited to FPGA that make

Table 8   Performance metrics of a Butterworth high boost filter with respect to Df = 30, 40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30, n = 1) 7a 7.8070 14.148 396.406 19.910 57.67 15.93 22.15 3.197 0.7170 0.9384
7b 7.4650 63.256 4.32e03 65.719 48.77 04.37 11.78 73.36 0.6565 0.9544
7c 7.7628 51.544 3.23e03 56.814 64.04 06.32 13.04 55.17 0.5998 0.9521
7d 7.7714 50.630 3.02e03 54.962 61.71 06.67 13.33 50.55 0.5915 0.9771
7e 7.0401 16.697 474.162 21.775 35.42 09.92 21.37 25.59 0.4393 0.9172

(Df = 40, n = 1) 7a 7.7728 13.092 352.349 18.771 56.00 16.45 22.66 3.131 0.7270 0.9423
7b 7.4530 63.350 4.30e03 65.571 47.63 04.39 11.80 73.44 0.6645 0.9584
7c 7.7810 51.606 3.18e03 56.428 62.55 06.38 13.10 55.27 0.6081 0.9565
7d 7.7720 50.697 2.98e03 54.580 60.39 6.735 13.39 50.60 0.5986 0.9804
7e 7.0028 16.700 462.586 21.507 34.69 10.02 21.48 25.60 0.4512 0.9226

(Df = 50, n = 2) 7a 7.7298 12.422 326.655 18.073 53.92 16.77 22.99 3.116 0.7291 0.9438
7b 7.4495 63.429 4.29e03 65.491 46.22 04.40 11.81 73.50 0.6701 0.9599
7c 7.7897 51.664 3.16e03 56.199 60.72 06.41 13.13 55.33 0.6127 0.9578
7d 7.7624 50.758 2.94e03 54.225 58.65 06.79 13.44 50.63 0.6009 0.9823
7e 6.9650 16.892 464.803 21.559 33.88 10.00 21.46 25.62 0.4537 0.9236

Table 9   Computation time of a Butterworth high boost filter in sec. with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C
Xeon E3-1225
Channelization

OpenCL-C
Xeon
E3-1225
With Vec-
torization

OpenCL-C
HD Graph-
ics P530
Channeli-
zation

OpenCL-C
HD Graph-
ics P530
With Vec-
torization

OpenCL-C
GTX 1050 Ti
Channelization

OpenCL-C
GTX 1050
Ti
With
Vectoriza-
tion

(Df = 30, n = 1) 1) 7a 0.144 0.127 0.084 0.056 0.031 0.020 0.010
7b 0.146 0.126 0.084 0.056 0.031 0.020 0.009
7c 0.145 0.128 0.083 0.055 0.031 0.019 0.009
7d 0.143 0.126 0.083 0.055 0.031 0.020 0.010
7.e 0.145 0.126 0.084 0.056 0.031 0.019 0.009

(Df = 40, n = 1) 7a 0.132 0.125 0.083 0.056 0.030 0.019 0.008
7b 0.131 0.125 0.082 0.055 0.030 0.018 0.009
7c 0.133 0.126 0.082 0.053 0.031 0.018 0.009
7d 0.133 0.125 0.082 0.054 0.029 0.019 0.008
7e 0.130 0.124 0.083 0.055 0.030 0.018 0.009

(Df = 50, n = 2) 7a 0.140 0.125 0.082 0.055 0.030 0.020 0.008
7b 0.141 0.126 0.083 0.056 0.031 0.019 0.010
7c 0.137 0.127 0.082 0.055 0.030 0.019 0.009
7d 0.136 0.127 0.082 0.055 0.030 0.019 0.009
7e 0.138 0.125 0.084 0.054 0.031 0.019 0.009

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

them unsuitable for other parallel devices [29]. 2D But-
terworth filter enhances a 480x320 gray image 0.827 s [30]
and various noisy 128 × 128 gray images, whose execution
time varies from 0.059 s to 0.130 s [22], unlike the vector-
ized Butterworth kernel’s execution stick around 0.083 s
for the 256 × 256 size noisy colored images. On the other
hand, CUDA implementation of the Butterworth filter
requires 0.4 s for a 12 KB small scaled image [32] and the
Retinex algorithm using Butterwoth filter needs 0.310 s to
0.648 s for enrichment of the medium scale images [31].

