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Abstract
Image high boost filtering uses high-boost filters to enhance the quality of an image, which has also seen in remote sens-
ing, satellite broadcasting, classroom monitoring, and many more real-time video processing applications and requires 
its faster implementation. OpenCL is a widely adapted parallel programming framework that provides core level data 
parallelism, and dedicated for heterogeneous parallel devices like from low cost DSP to high-end CPU, GPU and FPGA. In 
this article, we have considered mostly used Ideal, Gaussian, Butterworth, and Laplacian of Gaussian frequency domain 
high-boost filters and implemented channelized OpenCL kernels for their rapid execution. In addition to that, these 
kernels are modified using image vectorization technique to optimize their time utilization by reducing the execution 
time of these OpenCL kernels to half. At last, performance analysis is carried out for these two types of OpenCL kernel 
implementations to determine their effectiveness with regard to time consumption and accuracy. Here, different image 
performance evaluation metrics like entropy, standard deviation, mean absolute error, percentage fit error, SSIM, correla-
tion, and peak signal to noise ratio are applied to measure rightness of the above high-boost filters. From the results, we 
have concluded that a vectorized Butterworth high-boost filter kernel is the suitable one to provide better results among 
those filters, which might be highly adaptable in time bound real-time applications using various embedded devices.

Keywords  Image enhancement · OpenCL architecture · OpenCL execution model · OpenCL memory model · Image 
high-boosting · Performance metrics

1  Introduction

An image in the spatial domain is the pictorial description 
of various observations that explain thousands of mean-
ingful information about a specific environment. Most of 
the real-world images recorded by sensing devices are 
affected by various circumstances from which blurring 
is one of the factors that causes image degradation due 
to bad weather, poor illumination, improper focusing, or 
image denoisification, which needs to be enhanced [1]. 
Image enrichment or image high boosting is one of the 
key aspects in the fields of image processing and com-
puter vision that amplifies higher frequency components 
in an image by keeping lower frequency components as 

they are. Moreover, the real-time problems like remote 
sensing, disaster monitoring, satellite broadcasting, and 
traffic monitoring use image enhancement techniques 
to boost the detail information present inside videos 
and also require their quicker execution at the same time 
[2–4]. Recent research on Image retrieval, representation 
and classification have shown lots of interest on image 
enhancement at their preprocessing stage. Content based 
image retrieval (CBIR) system built on color histogram and 
DWT extracts color and texture features [5], whereas CBIR 
based on SIFT and SURF extracts scale, rotation and illu-
mination invariant features [6]. Bag of Features (BoF) rep-
resentation in image retrieval system lacks in spatial infor-
mation, which is improved with the help of histogram of 
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triangular regions [7]. Apart from the information retrieval, 
Histogram based image representation of BoVW model 
requires proper encoding of spatial information and it 
was addressed by Zafar et al. [8]. Hybrid geometric image 
representation of BoF model depends upon circular, tri-
angular, and rectangular region based histograms over an 
image [9]. Recent image classification researches such as 
makeup invariant face recognition [10], pose invariant 3D 
face recognition [11], variance based facial image registra-
tion and recognition [12] or impact of asymmetric left and 
right faces for accurate age estimation [13] uses convolu-
tional neural network to improve their accuracy level. In 
all the cases, Image quality improvement of a degraded 
image tries to raise the pixel values where the change of 
intensities happens immediately by keeping other pixel 
values as constant, i.e., pixels lie on the lines, curves, cor-
ners, or boundaries are the target areas for this enhance-
ment [14, 15]. So, the image high-boosting techniques 
utilize different high-pass filters to extract high-frequency 
images, which are added to their blurred images to pro-
duce the final outputs. An image from CalTech Face 1999 
dataset [16] is smoothed by a Gaussian low pass filter and 
its reconstructed image by a Butterworth high boost filter 
with cutoff frequency 50 and order 2 are shown in Fig. 1.

Image high-boost filtering is one type of image 
enhancement techniques, which can be accomplished 
in the spatial domain or frequency domain [17]. Quality 
enhancement in the frequency domain uses high boost 
filters which are of two types: linear and nonlinear [17–20]. 
OpenCL is from the Khronos Group, a nonprofit organiza-
tion responsible for the creation, distribution, and main-
tenance of various applications in the field of parallel 
programming, multimedia, graphics, signal, image, and 
video processing. OpenCL kernel allows each work item 
inside all the compute units to execute an instance of it 
in a synchronous fashion so that the integrity of informa-
tion is repeatedly maintained throughout the program 
execution. Before explaining two different types of kernel 
approaches, it requires a prior understanding of multiple 
models made inside the OpenCL building block along 
with four different frequency domain high boost filters 

normally used to raise the level of information presented 
inside this multimedia content. In the end, OpenCL ker-
nels of those high-boost filters are designed for the faster 
image enrichment, which are again optimized using image 
vectorization techniques and tested on parallel computing 
platforms from Intel and NVIDIA.

2 � Related work

Comparison between the various filters are done for 
removing the fractional Brownian noise in Brain MRI 
images whose produced outputs are low qualitative in 
nature and also consume large amount of time during 
their CPU implementation [21]. Shukla and Singh imple-
mented frequency domain Gaussian high-boost filter 
using Matlab 7.8 for an image of size 128 × 128 pixels 
that consumes around 80 ms for high boosting of various 
noisy images [22]. Subsequently, Yano and Kuroki approxi-
mated the 2D Gaussian filter using multilayer convolution 
of multiple binomial filters enabled with basic shift and 
add operations for its faster implementation [23], while 
the Gaussian kernel of an edge preserving bilateral filter 
was approximated using raised cosines and MonteCarlo 
sampling takes around 17 s on a Intel 4-core machine for 
an image size of 512 × 512 pixels [24]. Nair and Sankaran 
presented a center surround filter to reduce the speed and 
memory requirement for color image dehazing in RGB, Lab 
and HSV color spaces, but its computation cost is still high 
for a small scaled image [25]. Preeti and vishvaksenan [26] 
have compared CPU and GPU implementation of Gauss-
ian filter using OpenCV library packages. OpenCV enabled 
with CUDA implementation speed up the 2D filtration on 
a GPU than the CPU. Oza and Joshi also proposed a fast 
bilateral filter implemented using CUDA for medical image 
processing [27]. In both the cases filters are designed using 
CUDA, which makes them not suitable for other parallel 
platforms. Later Rakhshanfar and Amer created a cascaded 
2D Gaussian filter to gain better image quality than the 
standardize Gaussian filter that consumes an significant 
amount of time for a 768 × 512 RGB image on a CPU, and 
GPU respectively and make it not suitable for a time bound 
real time application [28]. Due to the above limitations, 
Mukherjee and Mukhopadhyay come with two fast hard-
ware architectures named Generalized Filter Architecture 
(GFA) and Separable Filter Architecture (SFA) for the 5 × 5 
Gaussian filter and tested on a field programmable gate-
way array (FPGA) [29].

Enhancing a 480 × 320 image by the Butterworth high 
pass filter in frequency domain requires 0.702 s CPU time 
in Matlab [30], and Matlab 7.8 implementation of this filter 
requires roughly 90 ms to enhance a noisy 128 × 128 image 
on a 4 core device [22]. To enhance the quality of an image, 

Fig. 1   An example of image high boosting: a blurred image; b its 
restored image. Image source: <http://www.visio​n.calte​ch.edu/
html-files​/archi​ve.html>

http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html
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Fan et al. worked on single-scale Retinex algorithm in HSV 
and RGB color spaces independently and the enhanced 
images from these color spaces are fused to compute the 
loss. Gaussian filter was replaced by the Butterworth filter 
in the Retinex algorithm for better image enhancement 
[31], but the complexity of the model made it slower than 
the brightness balancing method using the Butterworth 
filter, developed by Zhao et al. [32]. In 1987, Chen, Huer-
tas and Medioni introduced the fast execution of a Lapla-
cian of Gaussian (LoG) convolution mask of variance σ 
by decomposing into a Gaussian mask and a LoG mask 
of variance σ1 < σ [33], but Wu implemented the fast LoG 
convolution mask using the CUDA API targeted for only 
NVIDIA GPU devices [34]. CUDA implementation of Lapla-
cian filter in the spatial domain speedup 200× on NVIDA 
GeForce GT 620 GPU than AMD Phenom II X4 810 CPU 
time [35]. Besides that, Bao and Sheng explained a com-
putational expensive parameterized logarithmic method 
using LoG filter that divides an image into multiple equal 
size blocks for better edge and contrast enhancement [36]. 
Arif, Li and Cheng suggested a minutiae extraction algo-
rithm (MEA) enabled with high boost filters for improved 
finger print recognition, while enhancement using Lapla-
cian filter takes 0.354 s on a normalized finger print image 
from FVC2004 on a 4 threaded core i3 CPU [37]. Recently, 
Rafaela implemented the local Laplacian filter using Vul-
kan API and compared its performance speedup with 
respect to its OpenCL and OpenGL implementation for 
an 800 × 533 image [38].

