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Abstract
Standard Precipitation Index (SPI) and, its variant, Standard Precipitation and Evapotranspiration Index (SPEI) are among 
the most commonly used drought assessment indices worldwide. SPI uses precipitation as its only input to assess 
drought. Unlike SPI, SPEI uses both precipitation and temperature, thereby considering the influence of global warming 
to some extent. Assessments of performance between SPI and SPEI is well addressed. However, no adequate literature 
was found on the assessment of the degree of agreement between SPI and SPEI at different time scales. Hence, this 
research focused on examining the level of agreement between SPI and SPEI as drought assessment tools at 1-month, 
3-month, 6-month, 12-month and 24-month time scales. The test of agreement between SPI and SPEI was conducted 
using Cohen’s Kappa statistics and the Bland–Altman method. Gridded monthly precipitation and temperature Climatic 
Research Unit time-series data version 4.01 were used to calculate SPI and SPEI for the period 1901 to 2016. The results 
of Cohen’s Kappa statistics indicate that there existed a fair degree of agreement between SPI and SPEI at all time scales. 
A positive linear correlation (r > 0.7, p < 0.001) was also observed between SPI and SPEI ratings at all time scales. Small 
mean difference (bias) in the Bland and Altman analyses result indicated for the presence of agreement between the 
assessment tools. This study has found that there is an acceptable level of agreement between SPI and SPEI ratings in 
the study area, at all timescales.
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1 Introduction

Like all major natural hazards known to mankind, drought 
has caused environmental and economic devastation in 
different regions worldwide. It is known for its effects as a 
result of the interplay between reduced precipitation and 
the demand people place on water supply [1]. Between 
the years 1990 and 2001, drought has reportedly occurred 
for about 782 times worldwide costing 16,800,000,000 US 
dollars [2] with 66,601 fatalities [3]. Historically, Ethiopia has 
been recurrently hit by drought for a very long time [4] and 
famine has been a periodic feature of its history; the first 

recorded occurrence dating back to the thirteenth-century 
[5]. As a result, Ethiopia has frequently been described as a 
drought-stricken country on different occasions [6]. How-
ever, studies show that not all parts of the country have a 
history of frequent droughts. Web and Braun [4] have identi-
fied that the southern, south-eastern, northern (current day 
Tigray Regional State) and north-eastern parts of the country 
are the most repeatedly drought and famine affected areas. 
Hence, Tigray is one of the regions repeatedly affected by 
recurrent drought events [7]. According to [4] out of the 
26 drought events that occurred between 1800 and 1990, 
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Tigray region experienced about 22 drought counts closely 
followed by 17 drought counts in Amhara regional state.

In an effort to understand the characteristics of drought, 
different studies have been made using a number of indi-
ces [8–11]. According to the definitions given by [12, 13], 
drought indices are understood as numerical representa-
tions of drought severity, computed from climatic or hydro-
meteorological input data. Hence, among the indices imple-
mented to assess drought SPI, SPEI, Vegetation Condition 
Index (VCI) and Normalized Difference Vegetation Index 
(NDVI) are the most common ones. Due to its characteristics 
of simplicity, flexibility, and strong adaptation to different 
climates [14] SPI has been identified as one of the most com-
monly used indices in more than 70 countries worldwide 
[15]. Various studies [16–20] have to consider the variations 
in temperature is considered successfully implemented SPI 
to assess and forecast drought occurrences. However, stud-
ies [15, 21] show that the dependence of SPI only on precipi-
tation as an input to assess drought and its inability a major 
weakness. A performance comparison study by [22] argued 
that even though precipitation is the primary controlling 
factor of drought occurrences, the influence of temperature 
through the facilitation of evapotranspiration in the context 
of global warming cannot be ignored. However, SPEI, a vari-
ant of SPI and a multi-component drought index developed 
by [21], uses the variabilities of precipitation and tempera-
ture to assess drought in an area, hence, making it sensitive 
to global warming [22–24]. As a result, SPEI has been used 
in different drought-related researches worldwide [25–28].