A parameterized logarithmic enhancement based on LoG
filter enhances an 440 × 440 gray image in 14.98 s [36],
whereas LoG filter takes 0.3535 s on a normalized image
from FVC database 2004 using 4 core intel CPU [37]. Port-
ing the local Laplacian filter into Vulkan API needs 10 s to
boost an 800 × 533 colored image on a 1536 core NVIDIA
GPU [38], which is not feasible for any time bound appli-
cations and made it possible by OpenCL implementation
of image vectorized LoG kernel. Here, the total consump-
tion cost of a filter includes the processing time between

Table 10   Performance metrics
of a LoG high boost filter with
respect to frequency Df = 30,
40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30) 7a 7.8427 18.370 634.235 25.184 62.51 13.89 20.11 4.718 0.6668 0.9166
7b 7.5154 62.906 4.43e03 66.541 52.16 04.26 11.67 72.98 0.6242 0.9312
7c 7.7039 51.676 3.45e03 58.718 68.30 06.03 12.75 54.61 0.5648 0.9274
7d 7.7547 50.645 3.19e03 56.486 65.13 06.44 13.09 50.21 0.5537 0.9588
7e 7.1513 16.676 558.504 23.633 37.84 09.21 20.66 25.69 0.3894 0.8885

(Df = 40) 7a 7.8357 16.825 543.943 23.327 59.97 14.56 20.77 4.083 0.6773 0.9214
7b 7.5056 63.111 4.39e03 66.304 50.44 04.29 11.70 73.21 0.6327 0.9374
7c 7.7583 51.674 3.39e03 58.248 66.34 06.10 12.82 54.94 0.5712 0.9330
7d 7.7686 50.620 3.11e03 55.812 63.02 06.54 13.20 50.39 0.5593 0.9647
7e 7.1141 17.313 541.369 23.267 36.69 09.34 20.79 25.64 0.3939 0.8931

(Df = 50) 7a 7.8190 15.558 471.473 21.713 58.10 15.18 21.39 3.654 0.6893 0.9274
7b 7.4932 63.243 4.37e03 66.087 49.22 04.32 11.73 73.34 0.6414 0.9434
7c 7.7869 51.663 3.34e03 57.773 64.85 06.17 12.89 55.13 0.5794 0.9389
7d 7.7732 50.641 3.06e03 55.321 61.64 06.62 13.27 50.50 0.5680 0.9647
7e 7.0798 17.064 525.033 22.913 35.40 09.48 20.93 25.63 0.4015 0.8987

Table 11   Computation time of a LoG high boost filter in seconds with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C
Xeon E3-1225
Channelization

OpenCL-C
Xeon
E3-1225
With Vec-
torization

OpenCL-C
HD Graphics
P530
Channeliza-
tion

OpenCL-C
HD Graphics
P530
With Vec-
torization

OpenCL-C
GTX 1050 Ti
Channelization

OpenCL-C
GTX 1050
Ti
With
Vectoriza-
tion

(Df = 30) 7a 0.165 0.124 0.082 0.054 0.029 0.018 0.009
7b 0.167 0.123 0.081 0.054 0.029 0.019 0.009
7c 0.163 0.124 0.083 0.054 0.030 0.018 0.009
7d 0.168 0.125 0.082 0.054 0.030 0.018 0.009
7e 0.165 0.124 0.082 0.055 0.030 0.017 0.008

(Df = 40) 7a 0.172 0.125 0.083 0.054 0.030 0.018 0.009
7b 0.175 0.125 0.082 0.055 0.030 0.019 0.010
7c 0.174 0.125 0.084 0.054 0.030 0.019 0.009
7d 0.177 0.125 0.083 0.054 0.030 0.019 0.009
7e 0.173 0.124 0.082 0.055 0.030 0.018 0.008

(Df = 50) 7a 0.180 0.126 0.084 0.055 0.030 0.019 0.010
7b 0.183 0.127 0.083 0.055 0.030 0.021 0.010
7c 0.187 0.125 0.084 0.055 0.030 0.019 0.009
7d 0.189 0.126 0.083 0.054 0.031 0.020 0.009
7e 0.184 0.125 0.083 0.056 0.031 0.019 0.009

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

the DFT transformation of an input image to generate
its frequency map and inverse DFT transformation of its
enhanced frequency map to produce the final one in the
spatial domain.

The computation time listed in Figs. 9 and 10 include
overall cost of the filter matrix creation, DFT and IDFT
transformations, and filtration time, which are normally
done by the separate OpenCL kernels. The computational
costs of the DFT and IDFT transformations of a 256 × 256
image and the creation time filters’ matrices for various fil-
ters are shown in Figs. 11 and 12. All those filters’ matrices
creation times consume a lot of time on NVIDIA GTX 1050
Ti than Xeon E3 1225 V5 and HD Graphics P530, whereas
these values are minimum on HD Graphics P530. Even-
tually, Involvement of exponential function makes the
Gaussian and LoG filters to run more than two times of

Table 12   Overall performance metrics of Ideal, Gaussian, Butterworth and LoG high-boost filters at frequency 30, 40 and 50

Filter Df, n COR SSIM PFE (e2) PSNR (e2) SNR (e1) SD (e2) RMSE (e2) MSE (c4) MAE (e2) Entropy (e1)

