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Abstract
In this study, three conformable (3 + 1)-dimensional fractional mKdV equations are explored via exp(−�(�)) expansion 
method. A traveling wave transformation along with conformable derivative is used to transformed the nonlinear frac-
tional differential equation into an ordinary differential equation. Then, the implementation of exp(−�(�)) expansion 
method gives a variety of exact solutions of space-time fractional mKdV equations.
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1 Introduction

In the last century, the Korteweg-de Vries (KdV), Bouss-
inesq, Benjamin–Bona–Mahony, Kadomtsev–Petviashvili, 
Nizhnik–Novikov–Veselov and Kaup-Newell equations 
are the well-known completely integrable equations 
that describe the propagation of shallow water [1–5]. A 
dynamic of shallow water waves in different places like sea 
beaches are depended by the KdV and Boussinesq equa-
tions [6, 7]. Also, the KdV equation has an effect in mod-
eling blood pressure pulses. [8–12]. Besides, Wazwaz [13] 
presented the nonlinear modified KdV (3 + 1)-dimensional 
equations and analyze their soliton, kink and periodic solu-
tions. Particularly, Nuruddeen [14] has studied the exact 
solutions for the following three conformable space-time 
fractional mKdV equations of (3 + 1)-dimension.

In recently, there are developed miscellaneous mathemati-
cal methods to solve nonlinear PDEs or fractional differen-
tial equations. Some of these methods are: The ansatz [15, 
16], the modified simple equation [17, 18], the extended 
trial equation [19], the 

(
G′

G

)
-expansion [20, 21], the sine-

Gordon expansion [22, 23]. Additionally, some other work 
like a modified form of Kudryashov and functional variable 
methods [24–26] have been done by several scholars in 
[27, 28]. In [29–34], the auxiliary equation, the extended 
tanh-function, the improved tan

(
�(�)

2

)
-expansion method 

and the exp function methods have been investigated for 
difference and fractional order PDEs as well. Especially, the 
exp a function method [35–37] and the hyperbolic function 
method [38–40] both have been used to procure the exact 
solutions of nonlinear partial differential equations.

Among all above approaches, the exp(−�(�)) technique 
has achieved substantial consideration due to its compe-
tency in inaugurating the exact solutions of nonlinear dif-
ferential equations, see for instance, [41–44]. In fractional 
calculus, many definitions of fractional derivatives, Like Hil-
fer, Riemann–Liouville, Caputo form and so on, have been 
introduced in the literature but the well known product, 
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quotient and the chain rules were the setbacks of one defi-
nition or another [45–49]. Therefore the most fascinating 
definition of fractional derivative with some of its proper-
ties are given in [50].

This paper aims to explore the conformable space-
time fractional modified KdV equations of (3 + 1)-dimen-
sional for exact soliton type solutions via the exp(−�(�)) 
approach using conformable derivative and the traveling 
wave transformation. The scheme of this paper is as fol-
lows: a brief description of the conformable derivative and 
the exp(−�(�)) expansion approach is given in Sect. 2. Sec-
tion 3, illustrate how to utilize this approach for producing 
new solutions with their graphs. The last parts summarized 
results and discussion of the current study.

2  Conformable fractional derivative 
approach

We recall the conformable derivative with some of its 
properties [50].

Definition 1 Suppose h ∶ ℝ>0 → ℝ be a function. Then, for 
all t > 0,

is known as 𝛼, 0 < 𝛼 ≤ 1 order conformable fractional 
derivative of p. The followings are some useful properties:

D�
t
(a p + b g) = aD�

t
(p) + bD�

t
(g) , for all a, b ∈ ℝ

D�
t
(p g) = p D�

t
(g) + g D�

t
(p).

Let p ∶ ℝ>0 → ℝ be an �-differentiable function, g be a 
differentiable function defined in the range of p.

On the top of that, the following rules hold.
D�
t
(th) = h th−� , for all h ∈ ℝ

D�
t
(�) = 0 , where � is constant.

D�
t
(p∕g) =

gD�
t
(p)−pD�

t
(g)

g2
.

Conjointly, if p is differentiable, then D�
t
(p(t)) = t1−�

dp(t)

dt
.

2.1  Demarcation of the exp(−�(�)) method

The present subsection offers a transitory explanation 
of exp(−�(�)) expansion approach [42, 44] in fabricating 
new exact solutions to nonlinear conformable space-time 
fractional modified KdV equations. Consider the following 
nonlinear conformable space-time fractional differential 
equation

D�

t
(p(t)) = lim

�→0

p(t + �t1−�) − p(t)

�
.

D�

t
(p◦g(t)) = t1−� g�(t) p�(g(t)).