Moreover, performance comparison studies [22, 29] 
between SPI and SPEI indicated that SPEI performs bet-
ter than SPI on most occasions. Regardless of these facts, 
however, SPI continues to be widely used in different parts 
of the world. In Ethiopia, SPI is also more commonly used 
index [9, 11, 30–32] than SPEI. Only a few studies [33, 34] 
used SPEI to assess drought in Ethiopia. Due to the climate 
variability, which could be accounted to the undulating 
topography of the study area [35], variation in drought rat-
ings from SPI and SPEI is expected. This study, thus, exam-
ined the degree of agreement between the ratings of SPI 
and SPEI as drought assessment tools over Tigray region. 
This, thus, provides information on the acceptability level 
of using SPI in place of SPEI as drought assessment tool, in 
the study area, especially in the absence of temperature 
data.

2  Materials and methods

2.1  Study area

The study area, Tigray Regional State, is one of the national 
regional states of Ethiopia located in the northernmost 

part of the country. Geographically its location lies 
between 12°15′N and 14°57′N latitude and 36°27′E and 
39°59′E longitude [9]. The region is bordered by Eritrea to 
the north, Sudan to the west, and with Ethiopian regions 
of Amhara and Afar to the south and the east respectively 
[36]. The state is structured into six administrative zones, 
one special zone (Mekelle Special Zone) and 34 districts 
locally called “Wereda”. The areal coverage of the region is 
estimated to be 53,638 square kilometres with a total pop-
ulation of 5,484,405 (based on Central Statistical Agency 
(CSA) 2007 census projected for 2017 with an annual 
growth rate of 2.6%). The map of the study area and the 
grid point sample locations are indicated in Fig. 1.

Tigray has a diverse topography, with an altitude that 
varies from about 500 m above sea level in the north-
east to around 3800 m above sea level in the southwest. 
About 53% of the land is lowland (locally called “kola” 
and is less than 1500 m.a.s.l.), 39% is medium highland 
(also known as “weina-degua” falling within the elevation 
range of 1500–2300 m.a.s.l.), and 8% is upper highland 
(locally referred to as “degua” and ranges between 2300 
and 3600 m.a.s.l.) [37]. The wide range of altitude governs 
the climatic conditions of the region [38]. This marked vari-
ation in altitude results in a distinct spatial distribution of 
temperature and rainfall [39].

The region belongs to the sub-tropical climate which is 
characterized by the sparse and highly uneven distribution 
of seasonal rainfall and frequent drought. The main rainfall 
season locally referred to as “kremti” starts in mid-June and 
lasts until mid-September. Rainfall in the region is highly 
variable temporally and spatially, which results in strong 
variation in yields of crops and livestock. Average rainfall 
varies from about 200 mm in the northeast lowlands to 
over 1000 mm in the southwest highlands [39]. According 
to [9], the mean annual rainfall of the region is estimated 
to be 473 mm. The average annual temperature varies 
from less than 7.5 °C in the highlands, with greater than 
3500 m.a.s.l, to greater than 27 °C in the eastern lowlands 
[39]. The temporal distributions of precipitation and tem-
perature are shown in Figs. 2 and 3 below.

2.2  Data collection and processing

Even though there are meteorology stations in Tigray 
Regional State, they are mostly characterized by short 
climatic records containing missing values for several 
months or even years. Hence in order to avoid the errors 
and misrepresentations from the use of local climate data, 
gridded Climatic Research Unit (CRU) Time-series (TS) data 
version 4.01 were collected from Koninklijk Nederlands 
Meteorologisch Instituut (KNMI) climate explorer (https ://
clime xp.knmi.nl/start .cgi) on monthly basis for the period 
1901 to 2016 at 0.50 spatial resolution and on 12 selected 

https://climexp.knmi.nl/start.cgi
https://climexp.knmi.nl/start.cgi
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grid points. The CRU TS 4.01 data are a monthly observa-
tional gridded data fields calculated from daily or sub-
daily data by National Meteorological Services and other 
external agents [40–42]. These datasets were chosen for 
their broader application in various studies [43], and for 
the wider spatial and temporal coverage.