Ideal 30 0.9358 0.5854 0.4082 0.1612 0.8434 0.5249 0.444598 0.23286684 0.39637 0.75792
40 0.9439 0.5944 0.41635 0.163 0.8627 0.5135 0.438484 0.22827276 0.39392 0.756242
50 0.9494 0.6036 0.4163 0.1642 0.8772 0.5063 0.434026 0.22537454 0.39200 0.75434

Gaussian 30 0.9474 0.5999 0.4318 0.1634 0.8667 0.5268 0.437548 0.22808034 0.39237 0.756784
40 0.9525 0.6108 0.41628 0.1654 0.8834 0.5151 0.432424 0.22445552 0.39052 0.754968
50 0.9565 0.6197 0.41636 0.1664 0.8952 0.5072 0.429542 0.22226218 0.38922 0.753334

Butterworth 30, 1 0.9478 0.6008 0.41573 0.1633 0.8642 0.5352 0.43836 0.22881136 0.39255 0.756926
40, 1 0.9520 0.6098 0.41608 0.1648 0.8795 0.5225 0.433714 0.2254987 0.39089 0.755632
50, 2 0.9534 0.6133 0.41639 0.1656 0.8874 0.5067 0.431094 0.22362916 0.39033 0.753928

LoG 30 0.9245 0.5597 0.41641 0.1565 0.7966 0.5718 0.461124 0.24525478 0.40054 0.75936
40 0.9299 0.5668 0.41652 0.1585 0.8166 0.5529 0.453916 0.23950624 0.39908 0.759646
50 0.9346 0.5759 0.41650 0.1604 0.8354 0.5384 0.447614 0.23533012 0.39633 0.759042

0

0.2

0.4

0.6

0.8

1
Ideal 30

Ideal 40

Ideal 50

Gaussian 30

Gaussian 40

Gaussian 50

Bu
erworth 30

Bu
erworth 40

Bu
erworth 50

LoG 30

LoG 40

LoG 50

Correla�on SSIM PFE (e2) PSNR (e2) SNR (e1)

SD (e2) RMSE (e2) MSE (e4) MAE (e2) Entropy (e1)

Fig. 8   Graphical representation of overall performance metrics of
an Ideal, Gaussian, Butterworth and Laplacian of Gaussian filters at
cutoff frequency 30, 40 and 50

Fig. 9   Overall time consump-
tion in seconds by OpenCV
and channelized OpenCL
implementations of high-boost
filters in regards to cutoff fre-
quencies at 30, 40 and 50 0.

15
78

0.
15

36

0.
14

92

0.
15

84

0.
15

16

0.
14

64

0.
14

46

0.
13

18

0.
13

84 0.
16

56

0.
17

42

0.
18

46

0.
12

64

0.
12

46

0.
12

4

0.
12

64

0.
12

56

0.
12

46

0.
12

66

0.
12

5

0.
12

6

0.
12

4

0.
12

48

0.
12

58

0.
05

54

0.
05

46

0.
05

36

0.
05

54

0.
05

46

0.
05

44

0.
05

56

0.
05

46

0.
05

5

0.
05

42

0.
05

44

0.
05

5

0.
01

84

0.
01

78

0.
01

72

0.
01

94

0.
01

86

0.
01

82

0.
01

96

0.
01

84

0.
01

92

0.
01

8

0.
01

86

0.
01

96

3 0 4 0 5 0 3 0 4 0 5 0 3 0 4 0 5 0 3 0 4 0 5 0

I D E A L G A U S S I A N B U T T E R W O R T H L O G

OpenCV Xeon E3 1225 OpenCL Xeon E3 1225

OpenCL HD Graphics P530 OpenCL GTX 1050 Ti

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

the Ideal and Butterworth filter. As the filter’s matrix crea-
tion happens only one time before the high-boosting
operation; the overall execution time of image filtration
will be minimized further in a real-time application. Again
in future, by replacing 2D-DFT and 2D-IDFT by an 8 × 8 or
16 × 16 FFT and IFFT will bring down the execution time
of these OpenCL filtration kernels by a significant amount
[59].