3 � Opencl architecture

Parallel processing allows a multiple compute units work-
ing synchronously or asynchronously to accomplish a 
particular task, which is impossible in a normal comput-
ing device having a few numbers of cores with a limited 
amount of memory and network bandwidth. Various 
parallel programming and API interfaces are available to 
make use of such heterogeneous parallel platforms, and 
some of them are OpenMP, MPI, OpenACC, CUDA, OpenCL, 
and Renderscripts, which deliver bit, instruction, data, and 
task level concurrency upon the heterogeneous parallel 
devices [39]. OpenCL is one of the open source program-
ming standards for the heterogeneous parallel system like 
CPU, GPU, and FPGA from different vendors that allows 
programmers to develop efficient, reliable, and portable 
kernels, which can be switched from one device to another 
without any extra set of configurations. MAGMA, clAMDB-
LAS, clAMDFFT, BOLT C++, OpenCV, and JACKET like many 
libraries use the OpenCL programming interfaces for GPU 
acceleration as OpenCL built upon CUDA, CUBLAS, CUFFT, 
CUSPARSE, and Trust like a vast set of boosting libraries. 

Access to OpenCL native programming interface can also 
be done through Python, C/C++, and Java languages. The 
Khronos OpenCL programming framework is modularized 
into the platform, execution, memory, and programming 
models, and the detail explanation of those are presented 
in the upcoming subsection [40].

3.1 � OpenCL platform model

OpenCL platform model includes multiple heterogeneous 
parallel devices like CPU, GPU, FPGA, or DSP from differ-
ent brands, are connected to a single host machine for 
the shake off building a heterogeneous parallel environ-
ment. Every device is made of multiple computation units, 
which further consist of a bunch of processing elements 
or work items where the actual kernel execution happens 
simultaneously to make the whole operation faster. Data 
transmission speed must be fast enough between the host 
and device memories to mask the transmission bottleneck 
with the high computational capability of each stream-
ing processor; in some cases, it is avoided by using shared 
memory communication between the host and OpenCL 
devices. Here, we have used Intel Xeon, HD Graphics P530, 
and NVIDIA GTX 1050 Ti devices for image high boosting, 
whose processing elements are segregated into 2, 6, and 
4 computing units having 8192, 256, and 1024 work items 
respectively [41–43].

3.2 � OpenCL execution model

OpenCL execution model mainly focuses on its two exe-
cution units, namely host and kernel program execution. 
Here, the kernel program is targeted for multiple OpenCL 
devices, while the host program runs on the host machine, 
but the calling of these kernel programs happen from the 
host program itself. Execution model projects all the pro-
cessing elements present inside an OpenCL device into 
an N-dimensional index space, and the value of N can be 
varied between one and three based on the application 
requirement [40].

In image high boosting operation, the size of an index 
space is the total number of pixels constitute an input 
image and the index space creation happens during clEn-
queueNDRange() function execution by the host program 
at the running time. Figure 2 shows, sixty-four work items 
are visualized in a 1D, 2D, and 3D index space for better 
understanding on the orientation of index space, and a 
single cube in all three index spaces represents a work 
unit, which carries three different coordinate values in 
these NDRange representations.

The OpenCL execution unit uses certain terms like 
work-item, work-group, global-id, local-id, work-group-
id, global-size, and local-size; those play significant roles 
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during kernel execution to deliver programming flexibility, 
reliability, robustness, and faster computation of instances 
on the index space. A work-item represents a processing 
element in an OpenCL device, which has a unique coordi-
nate value in index space so-called its global-id. A cluster 
of work-items is dedicated to a distinct task based on a 
program requirement to form a work-group, and the coor-
dinate of a work unit inside its work-group indicates its 
local-id. Like a work unit, a work-group has its work-group-
id; a unique id denotes its place inside the NDRange, and 
its arrangement can happen in one, two, or three direc-
tions same as its index space dimension. Global-size of 
an index space is the total number of work-items span 

along its every dimension, whereas local-size stands for 
the number of work-items span along each direction of 
a work-group. These values are initialized and passed to 
every kernel module using clEnqueueNDRange() API in a 
host program, and for better understanding, these attrib-
utes are visualized in Fig. 3 using a two-dimensional index 
space comprised of 64 processing elements.

As shown in the above figure, 64 work items are organ-
ized in a 2D index space of its global-size (Gx = 8, Gy = 8), 
which is further divided into four work-groups of local-
size (Sx = 4, Sy = 4) each, i.e., 16 work units span over a 
two-dimensional space to form a work-group. Here, (sx, 
sy) stands for local-id of a work-item in its work-group, 
whose global-id (gx, gy) calculation is completely depend-
ent upon its work-group-id (wx, wy), work-group-size (Sx, 
Sy), and local-id (sx, sy) as given in Eq. 1.

3.3 � OpenCL memory model

The OpenCL memory model divides the device memory 
into four regions based on their size, bandwidth, and 
their availability to different processing units [40]. Global 
memory is the largest memory region shared by all the 
processing units present inside different compute units, 
and any changes in the global memory by one work item 
make these pieces of information clearly visible to other 
work items too. The size of this memory is declared and 
passed as a kernel argument by host program where a 
variable is defined using the __global keyword inside the 
OpenCL kernel that catches the argument. The constant 
memory region is also shared by all the work items and 
initialized by the main program like global memory, but 

(1)global_id (gx, gy) = (wx ⋅ Sx + sx, wy ⋅ Sy + sy)

Fig. 2   1D, 2D, and 3D Index space of sixty-four work items

Fig. 3   OpenCL execution model
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the information present inside the constant memory is 
immutable throughout the kernels’ execution. The __const 
keyword is used to capture the constant variable inside 
the kernel normally declared by the host program, whose 
CL_MEM_READ_ONLY flag is set to one for read-only 
access by various processing units. Apart from global and 
constant memories, each work-group is well linked with its 
own local memory. Each work-item presents inside a single 
work-group share its local memory, and its closeness to 
processing elements make it faster than the previous two 
memory regions, which is initialized by a keyword called 
__local or local. In addition to that, every processing ele-
ment is associated with a set of registers called its private 
memory, and read or write to this memory by a work item 
is not visible to other work items in the same or from dif-
ferent work-group. In OpenCL memory model, speed of a 
region is reciprocal to the size of this region, i.e., the largest 
size of global memory makes it slower than other memory 
regions, while smaller and adjacency private memory is 
fastest among other memory regions, whose transmission 
speed is about 1 TB/s (Fig. 4). 

Overall, OpenCL enables a programmer for proper divi-
sion of information, while maintaining the synchronization 
between these memory regions, which is normally done 
through an explicit action so that information reaches to 
work items correctly at each stage of processing.

3.4 � OpenCL programming model

An OpenCL programming model is responsible for the 
creation of program and kernel objects before the device 
execution and manages them, while their execution hap-
pens in parallel on different work items in a device. A host 
application can have more than one program objects 

dedicated for separate contexts, and each program objects 
can initiate multiple kernel objects committed for different 
functionalities in the applications. A declaration of a pro-
gram object is made using the cl_program keyword, and 
it can be created from source code using clCreateProgram-
withSource() function or from a binary file using clCreate-
ProgramWithBinary() function. At last, the program is built 
by clBuildProgram() function where both compilation and 
linking happen; if the program object is created using the 
first API, otherwise only linking is performed in case of sec-
ond API [44]. OpenCL programming model splits a multi-
thread program into a set of threads and distributes them 
across the cores in an OpenCL device. So, a GPU having 
many cores always executes an application faster than a 
CPU or DSP with fewer numbers of cores.