All the monthly climate data (1901–2016) for the 12 
grid points were averaged to represent the climate data 
of Tigray region. The monthly average values were, thus, 
considered representative and used to compute the SPI 
and SPEI.

2.3  Data analyses techniques

2.3.1  Standard Precipitation Index (SPI) based drought 
analyses

SPI is a powerful drought modelling index requiring only 
precipitation as an input parameter [15]. It was developed 
for the purpose of defining and monitoring drought [44], 
hence, can be used as an indicator to establish a functional 
and quantitative definition of drought for each timescale. 
A drought event occurs when the SPI values are continu-
ously negative and reach an intensity of − 1 and below 
[45]. The drought, however, ends when the SPI values are 
above zero. Any drought event, therefore, can be defined 
by its duration and the intensity [15].

Fig. 1  Map of the study area

Fig. 2  Mean monthly precipitation and mean monthly temperature 
(minimum and maximum) values of the study area for the period 
1901–2016. The values are averaged from 12 selected CRU TS 4.01 
grid points obtained from Koninklijk Nederlands Meteorologisch 
Instituut (KNMI) climate data explorer

Fig. 3  Annual precipitation and mean annual temperature val-
ues of the study area for the period 1901–2016. The values are 
averaged from 12 selected CRU TS 4.01 grid points obtained from 
Koninklijk Nederlands Meteorologisch Instituut (KNMI) climate data 
explorer
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The SPI for any location is calculated using the long-
term precipitation records for the desired period of time. 
This long-term record is fitted to a gamma probability 
distribution, which is then transformed into a normal 
distribution resulting in zero mean SPI for the particular 
location and specified time period [44]. The negative and 
positive SPI values indicate below mean and above mean 
precipitation respectively. The below median precipitation 
indicates dryness and the above median indicate wetness 
events. Hence, SPI (Eq. 1) can be used to assess and moni-
tor both wet and dry periods in an area [15].

where Xi is rainfall for year i, X̄  is long-term average rainfall 
and � is the standard deviation.

In the presence of a time series of monthly precipitation 
data for a location, the SPI for any month in the record for 
the previous i months can be calculated where i = 1, 3, 12, 
24, etc. depending upon the time scale of interest [44]. 
According to [15] groundwater, streamflow and reservoir 
storage reflect the longer-term precipitation variances. Dif-
ferently, soil moisture conditions respond to precipitation 
variances on a relatively short timescale. Hence, one may 
want to look at a 1 month or 3-month SPI for meteorologi-
cal drought, anywhere from 1 to 6-month SPI for agricul-
tural drought, and 6-months up to 24-month SPI or more 
for hydrological drought. Therefore, to have the full picture 
of the drought events in the study area, SPI was automati-
cally calculated using the “SPI” package [46] in R-statistical 
software at 1-month, 3-month, 6-month, 12-month and 
24-month basis for the period 1901–2016.

2.3.2  Standard Precipitation Evapotranspiration Index 
(SPEI) based drought analyses

Despite the broader acceptance, SPI accounts only for 
precipitation from among all the atmospheric conditions 
that may affect drought severity. The atmospheric condi-
tions that may influence drought occurrences and mag-
nitude include precipitation, temperature, wind speed, 
and humidity. To ensure the inclusiveness of another 
atmospheric element in the computation, the Standard-
ized Precipitation Evapotranspiration Index (SPEI) was 
developed by [21]. SPEI is computed in a much similar 
way to SPI, but by incorporating temperature changes as 
part of its analyses [47]. It retained the simplicity, multi-
temporal nature, and statistical interpretability of the SPI 
and managed to provide a more comprehensive measure 
of climate variability in an area. The inclusion of Potential 
Evapotranspiration (PET) makes a discernible difference in 
index values, confirming that SPEI provides a significantly 

(1)SPI =

(

Xi − X̄
)

𝜎

different drought index to the SPI. The SPEI is then recom-
mended as an alternative to SPI to quantify anomalies in 
accumulated climatic water balance, incorporating poten-
tial evapotranspiration [48].