As the channelized OpenCL kernels’ implementations
run independently for Red, Green, and Blue channels, the
total execution times of the DFT and IDFT of a 256 × 256
image are 18.3498 ms and 19.5518 ms respectively on
the Intel CPU. However, converting all these three chan-
nels to a vector and processing this input vector using
OpenCL diminishes the processing cost to 11.3006 ms
and 12.6779 ms on the four core CPU which is quiet simi-
lar to pyNUFFT on a 8 core CPU [60], but lower than 2D
FFT implementation on 32 core GPU [61]. There are also
remarkable reduction in the computation time for this
kernel’s GPU implementations. As the number of cores
increases in a device, the values are gone down dramati-
cally as reflected in Fig. 11. As shown in the figure, the vec-
torized DFT and IDFT kernels consume (3.6 ms, 3.8 ms) and
(2.43 ms, 2.59 ms) on 192 cores Intel and 768 cores NVIDIA
GPUs, which are comparatively lesser than the 2D FFT
implementation using CUFFT library on 5120 cores NVIDIA
GPU or on a FPGA XC7K410T at a clock frequency 40 MHz.
[62, 63]. Figure 12 exhibits the average creation times of
filters’ matrices are too high for Gaussian and LoG filters,
i.e., the expected filtration times are low compared to Ideal
and Butterworth filters. In the end, we have concluded
that the utilization of image vectored kernels instead of

Fig. 10   Overall time consump-
tion in seconds by high-boost
filters with respect to cutoff
frequencies at 30, 40 and 50,
implemented using OpenCV
and OpenCL with image vec-
torization 0.

15
78

0.
15

36

0.
14

92

0.
15

84

0.
15

16

0.
14

64

0.
14

46

0.
13

18

0.
13

84 0.
16

56

0.
17

42

0.
18

46

0.
08

38

0.
08

3

0.
08

16

0.
08

34

0.
08

3

0.
08

22

0.
08

36

0.
08

24

0.
08

26

0.
08

2

0.
08

28

0.
08

34

0.
03

08

0.
03

06

0.
03

04

0.
03

06

0.
03

02

0.
02

98

0.
03

1

0.
03

0.
03

04

0.
02

96

0.
03

0.
03

04

0.
00

92

0.
00

9

0.
00

84

0.
00

98

0.
00

94

0.
00

9

0.
00

94

0.
00

86

0.
00

9

0.
00

88

0.
00

9

0.
00

94

3 0 4 0 5 0 3 0 4 0 5 0 3 0 4 0 5 0 3 0 4 0 5 0

I D E A L G A U S S I A N B U T T E R W O R T H L O G

OpenCV Xeon E3 1225 OpenCL Xeon E3 1225

OpenCL HD Graphics P530 OpenCL GTX 1050 Ti
18

34
9.

84
9

19
55

1.
84

9

67
98

.9
11

71
27

.0
6

55
12

.0
82

57
30

.1
911

30
0.

61
1

12
67

7.
95

7

36
16

.5
31

38
56

.7
94

24
30

.9
31

25
91

.6
96

D F T I D F T D F T I D F T D F T I D F T

X E O N E 3 1 2 2 5 V 5 H D G R A P H I C S P 5 3 0 G T X 1 0 5 0 T I

Channelized OpenCL Vectorized OpenCL

Fig. 11   Computational costs of OpenCL DFT and IDFT kernels in
microseconds, implemented on heterogeneous devices using
channelization and image vectorization techniques

0
200
400
600
800

1000
Ideal

Gaussian

Bu�erworth

LoG

Xeon E3 1225 V5 HD Graphics P530 GTX 1050 Ti

Fig. 12   Average creation time of filters’ matrices in microseconds
on Intel Xeon E3 1225 V5, Intel HD Graphics P530 and NVIDIA GTX
1050 Ti computing devices

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

channelized kernels make the image high boosting opera-
tion efficient and reliable for various real-time applications.
In addition to that, the creation of the filter’s matrix at the
beginning and replacement of the 2D-DFT and 2D-IDFT
transformations by an 8x8 or 16x16 FFT and IFFT trans-
formations with memory optimization using shared and
texture memory of a parallel device will boost the filter
kernel’s speed [64].

7 � Conclusion

Image high-boosting is one of the image enhancement
methods, uses sharpening techniques to highlight the
high-frequency details that become blur due to various
factors like bad weather, poor illumination, improper
focusing, and image denoisification. In this article, we have
not only explained frequency domain filtering and mostly
used high-pass linear and non-linear filters for image high-
boosting but also discussed the OpenCL architecture for
their parallel implementation. OpenCL kernels of these
high-boost filters are designed for their fast implementa-
tion, which can be used in various real-world applications
such as remote sensing, satellite broadcasting, classroom
monitoring, object detection, recognition, and many
more video processing applications. In addition to that,
the vectorized implementation of the high-boost filters’
kernels again minimizes the operation cost that makes
them highly adaptable in low-cost real-time applications
using various embedded devices. From the result analysis,
we have found that a Gaussian filter’s correlation, SSIM and
PSNR values at three different cutoff frequencies are sig-
nificantly higher than the other filters, while the Entropy,
SD, RMSE, MAE of an output image from the LoG filter
are notably larger than the rest of the filters. So, we have
come to an end that a Gaussian filter OpenCL kernel tries
to protect the original image quality, but a LoG filter kernel
focuses on improving frequency components in an image
during a high-boosting operation. The channelized imple-
mentation of a Gaussian and LoG filters consume 0.0187 s,
whereas their vectorized OpenCL implementation require
0.0094 s and 0.00906 s to enhance an 256 × 256 image on
a 768 cores GPU; which are quite lower than the computa-
tion time in most of the traditional CPU and GPU imple-
mentations of a Gaussian and LoG filters, as we have dis-
cussed in Sect. 2. Apart from that, these channelized filters’
kernels take approximately 0.125 s to improve an image
quality on a 4 core CPU, while they need around 0.0548 s
on an Intel 192 cores GPU for the same image high boost-
ing. On the other hand, the vectorized kernels minimize
the overall computation time to 0.0828 s and 0.03 s on the
4 cores Intel CPU and Intel GPU respectively.