4 � Frequency domain image highboosting

Image high boosting is a branch of image enhancement 
operation used to improve high-frequency regions of an 
image while keeping lower frequency regions as they are, 
i.e., it is an arithmetic addition between an input image and 
its scaled enhanced image produced by a high-pass filter 
[45]. A frequency domain filtering works on a transformed 
image that multiplies with a high pass filter matrix to pro-
duce the frequency map in the transform domain which 
is then transformed back to yield the final one. In the fre-
quency domain filtering, an MxN image is first transformed 
using various transformation techniques to create an array of 
MxN frequency coefficients, representing the rate of change 
in pixel intensities at each position on the input image 
[46]. An MxN high-pass filter matrix is multiplied with the 
MxN transformed image matrix, and the resulted matrix is 

Fig. 4   OpenCL memory model
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converted back using the inverse transformation technique 
to get an enhanced image in the spatial domain.

Mostly used DFT technique uses sinusoidal functions 
to describe clearly visible frequency values of an image 
that influence image quality in the spatial domain without 
capturing all frequency components in the image [47]. In 
high-pass filtering, selected lower frequency coefficients 
are excluded from the transformed image by equalizing 
them to zero, and selection of lower frequency is strictly 
dependent on the filter’s cutoff frequency, which is com-
puted by taking the distance between each coordinate and 
DC component in two-dimensional frequency space [48, 
49]. As all the image high boost filtering operation includes 
high pass filters, mostly used four high pass filters and their 
transfer functions in frequency domain are narrated below.

4.1 � Ideal filter

An ideal high-pass filter rejects all the frequency com-
ponents below its cutoff frequency by equating them to 
zero without altering high frequencies in an image. The 
rectangular frequency response of this filter prevents any 
existence of a transition zone between its stop bands and 
pass band regions, unlike other practical high pass filters 
[50]. The transfer function H(k, l) value is suddenly raised 
to one after its cutoff frequency, and a strict removal of 
frequency components below the cutoff frequency brings 
some sort of distortion in the texture of the output image. 
The Point Spread Function (PSF) of an Ideal high-pass filter 
is given in Eq. 2.

4.2 � Gaussian filter

The behavior of a Gaussian high-pass filter is like a bell-
shaped curve, whose response increases gently even after 
the cutoff frequency to avoid such distortion in the case of 
an Ideal filter. Unlike the ideal filter, the transition region 
between its pass band and stop band is improved gradu-
ally until its value equals to one, and length of its transition 
region reduces with the increase of its cutoff frequencies 
[51, 52]. The transfer function of a Gaussian high-pass filter 
is given in Eq. 3.

4.3 � Butterworth filter

A Butterworth high-pass filter allows frequencies above 
its cutoff frequency in such a way that steady growth in 
the response from fractional to uniform between its stop 

(2)H(k, l) =

{

0 D(k, l) < Df

1 D(k, l) ≥ Df

(3)H(k, l) = 1 − e
−D2 (k,l)

2D2
f

band and pass band. As the cutoff frequency increases, It 
brings its performance closer to an Ideal filter that obeys 
strict rejection of frequency components below its cutoff 
frequency [51, 52].

In the first order Butterworth filter, the roll-off rate from 
pass band to stop band is 6 dB/octave (20 dB/decade); it 
increases to 12 dB/octave (40 dB/decade) for a second 
order and even improves to 24 dB/octave (80 dB/decade) 
for a fourth order filter.

4.4 � Laplacian of Gaussian filter

Laplacian of Gaussian (LoG) filter’s frequency response 
is the second order derivative of Gaussian function that 
highlights the sections where the change of intensity 
levels happened frequentlyWhen a change in the pixel 
intensities arises on the input, its response is +ve on the 
darker side and –ve on the lighter side that creates a thin 
edge between these two sides [53]. The PSF of a LoG high-
pass filter having cutoff frequency Df is mathematically 
expressed in Eq. 5.

In this filtering operation, an image is first filtered using 
a Gaussian filter to clear any unwanted noises; those can 
be sensitive for finding Laplacian zero crossings in the 
image. Smooth, localize, and separable nature of the 
Gaussian filter removes false edges and minimizes error 
while maintaining the computational efficiency.

5 � Opencl kernel approaches

OpenCL kernel objects are initialized using a program 
object with the help of the __kernel qualifier, created 
using clCreateKernel() function and passed as an argu-
ment using clSetKernelArg() API by the host program 
[44]. After successfully passing all the device buffers and 
kernel name as arguments, clEnqueueNDRangeKernel() 
API executes such kernel by creating a single instance 
per work unit in the NDRange. All the kernels written in 
C languages are targeted for C99 compiler, whose data-
types are inspired directly from C basic data types and 
some vector data types like float2, int3, and char4, which 
are obtained by combining multiple basic data types in 
a single container [54]. As kernels are compiled and built 

(4)
H(k, l) =

1

1 +
[

Df

D(k,l)

]2n

(5)H(k, l) =

[

D2(k, l)

2D2
f

− 1

]

e

−D2(k,l)

2D2
f
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during host program execution; writing a kernel requires 
clear attention because a minor fault causes difficult to 
identify errors exist in it.

Figure 5 shows, input images stored on the host mem-
ory are coming from various input devices like external 
media drives, visual sensors, or any real-time applications. 
In a channelized OpenCL kernel operation, a single RGB 
image is first captured using an OpenCV cv::mat() con-
tainer and then given to cv::split() library function, which 
extracts red, green, and blue channels of a colored image 
and saves them in different cv::mat() variables. Later, 
three independent OpenCL cl::clEnqueueCreateBuffer() 
functions transfer these channels’ information from host 
memory to device memory, whose parameters CL_MEM_
USE_HOST_PTR and CL_MEM_READ_WRITE create three 
device buffers and maps the information from host buffers 
to the corresponding device buffers [55]. Multiple chan-
nelized OpenCL kernels are executed for the creation of 
frequency domain image matrices from the spatial image 
matrices using Discrete Fourier Transformation (DFT), fil-
tration, and Inverse Discrete Fourier Transform (IDFT) for 
transforming them back to the spatial domain after the 
filtration operation. Apart from that, there is a separate 
OpenCL kernel for the creation of the filter matrix, which 
will be applied independently to the transformed chan-
nels’ data after the OpenCL DFT kernel execution. This 
filter creation kernel runs separately from the image fil-
tration process to reduce the time consumption, which 
is done at an early stage of DFT kernel execution. After 
the DFT transformation, filter matrix is multiplied with 
transformed matrices to boost the high-frequency compo-
nents of these channels without changing their lower fre-
quency components, and IDFT Transformation is taken on 
those restored channels to convert them back into spatial 
domain image matrices. After those successive kernel exe-
cution, all the channels are copied to the host buffer using 
cl::clEnqueueMapBuffer() function, and the enhanced red, 
green, and blue channels are merged using cv::merge() 
function to generate the final enhanced RGB image, which 
is then sent to the output device for displaying purposes 

[55]. Here, the device execution time incorporates the total 
amount of time taken between transferring the channels’ 
information from host memory to device memory and 
sending back the modified channels’ information to host 
memory after the image enhancement, whereas the whole 
image high boosting operation processing time contains 
the time span between an RGB image’s split() and merge() 
operations.

Unlike the channelized OpenCL kernel operation, 
an RGB image saved on the host memory is moved to 
an OpenCV cv::mat() container, which is then given 
to cv::cvtColor() function to generate RGBA image 
and store them in a separate mat() variable. OpenCL 
cl::clCreateImage() library function with parameters 
CL_MEM_READ_WRITE and CL_MEM_USE_HOST_PTR 
initiates an image buffer and maps information from 
host buffer to it (Fig. 6). Like channelized OpenCL ker-
nels, here also multiple kernels are used for filter matrix 
creation, DFT, and IDFT conversion of the image matrix 
and filtration of the image matrix, but a single kernel is 
run for each RGBA image instead of a distinct kernel for 
each channel of an image. OpenCL read_only image and 
write_only image data types are used to capture input 
and output images, whose image_format having image_
channel_order is set to CL_RGBA [56]. The OpenCL DFT 
kernel generates frequency domain transformed image 
matrix from its spatial matrix, and its output is propa-
gated to filtration kernel that also receives filter matrix 
as one of its inputs. The OpenCL filter kernel runs simul-
taneously with the DFT kernel to create the filter matrix, 
whose output is later supplied as an input to filtration 
kernel. After multiplying the image matrix with a trans-
formed image matrix, IDFT kernel converts the trans-
formed image matrix to its spatial domain. All OpenCL 
kernels use read_imagef() function to capture channels’ 
pixel values in a float4 vector data type variable at a par-
ticular position. Unlike channelized OpenCL kernel, all 
the operations are performed on RGBA channels’ values 
at a particular instance using a float4 variable, whose 
make the kernel execution time faster than three simple 

Fig. 5   Dataflow diagram of 
channelized OpenCL kernels’ 
device execution
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OpenCL kernels for three channels respectively. After 
all successive kernels executions, the enhanced image 
information is mapped back to the host buffer using 
clEnqueueMapBuffer(), and it is then provided as an 
input to cv::cvtColor() for converting it back from RGBA 
to RGB image [55]. At last, the final image is propagated 
to the output device to store or exhibit purposes. Like 
previous kernel executions, here the total execution time 
of an image high boosting is the time gap between two 
cv::cvtColor() functions, which includes device execution 
time starts by transferring image data from host buffer 
to device buffer and ends after transfer it back to host 
buffer. Overall, as the image vectored OpenCL kernel 
operates on all the channel values at the same time, it 
not only optimizes program execution but also reduces 
time complexity without hampering the image quality.