There are a number of equations that can be used 
to model PET (e.g. the Thornthwaite equation, the Pen-
man–Monteith equation, the Hargreaves equation, etc.); 
however, the SPEI is not linked to any particular one [47]. 
According to [49], the Penman-method is the most physi-
cal and reliable method. However, its data requirements 
(i.e. air temperature, relative humidity, wind, and net radia-
tion), make it difficult to use than the other techniques. 
Hargreaves’ model is a simpler model but it still requires 
two meteorological parameters, temperature (mean, 
maximum and minimum) and incident radiation [50, 51], 
while the Thornthwaite method requires only temperature 
data as an input [50]. Regardless of its less data require-
ment, however, there is a possibility for the Thornthwaite 
method to overestimate PET in places dissimilar to the 
place where the method was first implemented [49, 50]. 
In this study, thus, the Thornthwaite method was used to 
calculate the PET due to data limitation. Lastly the SPEI, 
being the difference between the precipitation (P) and PET 
for the month I, was then calculated using Eq. 2 as:

whereby the Monthly PET is calculated by the Thornth-
waite equation (Eq. 3) as:

where PET is monthly potential evapotranspiration, T is 
mean temperature and I is the heat index calculated as 
the total of 12 monthly index values, m is a coefficient that 
depends on heat index and K is a factor of correction cal-
culated as a function of the month and latitude.

Based on this concept, SPEI was computed at 1-month, 
3-month, 6-month, 12-month, 24-month time scales using 
the “SPEI” package [52] in R-statistical software. The clas-
sification of both SPI and SPEI based indices are indicated 
in Table 1.

2.3.3  Assessment of linear relationship between SPI 
and SPEI

The test for the linear relationship between SPI and SPEI 
was conducted using Pearson correlation coefficient (PCC) 
also called the product-moment correlation coefficient. 
According to [53, 54], PCC is the most common statistical 
technique used to show how strongly pairs of variables 
are related to each other. This is supported by literature 
of various disciplines which have successfully worked 
on and/or used PCC as a tool to test linear relationship 

(2)SPEIi = Pi − PETi

(3)PET = 1.6K

(

10T

I

)m
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between variables or methods [53, 55–57]. PCC is used to 
test for a linear relationship when couples of continuous 
data are available on the same experimental unit and fol-
low a bivariate normal distribution [57]. PCC has a range 
of + 1 (perfect positive linear relationship) to − 1 (perfect 
negative linear relationship). The PCC value of 0 indicates 
that the variables do not have any linear relationship [53]. 
However, [58] have pointed out that it would be mislead-
ing to use PCC to characterize the degree of agreement 
between variables. Hence in this study, PCC was used only 
to test the strength and direction of the linear relationship 
between the two drought indices at each time scale.

2.3.4  Bland and Altman plot

According to [58], it is generally true that no two different 
techniques could give exactly the same result with no dif-
ference in their values at some point. Hence, when making 
a comparison between methods, the goal is to know by 
how much the results of the two methods differ. The Bland 
and Altman plot gives an insight into the level of agree-
ment between methods also referred to as ratters. It was 
first developed by [58] for comparing two measurements, 
and displays the difference between the pairs of values on 
the y-axis against the means of the same pairs of values 
on the x-axis. This plot constructs limits of agreement and 
quantifies the agreement between two quantitative meas-
urements using the mean and the standard deviation of 
their differences which may provide an insight about the 
extent of the agreement between the methods [54, 59, 
60]. However, by how far the methods should differ and 
be accepted as having an agreement is a matter of per-
sonal judgement [58]. However, a general guideline by [59] 
shows that if the points on the Bland and Altman plot are 
highly scattered, above and below zero, it is an indication 
of inconsistent bias between the approaches. As per the 
guidelines of [58], the mean and differences of each pair of 
SPI and SPEI values were computed separately. The stand-
ard deviation (SD) of the difference and bias (mean differ-
ence) were then computed from the difference between 

each pair of values. A 95% confidence interval was used to 
calculate the Upper (Bias + 1.96 SD) and Lower (Bias − 1.96 
SD) limits agreement.