In spite of these, a Butterworth high-boost filter pro-
vides better correlation, SSIM and PSNR values than LoG
filter, but slightly lower than the Gaussian filter; on the
other hand, the entropy, SD, RMSE and MAE values are lit-
tle smaller than the LoG filter. So, the Butterworth filter
kernel is the suitable one to provide better performance
tradeoff between preserving the original image qual-
ity and improving the higher frequency components.
Regardless of different cutoff frequencies and orders of a
Butterworth filter, the channelized and vectorized imple-
mentations of this filter requires on an average 0.0190 s
and 0.009 s respectively on a 768 cores GPU to improve the
quality of an 256 × 256 image. Although the channelized
implementation of this filter enhances a 256 × 256 RGB
image in 0.1254 s and 0.0549 s on a 4 cores Xeon CPU and
192 cores Intel GPU, these values are significantly mini-
mized to 0.0828 s and 0.03 s by the OpenCL vectorized
implementation of this filter. In most of the cases, our
image vectorized Butterworth filter kernels outperforms
the previous implementation of this filter in term of com-
putational time and portability, highlighted under Sect. 2.
Thus, a Butterworth high-boost filter is the suitable one to
provide better results than other filters with regard to time
and accuracy. Here, the accuracy specifies image quality
preservation while improving details information present
inside the image by highlighting high-frequency regions
inside an image. So, the image vectorized Butterworth
high-boost filter kernel is the worthy one to provide better
results among those filters, which might be highly adapt-
able in time bound real-time applications using various
embedded devices. Ultimately to meet the needs related
to the current demands, more research has to be carried
out later to improve the degree of precision and minimize
the time utilization.

8 � Summary

This article discusses about mostly used Ideal, Gaussian,
Butterworth, and Laplacian of Gaussian frequency domain
high-boost filters and implemented channelized OpenCL
kernels for their rapid execution. In addition to that, these
kernels are modified using image vectorization tech-
nique to optimize their time utilization by reducing the
execution time of these OpenCL kernels to half. At last,
performance analysis is carried out for these two types of
OpenCL kernel implementations to determine their effec-
tiveness with respect of time consumption and accuracy.
From the result analysis, we have found that a vectorized
Butterworth high-boost filter kernel is the suitable one to
provide better results than other filters with regard to time
and accuracy, which might be highly adaptable in low-cost
real-time applications using various embedded devices.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9	 Research Article

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Jain R, Tyagi V (2014) Spatial and frequency domain filters for
restoration of noisy images. IETE J Educ 54(2):108–116

	 2.	 Gonzalez RC, Woods RE (2008) Introduction. In: Horton MJ (ed)
Digital image processing. Prentice-Hall, Upper Saddle River, pp
1–33

	 3.	 Jayaraman S, Esakkirajan S, Veerakumar T (2015) Introduction to
image processing system. In: Jha S (ed) Digital image process-
ing. Tata McGraw Hill Education, New Delhi, pp 1–46

	 4.	 Bovik AC (2009) Introduction to digital image processing. In:
Bovik A (ed) The essential guide to image processing. Elsevier,
Burlington, pp 1–21

	 5.	 Nazir A et al (2018). Content based image retrieval system by
using HSV color histogram, discrete wavelet transform and
edge histogram descriptor. In: International conference on
computing, mathematics and engineering technologies. Suk-
kur, Pakistan

	 6.	 Ali N et al (2016) A novel image retrieval based on visual words
integration of SIFT and SURF. PLoS ONE 11(6):e0157428. https​
://doi.org/10.1371/journ​al.pone.01574​28

	 7.	 Ali N et al (2016) Image retrieval by addition of spatial informa-
tion based on histograms of triangular regions. Comput Electr
Eng 54:539–550

	 8.	 Zafar et al (2018) A novel discriminating and relative global
spatial image representation with applications in CBIR. Appl
Sci 8(11):1–23

	 9.	 Ali N (2018) A hybrid geometric spatial image presentation
for scene classification. PLoS ONE 13(9):e0203339. https​://doi.
org/10.1371/journ​al.pone.02033​39