Tables 1 and 2 present the OpenCL kernel implemen-
tation for Ideal, Gaussian,  Butterworth, and Laplacian 
of Gaussian high-boost filters using channelization and 
image vectorization techniques. As we have seen, the 
two-dimensional float2* data pointer variable in a chan-
nelized kernel is used to hold the real and imaginary part 
of a single channel in an image, whereas the float4 type 
ipixelValueR and ipixelValueI capture and process the real 
and imaginary part of four channels in an RGBA image, 
which reduce separate invocation of the channelized 
OpenCL kernel for each channel of a colored image to one. 
So, the computational cost involved with the host pro-
gram while three times passing the kernel parameters and 
queuing the kernels to index space during channelized 
kernel implementation are successfully eliminated by the 
employment of the image vectorized kernels. In the end, 
the __read_only image2d_t and __write_only image2d_t 

Fig. 6   Dataflow diagram of 
vectored OpenCL kernels’ 
device execution

Table 1   Channelized OpenCL kernel of the above high-boost filters

Id
ea
l

__kernel void ideal_kernel (__global float2* data,int height,int width,int CUTOFF)
{ uint index = get_global_id(0); int U = index / width; int V = index % width;
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2), 2.0);
float H = 1.0+((sqrt(D)>CUTOFF)?1.0:0.0); data[index].x = data[index].x * H; 

data[index].y = data[index].y * H; }

G
au

ss
ia
n __kernel void gauss_kernel (__global float2* data,int height,int width,int CUTOFF)

{ uint index = get_global_id(0); int U = index / width;int V = index % width;
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2),2.0);
float H = 2.0 - pow(2.72, (-1.0 * D / (2.0 * pow(CUTOFF, 2.0))));
data[index].x = data[index].x * H; data[index].y = data[index].y * H;}

Bu
�e

rw
or
th

__kernel void bw_kernel (__global float2* data, int height, int width, 
int CUTOFF, float Ord)

{ uint index = get_global_id(0); int U = index / width; int V = index % width;
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2),2.0);
float H = 1.0 + 1.0 / (1 + pow (CUTOFF / sqrt(D), 2 * Ord));
data[index].x = data[index].x * H; data[index].y = data[index].y * H; }

Lo
G

__kernel void LoG_kernel (__global float2* data,int height,int width,int CUTOFF)
{ uint index = get_global_id(0); int U = index / width; int V = index % width;
float Freq = pow(CUTOFF, 2.0);
float D = pow(height/2-abs(U-height/2),2.0)+pow(width/2-abs(V-width/2),2.0);
float H = 2.0 - (1.0 - D / Freq) * pow(2.72, -1.0 * D / (2.0 * Freq));
data[index].x = data[index].x * H; data[index].y = data[index].y * H;}
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inside the filter kernels in Table 2 are the data types for 
the input and output images that map the pixels in two-
dimensional index space.

6 � Results

In Image high boosting, a filter is applied one time on the 
transformed data irrespective of its cutoff frequency and 
degree, which not only reduces the overall computational 
complexity but also makes the operation quite faster than 
the spatial domain image filtration. All those four filters 
were first implemented using C and OpenCV on Xeon E3 
1225 V5, and later, the channelized and vectored OpenCL 

kernels were created and run on Xeon E3 1225 V5, HD 
Graphics P530, and GTX 1050 Ti devices while maintain-
ing the accuracy level in all those implementations. The 
dedicated framework on which all the high boost opera-
tions are carried out listed in Table 3, and various blurred 
images were used during the enhancement operation to 
produce their enhanced images displayed in Fig. 7.

In Fig. 7a–e images are the distorted images, which are 
first added with Poisson, Gamma, Exponential, Uniform, 
and impulse noises separately, then these noisy images 
are filtered by Ideal, Gaussian and, Butterworth low-pass 
filters. The detail information regarding the parameters of 
these noises and the corresponding applied filters are pre-
sented below of each image. The motto behind the use of 

Table 2   Vectored OpenCL kernel of the above high-boost filters

Id
ea
l

__kernel void ideal_kernel (__read_only image2d_t orimage,__read_only image2d_t  
oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage, int height,
int width, int CUTOFF) { uint index = get_global_id(0);int u = index / width;
int v = index % width; float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0) + pow(width/2-abs(v-width/2),2.0);
float H = 1.0 + ((sqrt(D) > CUTOFF)? 1.0 : 0.0);
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H);}

G
au
ss
ia
n

#define EXP 2.72
__kernel void gaussian_kernel (__read_only image2d_t orimage, __read_only 
image2d_t oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage, 
int height,int width, int CUTOFF)
{ uint index = get_global_id(0); int u = index / width;int v = index % width;
float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0)+pow(width/2-abs(v-width/2),2.0);
float H = 2.0 - pow(EXP, (-1.0 * D / (2.0 * pow(CUTOFF, 2.0))));
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H); }

Bu
�e

rw
or
th

__kernel void butterworth_kernel (__read_only image2d_t orimage,__read_only 
image2d_t oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage,
int height,int width, int CUTOFF,float Ord)
{ uint index = get_global_id(0); int u = index / width;int v = index % width;
float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0)+pow(width/2-abs(v-width/2),2.0);
float H = 1.0 + 1.0 / (1 + pow (CUTOFF / sqrt(D), 2 * Ord));
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H);}

Lo
G

#define EXP 2.72
__kernel void LoG_kernel (__read_only image2d_t orimage, __read_only image2d_t 
oiimage,__write_only image2d_t trimage,__write_only image2d_t tiimage,int height,
int width, int CUTOFF)
{ uint index = get_global_id(0); int u = index / width; int v = index % width;
float Freq = pow(CUTOFF, 2.0); float4 ipixelValueR, ipixelValueI;
float D = pow(height/2-abs(u-height/2),2.0)+ pow(width/2-abs(v-width/2), 2.0);
float H = 2.0 - (1.0 - D / Freq) * pow(EXP, -1.0 * D / (2.0 * Freq));
ipixelValueR = read_imagef(orimage, image_sampler, (int2)(u, v));
ipixelValueI = read_imagef(oiimage, image_sampler, (int2)(u, v));
write_imagef(trimage, (int2)(u, v), ipixelValueR * H);
write_imagef(tiimage, (int2)(u, v), ipixelValueI * H);}
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these distorted smooth images to check the accuracy level 
of those above high-boost filters with respect to outputs 
and their respective originals. For OpenCL DFT, IDFT, and 
filtering operations, global_size of the index space is the 
total number of pixels present in the input image, but the 
local_ size reduces to the total pixels along the horizontal 
and vertical direction of the workgroup. These global_size 
and local_size values set to 65,536 and 256 for a 256 × 256 
image in the case of vectored filter kernel, but the local_
size sets to 1024 for Xeon E3 1225 V5 and GTX 1050 Ti in 
the case of channelized filter kernel implementation. For 
our evaluation, the following sample codes inside the host 
program set the size of the index space and each work-
group present inside it.
size_t global_size = Image.rows * Image.

cols, size_t local_size = 256;/*DFT & 
IDFT*/

size_t global_size = Image.rows * Image.cols, 
size_t local_size = 256;/*Filtering*/

clStatus =  clEnqueueNDRangeKernel(comm
and_queue_highboost, kerne, 1, NULL, 
&global, &local, 0, NULL, NULL);