2.3.5  Percent of match

The percent of match was used to show the number of 
times (in per cent) that the SPI and SPEI agreed with each 
other’s ratings or values. In doing so the number of times 
for which each value agreed were counted and divided by 
the total number of months and then multiplied by 100 to 
get the values in per cent (see Eq. 4).

where X is the number of appraisals that match and N is 
the number of months (rows) of valid data.

2.3.6  Cohen’s Kappa statistics

Evaluating the degree of agreement between two or more 
assessment methods is common in various disciplines [61, 
62]. Kappa statistics was introduced to measure nominal 
scale agreement between pair of assessment methods 
[63]. When assessing degrees of agreement between 
methods, the tests of agreement between two or more 
methods should include a statistic that considers the pos-
sibility of agreement or disagreement by mere chance. 
Due to the fact that Kappa statistics has the capability to 
resolve this issue, it is reported as one of the most com-
monly used statistics for this purpose [64]. Kappa values 
normally range from − 1 to + 1. High kappa values indi-
cate stronger agreement levels. When Kappa = 1, a perfect 
agreement exists; Kappa = 0, the agreement is the same as 
would be expected by chance; Kappa < 0, the agreement 
is weaker than expected by chance; this rarely happens 
(see Table 2).

Kappa statistics can be calculated by either Cohen’s 
kappa [65] or Fleiss’ Kappa [63]. Cohen’s Kappa is used 
to assesses the degree of agreement when there are 
either two assessment methods with a single trial or one 
assessment method with two trials while Fleiss’s Kappa is 
an extension of Cohen’s kappa for three or more ratters 
(measurements). Moreover, the assumption with Cohen’s 
kappa is that the assessment methods are purposely cho-
sen and fixed but with Fleiss’ kappa, the assumption is 
that the assessment methods are randomly selected from 
a larger population. Hence, based on these assumptions 
Cohen’s Kappa Statistics was found suitable for this study 
and used to test the degree of agreement between SPI 
and SPEI as drought assessment tools. But, because Kappa 
statistics works well with ordinal or nominal data, the con-
tinuous values of each assessment methods (i.e. SPI and 

(4)%Match =
X

N
∗ 100

Table 1  Classification criteria for drought indices. Source: [45]

Category Description Ordinal class SPI and SPEI values

W3 Extremely wet 8 > 2
W2 Very wet 7 1.5 to 1.99
W1 Moderately wet 6 1.00 to 1.49
W0 Mildly wet 5 0 to 0.99
D0 Mild drought 4 0 to − 0.99
D1 Moderate drought 3 − 1.0 to − 1.49
D2 Severe drought 2 − 1.5 to − 1.99
D3 Extreme drought 1 < − 2
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SPEI) were transformed to ordinal data (with 8 classes) as 
indicated in Table 1. The transformed data of each assess-
ment method were then used to calculate the degrees of 
agreement using Cohen’s Kappa Statistics. The formula for 
Cohen’s Kappa statistics is given in Eq. 5 below.

where ρo is the relative observed agreement among 
ratters and ρe is the hypothetical probability of chance 
agreement.

3  Results

3.1  SPI and SPEI analyses

The summary statistics in Table 3 indicated that the mini-
mum and maximum values for SPI and SPEI are close to 
each other at all time scales. The mean values did not 
vary much from each other. Moreover, the standard error 
(SE) and standard deviation (SD) values for SPI and SPEI 
indicated that the deviation of the index values from 
their mean values were almost the same. For instance, 
the 1-month time scale SE for SPI and SPEI are 0.0272 and 
0.0267. Similarly, at 1-month time scale, the SD for SPI and 

(5)k =
�O − �e

1 − �e
∗ 100 = 1 −

1 − �O

1 − �e

SPEI are 1.01 and 0.99. These values are close to each other 
and the same is also true for all time scales presented in 
Table 3. These nearly the same SE and SD values show the 
similarities of the deviation of each sampled value around 
their means.