	10.	 Sajid M et al (2018) Data augmentation-assisted makeup-invar-
iant face recognition. Math Probl Eng 2018:1–11. https​://doi.
org/10.1155/2018/28506​32

	11.	 Ratyal N et al (2019) Deeply learned pose invariant image anal-
ysis and applications in 3d face recognition. Math Probl Eng
2019:1–22. https​://doi.org/10.1155/2019/35474​16

	12.	 Ratyal NI et al (2019) Three-dimensional face recognition using
variance-based registration and subject-specific descriptors. Int
J Adv Robot Syst 16(3):1–16

	13.	 Sajid M, Ratyal NI, Ali N, Zafar B, Hanif Dar S, Mahmood MT,
Joo YB (2019) The impact of asymmetric left and asymmetric
right face images on accurate age estimation. Math Prob Eng
2019:1–10

	14.	 Williams D, Burns PD (2008) Measuring and managing digital
image sharpening. In: Archiving 2008 final program and pro-
ceedings. Society for Imaging Science and Technology, pp
89–93

	15.	 Clark JL et al (2018) Effect of image sharpening on radiographic
image quality. J Prosthet Dent 120(6):927–933

	16.	 CalTech Face 1999 dataset web site: http://www.visio​n.calte​
ch.edu/archi​ve.html

	17.	 Jayaraman S, Esakkirajan S, Veerakumar T (2015) Image enhance-
ment. In: Jha S (ed) Digital image processing. Tata McGraw Hill
Education, New Delhi, pp 243–323

	18.	 Annadurai S, Shanmugalakshmi R (2007) Image enhancement.
In: Fundamental of digital image processing. Pearson Education
India, New Delhi, pp 73–130

	19.	 Bovik AC, Acton ST (2009) Basic linear filtering with application
to image enhancement. In: Bovik A (ed) The essential guide to
image processing. Elsevier, Burlington, pp 225–239

	20.	 Arce GR, Bacca J, Paredes JL (2009) Nonlinear filtering for image
analysis and enhancement. In: Bovik A (ed) The essential guide
to image processing. Elsevier, Burlington, pp 263–291

	21.	 Chinnasamy G, Vanitha S (2015) Implementation and com-
parison of various filters for the removal of fractional brown-
ian motion noise in brain MRI images. Int J Trends Eng Technol
3(3):29–33

	22.	 Shukla A, Singh RK (2015) Performance analysis of frequency
domain filters for noise reduction. E-J Sci Technol 5(9):167–178

	23.	 Yano T, Kuroki Y (2016) Fast implementation of Gaussian fil-
ter by parallel processing of binomial filter. In: International
symposium on intelligent signal processing and communica-
tion Systems, Phuket, Thailand. https​://doi.org/10.1109/ispac​
s.2016.78247​38

	24.	 Ghosh S, Chaudhury KN (2016) Fast bilateral filtering of vector-
valued images. In: IEEE international conference on image pro-
cessing (ICIP), Phoenix, AZ, pp 1823–1827

	25.	 Nair D, Sankaran P (2017) Color image dehazing using surround
filter and dark channel prior. J Vis Commun Image Represent
105:98–105

	26.	 Preeti K, Vishvaksenan KS (2018) Gaussian filtering implementa-
tion and performance analysis on GPU. In: International confer-
ence on inventive research in computing applications. Coim-
batore, pp 936–939

	27.	 Oza S, Joshi KR (2018) CUDA based fast bilateral filter for medical
imaging. In: Fifth international conference on signal processing
and integrated networks, Noida, pp 930–935

	28.	 Rakhshanfar M, Amer MA (2019) Efficient cascading of multi-
domain image noise filters. J Real Time Image Proc. https​://doi.
org/10.1007/s1155​4-019-00868​-9

	29.	 Mukherjee D, Mukhopadhyay S (2019) Fast hardware architec-
ture for fixed point 2D Gaussian filter. AEU Int J Electron Com-
mun 105:98–105. https​://doi.org/10.1016/j.aeue.2019.03.020

	30.	 Dyre S, Sumathi CP (2014). Hybrid approach to enhancing fin-
gerprint images using filters in the frequency domain. In: Inter-
national conference on computational intelligence and com-
puting research, Coimbatore, India. https​://doi.org/10.1109/iccic​
.2014.72383​06

	31.	 Fan T et al (2017) An improved single image defogging method
based on Retinex. In: 2nd International conference on image,
vision and computing, Chengdu, China, pp 410–413

	32.	 Zhao et al (2016) An improved brightness balancing method
and its GPU acceleration for digital images. J Appl Sci Eng
19(4):505–514

	33.	 Chen JS, Huertas A, Medioni G (1987) Fast convolution with
Laplacian-of-Gaussian masks. IEEE Trans Pattern Anal Mach Intell
9(4):584–590