Figure  7f–j are the sample output images from the 
Ideal, Gaussian, Butterworth or LoG high-boost filters at 
different cutoff frequencies. Various image performance 
evaluation metrics were used to estimate correctness of 
the produced images with the help of the above four filters 
with regard to their inputs; higher values of signal-to-noise 
ratio (SNR), peak signal-to-noise ratio (PSNR), Entropy, Cor-
relation, and Structural Similarity Index (SSIM) and lower 
mean absolute error (MAE), standard deviation (SD), and 
percentage fit error (PFE) values indicate better image 
enhancement [57, 58]. Table 4 carries the metric values, 
computed over those five distorted smoothed images by 
applying an Ideal filter at cutoff frequencies 30, 40 and 50 
i.e., it represents the qualitative nature of an Ideal filter on 
various noisy environments. Table 5 lists out, the compu-
tational cost of various implementations of an Ideal filter 
at the same cutoff frequencies on heterogeneous plat-
forms. It indicates the total time taken by an Ideal filter for 
a particular image at a given cutoff frequency on different 

platforms. The OpenCV-C implementation of an Ideal filter 
is dedicated to CPU only, whereas the non-vectorization 
(channelization) and vectorization implementation of this 
filter are targeted to CPU and GPU from different vendors. 
As we have moved to better platforms, the ratio between 
the channelized and vectorized kernel’s execution time 
increases at a significant amount. Similarly, Tables 6, 8 and, 
10 explain performance metrics of the Gaussian, Butter-
worth and, LoG filters, while Tables 7, 9 and, 11 describe 
the evaluation time with regard to each and every images. 
At last, Table 12 sum up the mean metric values of all the 
five images from those above filters.

As explained earlier, Tables 4, 6, 8 and 10 convey the 
performance metrics of output images from the five 
images by the Ideal, Gaussian, Butterworth, and LoG fil-
ters having cutoff frequencies at 30, 40, and 50, whereas 
Tables 5, 7, 9 and 11 exhibit the time consumption by the 
channelized and vectored kernels of those filters at 30, 40, 
and 50 for those five images. Table 12 shows the overall 
Correlation, SSIM, SNR, and PSNR values increase with 
an increase of the cutoff frequency of an Ideal filter, but 
PFE, SD, MSE, RMSE, MAE, and Entropy values decrease at 
the same time. The rigid frequency response of an Ideal 
high-boost filter brings some sorts of artifacts in the final 
image, which is not present in the original one as shown in 
Fig. 7f. The higher standard deviation at cutoff frequency 
30 indicates better detail enhancement than the cutoff 
frequency at 50, i.e., as the cutoff frequency reduces, the 
relationship between the pixels is loosely maintained in 
the enhanced image than its source image. The entropy of 
an image specifies the amount of information is needed 
to successfully encode an image and its value 0.75792 at 
(Df = 30) implies more information is required than 0.75434 
at (Df = 50) in case of the Ideal Filter.

A LoG filter sharpens edges and curves present inside 
an image, which ultimately boosts the overall image qual-
ity, but the similarity between the input and output has 
slightly destroyed due to the excessive improvement of 
high-frequency regions. As given in Table 12, the source 
images are quietly preserved during high boosting opera-
tion by the Gaussian high-boost filter contradict to other 
filters. As we have seen in Table 12, SSIM and PSNR values 
(0.5999, 0.6108, 0.6197) and (16.34, 16.54, 16.64) respec-
tively are strong enough compare to other. In contrast to 
that, LoG’s Entropy and SD values are (7.5936, 7.59646, 
7.59042) and (57.18, 55.29, 53.84) demonstrate better 
contrast enhancement. At the same time, SSIM and PSNR 
values are (0.5597, 0.5668, 0.5759) and (15.65, 15.85, 16.04) 
signify the low restoration of the original image quality 
due to high contrast enhancement. A Butterworth filter 
tries to make a tradeoff between the output image quality 
from a Gaussian filter and enrichment of high-frequency 
regions by a LoG filter (Fig. 8). In the end, the first order 

Table 3   Framework specification

Components Specification

Processor Intel Xeon E3-1225 v5
Memory DDR4 8 GB 2133 MHz
Graphics processor (integrated) Intel HD Graphics P530
Graphics processor (dedicated) NVIDIA GTX 1050 Ti
Operating system Windows Server 2012 R2
Packages C, OpenCV, OpenCL
Image Size = 256 × 256, Bit Depth = 24.
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Fig. 7   Enhanced images f–j 
generated from their distorted 
smoothed images a–e with the 
help of Ideal, Gaussian, But-
terworth and LoG high boost 
filters
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Butterworth filter performs a little better than its second 
order and much better than its higher-order at a given Df.

OpenCV implementations of all those above filters 
consume significant amounts of times on Xeon E3 1225, 
which reduce with the increase of its cutoff frequency 
Df except for the LoG filter. In case of a LoG high-boost 
filter, there is an increase in the computational cost with 
regard to the cutoff frequency, while high-boosting 
using a higher-order Butterworth filter runs a bit longer 
than its lower order as shown in Fig. 9. Here, a first-order 
Butterworth filter having a cutoff frequency at (Df = 30, 

Df = 40) consumes (0.1446  s, 0.1318  s) on CPU, but it 
again increases to 0.1384 s for this filter of order two 
and cutoff frequency at 50. The Channelized OpenCL 
implementations of these filters approximately reduce 
the overall computational costs by 20 percentages on 
the CPU, which diminish further by factors of 3 and 9 on 
Intel HD Graphics P530 and NVIDIA GTX 1050 Ti respec-
tively. As the channelized kernel implementations are 
called separately for Red, Green, and Blue channels by 
the host program, context switching between the host 
and device create a bottleneck on their execution time, 

Table 4   Performance metrics 
of an Ideal high boost filter 
with respect to frequency 
Df = 30, 40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30) 7a 7.7983 15.340 450.139 21.216 56.41 15.38 21.60 3.435 0.6959 0.9269
7b 7.4957 63.283 4.35e03 65.989 47.90 04.33 11.74 73.37 0.6494 0.9436
7c 7.7872 51.620 3.29e03 57.332 62.89 06.24 12.96 51.16 0.5897 0.9406
7d 7.7709 50.677 3.04e03 55.108 60.24 06.65 13.30 50.52 0.5747 0.9692
7e 7.0439 17.265 513.203 22.654 35.03 09.57 21.03 25.66 0.4175 0.9037

(Df = 40) 7a 7.7656 14.089 390.330 19.757 54.83 16.00 22.22 3.198 0.7053 0.9341
7b 7.4758 63.374 4.32e03 65.771 46.86 04.36 11.77 73.46 0.6566 0.9504
7c 7.8003 51.661 3.23e03 56.868 61.61 06.31 13.03 55.29 0.5977 0.9476
7d 7.7677 50.724 2.98e03 54.636 59.14 06.72 13.38 50.59 0.5834 0.9756
7e 7.0027 17.114 493.308 22.210 34.34 9.748 21.20 25.64 0.4293 0.9119

(Df = 50) 7a 7.7379 13.139 352.755 18.782 53.86 16.44 22.66 3.135 0.7144 0.9392
7b 7.4589 63.418 4.30e03 65.603 46.15 04.38 11.79 73.49 0.6635 0.9556
7c 7.7966 51.664 3.19e03 56.470 60.73 06.37 13.09 55.32 0.6052 0.9531
7d 7.7620 50.752 2.95e03 54.341 58.52 06.77 13.42 50.62 0.5923 0.9798
7e 6.9713 17.028 475.972 21.817 33.89 09.90 21.35 25.63 0.4430 0.9193

Table 5   Computation time of an Ideal high boost filter in seconds with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C 
Xeon E3-1225
Channelization

OpenCL-C 
Xeon E3-1225
Vectorization

OpenCL-C 
HD Graph-
ics P530
Channeli-
zation

OpenCL-C 
HD Graph-
ics P530
Vectoriza-
tion

OpenCL-C 
GTX 1050 Ti
Channelization

OpenCL-C 
GTX 1050 Ti
Vectorization

(Df = 30) 7a 0.154 0.126 0.082 0.056 0.031 0.019 0.009
7b 0.158 0.126 0.085 0.055 0.031 0.018 0.009
7c 0.157 0.127 0.084 0.055 0.031 0.019 0.009
7d 0.161 0.126 0.085 0.056 0.031 0.018 0.010
7e 0.159 0.127 0.083 0.055 0.030 0.018 0.009

(Df = 40) 7a 0.152 0.124 0.082 0.055 0.030 0.018 0.009
7b 0.154 0.125 0.083 0.055 0.031 0.018 0.009
7c 0.153 0.125 0.083 0.054 0.031 0.018 0.009
7d 0.155 0.124 0.084 0.055 0.031 0.017 0.009
7e 0.154 0.125 0.083 0.054 0.030 0.018 0.009

(Df = 50) 7a 0.150 0.124 0.081 0.053 0.030 0.018 0.008
7b 0.149 0.123 0.082 0.054 0.030 0.017 0.009
7c 0.148 0.125 0.082 0.054 0.031 0.017 0.008
7d 0.151 0.124 0.082 0.054 0.031 0.017 0.009
7e 0.148 0.124 0.081 0.053 0.030 0.017 0.008
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which will be further optimized by processing all chan-
nels by a single kernel using the image vectorization 
technique.