(4)
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With the use of transformation

Eq. (4) is changed into a nonlinear ODE as

We search a solution for Eq. (6) in the form

where N is calculated using the homogeneous balance 
principle (HBP) and �(�) is a function that satisfies a first-
order equation as

Now, several cases can be taken:
Case 1: If 𝜆2
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Now, by substituting Eq. (7) along with Eq. (8) into left 
hand side of Eq. (6), a polynomial in exp(−�(�)) is acquired. 
By setting each coefficient of this polynomial to zero, we 
acquire a nonlinear algebraic system whose solution gives 
a series of exact solutions for the Eq. (4).
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3  Execution of the method

Firstly, we consider the space-time fractional mKdV equa-
tion (1).

3.1  Exact solutions of (3 + 1)‑dimensional 
conformable space‑time fractional Eq. (1)

Using the transformation (5), and integrating once w.r.t. � 
with zero constant of integration, we get

The balance between V ′′ and V3 gives N = 1 , then the non-
trivial solution (7) reduces to:

By inserting the above solution in reduced equation Eq. 
(9) along with Eq. (8) and equating the coefficients of each 
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The obtained solutions of Eq. (1) are graphed here for dif-
ferent �-values corresponding to q =

2

3
 , r = 1 , s = 3 and 

� =
1

2
.

3.2  Exact solutions of (3 + 1)‑dimensional 
conformable space‑time fractional Eq. (2)

The Eq. (2) can be transformed into an ordinary differential 
equation by using the transformation (5), and integrating 
once w.r.t. � , we get

The balance between V ′′ and V3 gives N = 1 , then the non-
trivial solution (7) reduces to:

By inserting the above solution in reduced equation Eq. 
(15) along with Eq. (8) and equating the coefficients of 
each exp(−�(�)) to zero, we procure a set of nonlinear 
algebraic equations

and its solutions

yields the following new exact solutions:
If 𝜆2
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− 4𝜇1 > 0 and �1 ≠ 0 , then
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− 4𝜇1 < 0 and �1 ≠ 0 , then

3.3  Exact solutions of (3 + 1)‑dimensional 
conformable space‑time fractional Eq. (3)

The conformable space-time fractional mKdV equation (3), 
can be reduced into an ordinary differential equation as 
follows. Using the transformation (5), and integrating once 
w.r.t. � with zero constant of integration, we get

The balance between V ′′ and V3 gives N = 1 , then the non-
trivial solution (7) reduces to:

By inserting the above solution in reduced equation Eq. 
(21) along with Eq. (8) and equating the coefficients of 
each exp(−�(�)) to zero, we procure a set of nonlinear 
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and its solution

yields the following new exact solutions:
If 𝜆2
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− 4𝜇1 > 0 and �1 ≠ 0 , then
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Fig. 1  Solution profile of V
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The expansion idea given by Eq. (7) was also presented 
easier in a study on the KPP equation. The general solution 
to the reduced ordinary differential equations (9), (15) and 
(21) was also given in [51]. Actually, such travelling solu-
tions should represent sample asymptotic to nonlinear 
integrable equations [52].

4  Results and discussion

Furthermore, for suitable parametric choices, we plotted 
three dimensional graphics of some solutions of the frac-
tional mKDV equations for Figs. 1, 2 and 3. The obtained 
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solutions are periodic wave, solitary wave and traveling 
wave solutions. It is more advantageous than other meth-
ods because different, various and more solutions are 
obtained with our methods. Note that our solutions are 
new and more extensive than the given ones in [13, 14]. 
When the parameters are given special values, the optical 
solitary waves are derived from the travelling waves.

5  Conclusion

In this study, three conformable fractional (3 + 1)-dimen-
sional mKdV equations have been explored via exp(−�(�)) 
expansion method. A traveling wave transformation along 

Fig. 2  Solution profile of V
2
 

appears in Eq. (13) taking 
�
1
= 0 , �

1
= 1 = z and y = 0

0.499999
5

0.5

0.500001

10
A
bs

(u
) 0.500002

5

t

0.500003

0

x

0.500004

0
-5

-5 -10

(a) γ = 0.25

0.498
5

0.499

10

0.5

A
bs

(u
)

5

0.501

t

0

x

0.502

0
-5

-5 -10

(b) γ = 0.5

0.2
5

0.3

0.4

0.5

10

0.6

A
bs

(u
)

0.7

5

t

0

0.8

x

0.9

0
-5

-5 -10

(c) γ = 0.75

0
5

5

10

15

10

20

A
bs

(u
)

25

5

t

0

30

x

35

0
-5

-5 -10

(d) γ = 1



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1436 | https://doi.org/10.1007/s42452-019-1424-1 Research Article

with conformable derivative has used to transformed the 
nonlinear fractional differential equation into an ordinary 
differential equation. We plot some sketches for some of 
the analytical and exact solutions to express more physi-
cal properties of this model. Then, the implementation of 
exp(−�(�)) expansion method procured a variety of exact 
solutions of aforementioned fractional mKdV equations. 
This method and the mathematical tool can be used to 
derive a localized wave solutions for different nonlinear 
models in engineering and mathematical physics.
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