	34.	 Wu W (2016) Paralleled Laplacian of Gaussian (LoG) edge detec-
tion algorithm by using GPU. In: Eighth international conference
on digital image processing, Chengdu, China, pp 1–5

	35.	 Almazrooie M et al (2014) Parallel Laplacian filter using CUDA on
GP-GPU. In: International conference of information technology
and multimedia, Putrajaya, Malaysia, pp 60–65

	36.	 Bao C, Sheng C (2013) A parametrized logarithmic image pro-
cessing method based on Laplacian of Gaussian filtering for
lung nodules enhancement in chest radiographs. In: Second
international symposium on instrumentation and measure-
ment, sensor network and automation, Toronto, ON, pp 649–652

	37.	 Arif A, Li T, Cheng C (2017) Blurred fingerprint image enhance-
ment: algorithm analysis and performance evaluation. SIViP
12(4):767–774

	38.	 Rafaela GM (2019) Porting the Laplacian filtering application
to the Vulkan API using OpenCL and OpenGL programming

https://doi.org/10.1371/journal.pone.0157428
https://doi.org/10.1371/journal.pone.0157428
https://doi.org/10.1371/journal.pone.0203339
https://doi.org/10.1371/journal.pone.0203339
https://doi.org/10.1155/2018/2850632
https://doi.org/10.1155/2018/2850632
https://doi.org/10.1155/2019/3547416
http://www.vision.caltech.edu/archive.html
http://www.vision.caltech.edu/archive.html
https://doi.org/10.1109/ispacs.2016.7824738
https://doi.org/10.1109/ispacs.2016.7824738
https://doi.org/10.1007/s11554-019-00868-9
https://doi.org/10.1007/s11554-019-00868-9
https://doi.org/10.1016/j.aeue.2019.03.020
https://doi.org/10.1109/iccic.2014.7238306
https://doi.org/10.1109/iccic.2014.7238306

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1424 | https://doi.org/10.1007/s42452-019-1445-9

models (Diploma Thesis, University of Thessaly, Volos, Greece).
http://ir.lib.uth.gr/bitst​ream/handl​e/11615​/49481​/18311​
.pdf?seque​nce=1

	39.	 Banger R, Bhattacharyya K (2013) Hello OpenCL. In: D’souza W,
Pandey K, Colaco K (eds) OpenCL programming by example.
Packt Publishing, Birmingham, pp 1–34

	40.	 Banger R, Bhattacharyya K (2013) OpenCL architecture. In:
D’souza W, Pandey K, Colaco K (eds) OpenCL programming by
example. Packt Publishing, Birmingham, pp 35–58

	41.	 Mann P (2016) Review: EVGA GeForce GTX 1050 Ti SC gaming.
http://hexus​.net/tech/revie​ws/graph​ics/98329​-evga-gefor​ce-
gtx-1050-ti-sc-gamin​g/. Retrieved 17 June 2017

	42.	 Intel (2016) Intel Xeon processor-based platforms for Internet
of Things (IoT) solutions [pdf]. https​://www.intel​.com/conte​nt/
dam/www/publi​c/us/en/docum​ents/platf​-orm-brief​s/xeon-
proce​ssor-e3-1200-v5-works​tatio​n-platf​orm-brief​.pdf. Retrieved
26 Feb 2019

	43.	 Kirsch N (2015). Intel HD Graphics 530 has 24 execution units—
Intel gen9 graphics architecture detailed. https​://www.legit​revie​
ws.com/intel​-hd-graph​ics-530-has-24-execu​tion-units​-intel​
-gen9-graph​ics-archi​tectu​re_17086​9. Retrieved 27 Feb 2019

	44.	 Banger R, Bhattacharyya K (2013) OpenCL program and ker-
nel objects. In: D’souza W, Pandey K, Colaco K (eds) OpenCL
programming by example. Packt Publishing, Birmingham, pp
109–136

	45.	 Gonzalez RC, Woods RE (2008) Image enhancement in the fre-
quency domain. In: Horton MJ (ed) Digital image processing.
Prentice-Hall, Upper Saddle River, pp 75–146

	46.	 Das A (2015) Interpretation and processing of image in fre-
quency domain. In: Wheeler W (ed) Guide to signals and pat-
terns in image processing. Springer, Cham, pp 93–147

	47.	 Burger W, Burge MJ (2008) The Discrete Fourier transform in 2D.
In: Gries D, Schneider FB (eds) Digital image processing: an algo-
rithmic introduction using java. Springer, London, pp 343–366

	48.	 Marques O (2011) Frequency domain filtering. In: Practical
image and video processing using MATLAB. Wiley, Hoboken,
pp 235–264