In the image vectorization technique, at first, an RGB 
image is converted to an RGBA image, which is given to 
a filtration kernel for further processing. As the context 
switching happens one time between the host and device 
before image high boosting, it minimizes the overall com-
putational time of the channelized kernel to half on GTX 
1050 Ti GPU. Not only that, it has shown a significant rise 

in the kernels’ speed by a factor of 1.33 and 1.6 on the 
Intel CPU and GPU respectively. Figure 10 exhibits, the 
Ideal and Gaussian kernels processing times deplete with 
respect to cutoff frequency Df, but the time taken by a 
LoG kernel improves as the cutoff frequency increases. Like 
OpenCV implementation, both channelized and vectored 
image kernels execution costs are proportional to the 
order of a Butterworth filter at a given Df, but these values 
are inversely related to the cutoff frequency of this filter 
at a constant order. Irrespective of the cutoff frequency, 

Table 6   Performance metrics 
of a Gaussian high boost filter 
with respect to frequency 
Df = 30, 40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30) 7a 7.7881 13.794 383.599 19.586 56.55 16.08 22.29 3.160 0.7164 0.9381
7b 7.4665 63.325 4.32e03 65.708 48.04 04.37 11.77 73.42 0.6583 0.9543
7c 7.7857 51.608 3.22e03 56.785 63.15 06.32 13.04 63.14 0.6002 0.9516
7d 7.7733 50.676 3.00e03 54.777 60.69 6.704 13.36 50.57 0.5897 0.9775
7e 7.0256 16.783 480.418 21.918 35.01 9.863 21.31 25.61 0.4351 0.9155

(Df = 40) 7a 7.7521 12.708 337.615 18.374 54.99 16.63 22.85 3.122 0.7281 0.9432
7b 7.4502 63.398 4.29e03 65.535 46.98 04.39 11.80 73.48 0.6670 0.9592
7c 7.7908 51.645 3.17e03 56.333 61.72 06.39 13.11 55.31 0.6099 0.9571
7d 7.7691 50.733 2.96e03 54.403 59.56 06.76 13.41 50.62 0.5993 0.9815
7e 6.9862 16.777 465.161 21.567 34.33 10.00 21.45 25.61 0.4500 0.9224

(Df = 50) 7a 7.7256 11.966 310.032 17.608 54.03 17.00 23.22 3.104 0.7371 0.9467
7b 7.4359 63.430 4.28e03 65.417 46.29 04.41 11.82 73.50 0.6733 0.9626
7c 7.7843 51.662 3.14e03 56.009 60.77 06.44 13.16 55.34 0.6173 0.9611
7d 7.7628 50.763 2.93e03 54.168 58.88 06.80 13.45 50.63 0.6071 0.9841
7e 6.9581 16.791 453.077 21.569 33.89 10.11 21.57 25.61 0.4640 0.9280

Table 7   Computation time of a Gaussian high boost filter in seconds with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C 
Xeon E3-1225
Channelization

OpenCL-C 
Xeon 
E3-1225
With Vec-
torization

OpenCL-C 
HD Graphics 
P530
Channeliza-
tion

OpenCL-C 
HD Graphics 
P530
With Vec-
torization

OpenCL-C 
GTX 1050 Ti
Channelization

OpenCL-C 
GTX 1050 
Ti
With 
Vectoriza-
tion

(Df = 30) 7a 0.158 0.126 0.085 0.056 0.032 0.019 0.010
7b 0.158 0.127 0.082 0.055 0.031 0.020 0.009
7c 0.159 0.127 0.083 0.056 0.030 0.019 0.010
7d 0.160 0.126 0.082 0.055 0.029 0.020 0.010
7e 0.157 0.126 0.085 0.055 0.031 0.019 0.010

(Df = 40) 7a 0.151 0.125 0.084 0.055 0.031 0.018 0.010
7b 0.152 0.127 0.082 0.054 0.031 0.019 0.009
7c 0.154 0.126 0.083 0.055 0.030 0.019 0.009
7d 0.151 0.125 0.082 0.055 0.029 0.019 0.009
7e 0.150 0.125 0.084 0.054 0.030 0.018 0.010

(Df = 50) 7a 0.147 0.124 0.083 0.055 0.031 0.018 0.009
7b 0.146 0.126 0.082 0.054 0.030 0.018 0.009
7c 0.147 0.124 0.081 0.055 0.030 0.018 0.009
7d 0.148 0.125 0.082 0.054 0.028 0.019 0.009
7e 0.144 0.124 0.083 0.054 0.030 0.018 0.009
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the computational cost of a vectorized Gaussian kernel 
over a 256 × 256 RGB image is slightly lower than its Mat-
lab implementation over a 128 × 128 gray image [22] and 
sufficiently lesser than its Matlab implementation over a 
512 × 512 RGB image on a 4 core CPU machine [24]. Sur-
round filter using Gaussian weights dehazes an 267 × 188 
image in HSV, Lab and RGB color spaces in (0.299 s, 0.689 s, 
0.610 s) [25]; CPU and CUDA implementation of 5x5 Gauss-
ian filter for single channel image on a core i5 and 384 

NVIDIA GPU consumes 13 s and 7 ms respectively [26]. In 
contrast to that, CUDA enabled bilateral filter enhances 
a 256 × 256 gray image in 1.8 ms, but its CPU implemen-
tation takes 0.083 s, similar to the vectorized Gaussian 
kernel execution on a 256 × 256 RGB image. [27].GFA and 
SFA for a 2D 5x5 Gaussian filter on FPGA Virtex 6 takes 
(0.371 ms s, 0.394 ms) for a 256x356 gray image, which are 
quite faster than our vectorized Gaussian kernel, but their 
unique implementations are limited to FPGA that make 

Table 8   Performance metrics of a Butterworth high boost filter with respect to Df = 30, 40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30, n = 1) 7a 7.8070 14.148 396.406 19.910 57.67 15.93 22.15 3.197 0.7170 0.9384
7b 7.4650 63.256 4.32e03 65.719 48.77 04.37 11.78 73.36 0.6565 0.9544
7c 7.7628 51.544 3.23e03 56.814 64.04 06.32 13.04 55.17 0.5998 0.9521
7d 7.7714 50.630 3.02e03 54.962 61.71 06.67 13.33 50.55 0.5915 0.9771
7e 7.0401 16.697 474.162 21.775 35.42 09.92 21.37 25.59 0.4393 0.9172

(Df = 40, n = 1) 7a 7.7728 13.092 352.349 18.771 56.00 16.45 22.66 3.131 0.7270 0.9423
7b 7.4530 63.350 4.30e03 65.571 47.63 04.39 11.80 73.44 0.6645 0.9584
7c 7.7810 51.606 3.18e03 56.428 62.55 06.38 13.10 55.27 0.6081 0.9565
7d 7.7720 50.697 2.98e03 54.580 60.39 6.735 13.39 50.60 0.5986 0.9804
7e 7.0028 16.700 462.586 21.507 34.69 10.02 21.48 25.60 0.4512 0.9226

(Df = 50, n = 2) 7a 7.7298 12.422 326.655 18.073 53.92 16.77 22.99 3.116 0.7291 0.9438
7b 7.4495 63.429 4.29e03 65.491 46.22 04.40 11.81 73.50 0.6701 0.9599
7c 7.7897 51.664 3.16e03 56.199 60.72 06.41 13.13 55.33 0.6127 0.9578
7d 7.7624 50.758 2.94e03 54.225 58.65 06.79 13.44 50.63 0.6009 0.9823
7e 6.9650 16.892 464.803 21.559 33.88 10.00 21.46 25.62 0.4537 0.9236