	49.	 Shaikh MS, Choudhry A, Wadhwani R (2016) Analysis of
digital image filters in frequency domain. Int J Comput Appl
140(6):12–19

	50.	 Grami A (2016) Signals, systems and spectral analysis. Introduc-
tion to digital communications. Elsevier, Waltham, pp 41–150

	51.	 Dorga A, Bhalla P (2014) Image sharpening by Gaussian and
Butterworth high pass filter. Biomed Pharmacol J 7(2):707–713

	52.	 Zawaideh FH, Yousef QM, Zawaideh FH (2017) IJCSNS Int J Netw
Secur 17(7):113–117

	53.	 Kong H, Akakin HC, Sarma SE (2013) A generalized Laplacian of
Gaussian filter for blob detection and its applications. IEEE Trans
Cybern 43(6):1719–1733

	54.	 Banger R, Bhattacharyya K (2013) OpenCL C programming. In:
D’souza W, Pandey K, Colaco K (eds) OpenCL programming by
example. Packt Publishing, Birmingham, pp 155–178

	55.	 Banger R, Bhattacharyya K (2013) OpenCL buffer objects. In:
D’souza W, Pandey K, Colaco K (eds) OpenCL programming by
example. Packt Publishing, Birmingham, pp 59–86

	56.	 Banger R, Bhattacharyya K (2013) OpenCL Images. In: D’souza
W, Pandey K, Colaco K (eds) OpenCL programming by example.
Packt Publishing, Birmingham, pp 59–86

	57.	 Naidu VPS, Raol JR (2008) Pixel-level image fusion using wave-
lets and principal component analysis. Def Sci J 58(3):338–352

	58.	 Seshadrinathan K et al (2009) Image quality assessment. In:
Bovik A (ed) The essential guide to image processing. Elsevier,
Burlington, pp 553–595

	59.	 Al-Ani MS (2017) Fast two dimensional digital filter design
based on fast Fourier transform. J Theoret Applied Inf Technol
95(23):6678–6689

	60.	 Lin L (2018) Python non-uniform fast Fourier transform
(pyNUFFT): an accelerated non-Cartesian MRI package on a
heterogeneous platform (CPU/GPU). J Imaging 4(3):1–22

	61.	 Shen F et al (2015) Research on the fast Fourier transform of image
based on GPU. arXiv​:1505.08019​ [cs.MS]. Retrieved 21 Jan 2019

	62.	 Cheng X et al (2018) Accelerating 2D FFT: exploit GPU tensor
cores through mixed precision. In: The international conference
of high performance computing, networking, storage, and anal-
ysis. Dallas, TX

	63.	 Li M, Wyrwicz AM (2018) Parallel 2D FFT implementation on
FPGA suitable for real-time MR image processing. Rev Sci
Instrum 89(9):1–9

	64.	 Zhang, F. et al. (2017). A GPU based memory optimized paral-
lel method for FFT implementation. arXiv​:1707.07263​ [cs.DC].
Retrieved 15 Dec 2018

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://ir.lib.uth.gr/bitstream/handle/11615/49481/18311.pdf?sequence=1
http://ir.lib.uth.gr/bitstream/handle/11615/49481/18311.pdf?sequence=1
http://hexus.net/tech/reviews/graphics/98329-evga-geforce-gtx-1050-ti-sc-gaming/
http://hexus.net/tech/reviews/graphics/98329-evga-geforce-gtx-1050-ti-sc-gaming/
https://www.intel.com/content/dam/www/public/us/en/documents/platf-orm-briefs/xeon-processor-e3-1200-v5-workstation-platform-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/platf-orm-briefs/xeon-processor-e3-1200-v5-workstation-platform-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/platf-orm-briefs/xeon-processor-e3-1200-v5-workstation-platform-brief.pdf
https://www.legitreviews.com/intel-hd-graphics-530-has-24-execution-units-intel-gen9-graphics-architecture_170869
https://www.legitreviews.com/intel-hd-graphics-530-has-24-execution-units-intel-gen9-graphics-architecture_170869
https://www.legitreviews.com/intel-hd-graphics-530-has-24-execution-units-intel-gen9-graphics-architecture_170869
http://arxiv.org/abs/1505.08019
http://arxiv.org/abs/1707.07263

	Optimized OpenCL™ kernels for frequency domain image high-boost filters using image vectorization technique
	Abstract
	1 Introduction
	2 Related work
	3 Opencl architecture
	3.1 OpenCL platform model
	3.2 OpenCL execution model
	3.3 OpenCL memory model
	3.4 OpenCL programming model

	4 Frequency domain image highboosting
	4.1 Ideal filter
	4.2 Gaussian filter
	4.3 Butterworth filter
	4.4 Laplacian of Gaussian filter

	5 Opencl kernel approaches
	6 Results
	7 Conclusion
	8 Summary
	References