Table 9   Computation time of a Butterworth high boost filter in sec. with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C 
Xeon E3-1225
Channelization

OpenCL-C 
Xeon 
E3-1225
With Vec-
torization

OpenCL-C 
HD Graph-
ics P530
Channeli-
zation

OpenCL-C 
HD Graph-
ics P530
With Vec-
torization

OpenCL-C 
GTX 1050 Ti
Channelization

OpenCL-C 
GTX 1050 
Ti
With 
Vectoriza-
tion

(Df = 30, n = 1) 1) 7a 0.144 0.127 0.084 0.056 0.031 0.020 0.010
7b 0.146 0.126 0.084 0.056 0.031 0.020 0.009
7c 0.145 0.128 0.083 0.055 0.031 0.019 0.009
7d 0.143 0.126 0.083 0.055 0.031 0.020 0.010
7.e 0.145 0.126 0.084 0.056 0.031 0.019 0.009

(Df = 40, n = 1) 7a 0.132 0.125 0.083 0.056 0.030 0.019 0.008
7b 0.131 0.125 0.082 0.055 0.030 0.018 0.009
7c 0.133 0.126 0.082 0.053 0.031 0.018 0.009
7d 0.133 0.125 0.082 0.054 0.029 0.019 0.008
7e 0.130 0.124 0.083 0.055 0.030 0.018 0.009

(Df = 50, n = 2) 7a 0.140 0.125 0.082 0.055 0.030 0.020 0.008
7b 0.141 0.126 0.083 0.056 0.031 0.019 0.010
7c 0.137 0.127 0.082 0.055 0.030 0.019 0.009
7d 0.136 0.127 0.082 0.055 0.030 0.019 0.009
7e 0.138 0.125 0.084 0.054 0.031 0.019 0.009
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them unsuitable for other parallel devices [29]. 2D But-
terworth filter enhances a 480x320 gray image 0.827 s [30] 
and various noisy 128 × 128 gray images, whose execution 
time varies from 0.059 s to 0.130 s [22], unlike the vector-
ized Butterworth kernel’s execution stick around 0.083 s 
for the 256 × 256 size noisy colored images. On the other 
hand, CUDA implementation of the Butterworth filter 
requires 0.4 s for a 12 KB small scaled image [32] and the 
Retinex algorithm using Butterwoth filter needs 0.310 s to 
0.648 s for enrichment of the medium scale images [31]. 

A parameterized logarithmic enhancement based on LoG 
filter enhances an 440 × 440 gray image in 14.98 s [36], 
whereas LoG filter takes 0.3535 s on a normalized image 
from FVC database 2004 using 4 core intel CPU [37]. Port-
ing the local Laplacian filter into Vulkan API needs 10 s to 
boost an 800 × 533 colored image on a 1536 core NVIDIA 
GPU [38], which is not feasible for any time bound appli-
cations and made it possible by OpenCL implementation 
of image vectorized LoG kernel. Here, the total consump-
tion cost of a filter includes the processing time between 

Table 10   Performance metrics 
of a LoG high boost filter with 
respect to frequency Df = 30, 
40 and 50

C. Freq. Images Entropy MAE MSE RMSE SD SNR PSNR PFE SSIM COR

(Df = 30) 7a 7.8427 18.370 634.235 25.184 62.51 13.89 20.11 4.718 0.6668 0.9166
7b 7.5154 62.906 4.43e03 66.541 52.16 04.26 11.67 72.98 0.6242 0.9312
7c 7.7039 51.676 3.45e03 58.718 68.30 06.03 12.75 54.61 0.5648 0.9274
7d 7.7547 50.645 3.19e03 56.486 65.13 06.44 13.09 50.21 0.5537 0.9588
7e 7.1513 16.676 558.504 23.633 37.84 09.21 20.66 25.69 0.3894 0.8885

(Df = 40) 7a 7.8357 16.825 543.943 23.327 59.97 14.56 20.77 4.083 0.6773 0.9214
7b 7.5056 63.111 4.39e03 66.304 50.44 04.29 11.70 73.21 0.6327 0.9374
7c 7.7583 51.674 3.39e03 58.248 66.34 06.10 12.82 54.94 0.5712 0.9330
7d 7.7686 50.620 3.11e03 55.812 63.02 06.54 13.20 50.39 0.5593 0.9647
7e 7.1141 17.313 541.369 23.267 36.69 09.34 20.79 25.64 0.3939 0.8931

(Df = 50) 7a 7.8190 15.558 471.473 21.713 58.10 15.18 21.39 3.654 0.6893 0.9274
7b 7.4932 63.243 4.37e03 66.087 49.22 04.32 11.73 73.34 0.6414 0.9434
7c 7.7869 51.663 3.34e03 57.773 64.85 06.17 12.89 55.13 0.5794 0.9389
7d 7.7732 50.641 3.06e03 55.321 61.64 06.62 13.27 50.50 0.5680 0.9647
7e 7.0798 17.064 525.033 22.913 35.40 09.48 20.93 25.63 0.4015 0.8987

Table 11   Computation time of a LoG high boost filter in seconds with respect to Df = 30, 40 and 50

C. Freq. Images OpenCV-C
Xeon E3- 1225

OpenCL-C 
Xeon E3-1225
Channelization

OpenCL-C 
Xeon 
E3-1225
With Vec-
torization

OpenCL-C 
HD Graphics 
P530
Channeliza-
tion

OpenCL-C 
HD Graphics 
P530
With Vec-
torization

OpenCL-C 
GTX 1050 Ti
Channelization

OpenCL-C 
GTX 1050 
Ti
With 
Vectoriza-
tion

(Df = 30) 7a 0.165 0.124 0.082 0.054 0.029 0.018 0.009
7b 0.167 0.123 0.081 0.054 0.029 0.019 0.009
7c 0.163 0.124 0.083 0.054 0.030 0.018 0.009
7d 0.168 0.125 0.082 0.054 0.030 0.018 0.009
7e 0.165 0.124 0.082 0.055 0.030 0.017 0.008

(Df = 40) 7a 0.172 0.125 0.083 0.054 0.030 0.018 0.009
7b 0.175 0.125 0.082 0.055 0.030 0.019 0.010
7c 0.174 0.125 0.084 0.054 0.030 0.019 0.009
7d 0.177 0.125 0.083 0.054 0.030 0.019 0.009
7e 0.173 0.124 0.082 0.055 0.030 0.018 0.008

(Df = 50) 7a 0.180 0.126 0.084 0.055 0.030 0.019 0.010
7b 0.183 0.127 0.083 0.055 0.030 0.021 0.010
7c 0.187 0.125 0.084 0.055 0.030 0.019 0.009
7d 0.189 0.126 0.083 0.054 0.031 0.020 0.009
7e 0.184 0.125 0.083 0.056 0.031 0.019 0.009
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the DFT transformation of an input image to generate 
its frequency map and inverse DFT transformation of its 
enhanced frequency map to produce the final one in the 
spatial domain.

The computation time listed in Figs. 9 and 10 include 
overall cost of the filter matrix creation, DFT and IDFT 
transformations, and filtration time, which are normally 
done by the separate OpenCL kernels. The computational 
costs of the DFT and IDFT transformations of a 256 × 256 
image and the creation time filters’ matrices for various fil-
ters are shown in Figs. 11 and 12. All those filters’ matrices 
creation times consume a lot of time on NVIDIA GTX 1050 
Ti than Xeon E3 1225 V5 and HD Graphics P530, whereas 
these values are minimum on HD Graphics P530. Even-
tually, Involvement of exponential function makes the 
Gaussian and LoG filters to run more than two times of 

Table 12   Overall performance metrics of Ideal, Gaussian, Butterworth and LoG high-boost filters at frequency 30, 40 and 50

Filter Df, n COR SSIM PFE (e2) PSNR (e2) SNR (e1) SD (e2) RMSE (e2) MSE (c4) MAE (e2) Entropy (e1)

Ideal 30 0.9358 0.5854 0.4082 0.1612 0.8434 0.5249 0.444598 0.23286684 0.39637 0.75792
40 0.9439 0.5944 0.41635 0.163 0.8627 0.5135 0.438484 0.22827276 0.39392 0.756242
50 0.9494 0.6036 0.4163 0.1642 0.8772 0.5063 0.434026 0.22537454 0.39200 0.75434

Gaussian 30 0.9474 0.5999 0.4318 0.1634 0.8667 0.5268 0.437548 0.22808034 0.39237 0.756784
40 0.9525 0.6108 0.41628 0.1654 0.8834 0.5151 0.432424 0.22445552 0.39052 0.754968
50 0.9565 0.6197 0.41636 0.1664 0.8952 0.5072 0.429542 0.22226218 0.38922 0.753334

Butterworth 30, 1 0.9478 0.6008 0.41573 0.1633 0.8642 0.5352 0.43836 0.22881136 0.39255 0.756926
40, 1 0.9520 0.6098 0.41608 0.1648 0.8795 0.5225 0.433714 0.2254987 0.39089 0.755632
50, 2 0.9534 0.6133 0.41639 0.1656 0.8874 0.5067 0.431094 0.22362916 0.39033 0.753928

LoG 30 0.9245 0.5597 0.41641 0.1565 0.7966 0.5718 0.461124 0.24525478 0.40054 0.75936
40 0.9299 0.5668 0.41652 0.1585 0.8166 0.5529 0.453916 0.23950624 0.39908 0.759646
50 0.9346 0.5759 0.41650 0.1604 0.8354 0.5384 0.447614 0.23533012 0.39633 0.759042
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Fig. 8   Graphical representation of overall performance metrics of 
an Ideal, Gaussian, Butterworth and Laplacian of Gaussian filters at 
cutoff frequency 30, 40 and 50

Fig. 9   Overall time consump-
tion in seconds by OpenCV 
and channelized OpenCL 
implementations of high-boost 
filters in regards to cutoff fre-
quencies at 30, 40 and 50 0.
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the Ideal and Butterworth filter. As the filter’s matrix crea-
tion happens only one time before the high-boosting 
operation; the overall execution time of image filtration 
will be minimized further in a real-time application. Again 
in future, by replacing 2D-DFT and 2D-IDFT by an 8 × 8 or 
16 × 16 FFT and IFFT will bring down the execution time 
of these OpenCL filtration kernels by a significant amount 
[59].

As the channelized OpenCL kernels’ implementations 
run independently for Red, Green, and Blue channels, the 
total execution times of the DFT and IDFT of a 256 × 256 
image are 18.3498 ms and 19.5518 ms respectively on 
the Intel CPU. However, converting all these three chan-
nels to a vector and processing this input vector using 
OpenCL diminishes the processing cost to 11.3006 ms 
and 12.6779 ms on the four core CPU which is quiet simi-
lar to pyNUFFT on a 8 core CPU [60], but lower than 2D 
FFT implementation on 32 core GPU [61]. There are also 
remarkable reduction in the computation time for this 
kernel’s GPU implementations. As the number of cores 
increases in a device, the values are gone down dramati-
cally as reflected in Fig. 11. As shown in the figure, the vec-
torized DFT and IDFT kernels consume (3.6 ms, 3.8 ms) and 
(2.43 ms, 2.59 ms) on 192 cores Intel and 768 cores NVIDIA 
GPUs, which are comparatively lesser than the 2D FFT 
implementation using CUFFT library on 5120 cores NVIDIA 
GPU or on a FPGA XC7K410T at a clock frequency 40 MHz. 
[62, 63]. Figure 12 exhibits the average creation times of 
filters’ matrices are too high for Gaussian and LoG filters, 
i.e., the expected filtration times are low compared to Ideal 
and Butterworth filters. In the end, we have concluded 
that the utilization of image vectored kernels instead of 

Fig. 10   Overall time consump-
tion in seconds by high-boost 
filters with respect to cutoff 
frequencies at 30, 40 and 50, 
implemented using OpenCV 
and OpenCL with image vec-
torization 0.
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channelized kernels make the image high boosting opera-
tion efficient and reliable for various real-time applications. 
In addition to that, the creation of the filter’s matrix at the 
beginning and replacement of the 2D-DFT and 2D-IDFT 
transformations by an 8x8 or 16x16 FFT and IFFT trans-
formations with memory optimization using shared and 
texture memory of a parallel device will boost the filter 
kernel’s speed [64].

7 � Conclusion

Image high-boosting is one of the image enhancement 
methods, uses sharpening techniques to highlight the 
high-frequency details that become blur due to various 
factors like bad weather, poor illumination, improper 
focusing, and image denoisification. In this article, we have 
not only explained frequency domain filtering and mostly 
used high-pass linear and non-linear filters for image high-
boosting but also discussed the OpenCL architecture for 
their parallel implementation. OpenCL kernels of these 
high-boost filters are designed for their fast implementa-
tion, which can be used in various real-world applications 
such as remote sensing, satellite broadcasting, classroom 
monitoring, object detection, recognition, and many 
more video processing applications. In addition to that, 
the vectorized implementation of the high-boost filters’ 
kernels again minimizes the operation cost that makes 
them highly adaptable in low-cost real-time applications 
using various embedded devices. From the result analysis, 
we have found that a Gaussian filter’s correlation, SSIM and 
PSNR values at three different cutoff frequencies are sig-
nificantly higher than the other filters, while the Entropy, 
SD, RMSE, MAE of an output image from the LoG filter 
are notably larger than the rest of the filters. So, we have 
come to an end that a Gaussian filter OpenCL kernel tries 
to protect the original image quality, but a LoG filter kernel 
focuses on improving frequency components in an image 
during a high-boosting operation. The channelized imple-
mentation of a Gaussian and LoG filters consume 0.0187 s, 
whereas their vectorized OpenCL implementation require 
0.0094 s and 0.00906 s to enhance an 256 × 256 image on 
a 768 cores GPU; which are quite lower than the computa-
tion time in most of the traditional CPU and GPU imple-
mentations of a Gaussian and LoG filters, as we have dis-
cussed in Sect. 2. Apart from that, these channelized filters’ 
kernels take approximately 0.125 s to improve an image 
quality on a 4 core CPU, while they need around 0.0548 s 
on an Intel 192 cores GPU for the same image high boost-
ing. On the other hand, the vectorized kernels minimize 
the overall computation time to 0.0828 s and 0.03 s on the 
4 cores Intel CPU and Intel GPU respectively.

In spite of these, a Butterworth high-boost filter pro-
vides better correlation, SSIM and PSNR values than LoG 
filter, but slightly lower than the Gaussian filter; on the 
other hand, the entropy, SD, RMSE and MAE values are lit-
tle smaller than the LoG filter. So, the Butterworth filter 
kernel is the suitable one to provide better performance 
tradeoff between preserving the original image qual-
ity and improving the higher frequency components. 
Regardless of different cutoff frequencies and orders of a 
Butterworth filter, the channelized and vectorized imple-
mentations of this filter requires on an average 0.0190 s 
and 0.009 s respectively on a 768 cores GPU to improve the 
quality of an 256 × 256 image. Although the channelized 
implementation of this filter enhances a 256 × 256 RGB 
image in 0.1254 s and 0.0549 s on a 4 cores Xeon CPU and 
192 cores Intel GPU, these values are significantly mini-
mized to 0.0828 s and 0.03 s by the OpenCL vectorized 
implementation of this filter. In most of the cases, our 
image vectorized Butterworth filter kernels outperforms 
the previous implementation of this filter in term of com-
putational time and portability, highlighted under Sect. 2. 
Thus, a Butterworth high-boost filter is the suitable one to 
provide better results than other filters with regard to time 
and accuracy. Here, the accuracy specifies image quality 
preservation while improving details information present 
inside the image by highlighting high-frequency regions 
inside an image. So, the image vectorized Butterworth 
high-boost filter kernel is the worthy one to provide better 
results among those filters, which might be highly adapt-
able in time bound real-time applications using various 
embedded devices. Ultimately to meet the needs related 
to the current demands, more research has to be carried 
out later to improve the degree of precision and minimize 
the time utilization.

8 � Summary

This article discusses about mostly used Ideal, Gaussian, 
Butterworth, and Laplacian of Gaussian frequency domain 
high-boost filters and implemented channelized OpenCL 
kernels for their rapid execution. In addition to that, these 
kernels are modified using image vectorization tech-
nique to optimize their time utilization by reducing the 
execution time of these OpenCL kernels to half. At last, 
performance analysis is carried out for these two types of 
OpenCL kernel implementations to determine their effec-
tiveness with respect of time consumption and accuracy. 
From the result analysis, we have found that a vectorized 
Butterworth high-boost filter kernel is the suitable one to 
provide better results than other filters with regard to time 
and accuracy, which might be highly adaptable in low-cost 
real-time applications using various embedded devices.
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