Table 3 shows that 1902 was the year of the strongest 
drought occurrence in the study area. However, SPI and 
SPEI showed differences in identifying the same year as the 
driest year at 1-month and 24-month time scales. It was 
observed that the strongest drought at 1-month time scale 
was felt in April 2015 (SPI) and August 1902 (SPEI). The SPI 
based analyses indicated that August 1902 was the second 
strongest drought year next to the year 2015. At 24-month 
time scale, the strongest drought years identified by SPI 
and SPEI were 1903 and 1902 respectively. Similar to the 
1-month time scale, the year 1902 was the second strong-
est drought year based on the SPI analyses (Table  4). 
Moreover, it is indicated in Table 3 that the magnitude of 
the maximum drought occurrence at each time scale is 
higher for SPI than SPEI. It was at 1-month (SPI = −4.18, 
SPEI = −3.38) and 12-month (SPI = −4.31, SPEI = −2.79) time 
scales that the largest differences between the minimum 
values (extreme drought) were observed. Unlike for the 
identification of driest years, SPI and SPEI were able to 
identify the wettest year to have happened in 1916, except 
at 1-month time scale for which the SPEI identified 1920 as 
the wettest year in 116 years. The temporal distribution of 
SPI and SPEI are clearly indicated in Fig. 4.

Furthermore, the longest and the strongest drought 
duration, severity and intensities identified by SPI and 
SPEI are presented in Table 4. It is indicated that SPI and 
SPEI have shown similarities and dissimilarities in iden-
tifying drought years. Both SPI and SPEI identified the 
year 1902 as the year of strongest drought severities 
and intensities at all time scales investigated except at 
24-month time scale. At 24-month time scale, SPEI iden-
tified the year 2012 as the year of strongest drought 
severity and intensity while the SPI identified the years 
1904 and 1920 as the years of strongest drought severity 

Table 2  Interpretation of Kappa values. Source: [64]

Kappa value Degree of agreement

< 0 Agreement equivalent to chance
0.1–0.2 Slight agreement
0.2–0.4 Fair agreement
0.4–0.6 Moderate agreement
0.6–0.8 Substantial agreement
0.8–0.99 Near perfect agreement
1 Perfect agreement

Table 3  Summary statistics for 
SPI and SPEI at different time 
scales for 1901–2016

Time scale Index Mean SE Median SD Min Year Max Year Range

1-month SPI − 0.0020 0.0272 0.02 1.01 − 4.18 2015 3.44 1916 7.62
SPEI 0.0016 0.0267 − 0.01 0.99 − 3.38 1902 2.83 1920 6.22

3-month SPI − 0.0016 0.0271 − 0.01 1.01 − 3.70 1902 4.30 1916 7.99
SPEI 0.0006 0.0267 − 0.01 0.99 − 3.45 1902 3.02 1916 6.47

6-month SPI − 0.0012 0.0270 − 0.04 1.01 − 3.78 1902 4.22 1916 8.01
SPEI 0.0011 0.0267 − 0.01 1.00 − 2.96 1902 3.02 1916 5.98

12-month SPI − 0.0019 0.0273 − 0.06 1.01 − 4.31 1902 3.71 1917 8.02
SPEI 0.0003 0.0268 0.02 1.00 − 2.79 1902 2.91 1917 5.70

24-month SPI 0.0000 0.0268 0.00 0.99 − 2.49 1903 2.81 1918 5.29
SPEI − 0.0015 0.0269 0.01 0.99 − 2.17 1902 2.94 1918 5.12
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and intensity respectively. Additionally, SPEI performed 
well in capturing the drought years from 2009 to 2016 
at all timescales. Table 4 shows that the SPI identified 
a smaller number of drought years between 2000 and 
2016 compared to the SPEI. The gap widens from shorter 
time scales (3-month and 6-month) to longer time scales 
(12-month and 24-month). Regardless of their differ-
ences, however, both SPI and SPEI were able to identify 
major recorded drought years in the study area including 
1984, 1990 and 2013 in most cases.

3.2  Linear relationship between SPI and SPEI

Pearson’s correlation coefficient was used to examine the 
linear relationship between SPI and SPEI at different time 
scales. The test result indicated that SPI and SPEI showed 
strong and significant relationship at 1-month (r = 0.69, 
p < 0.01) and 3-month (r = 0.7, p < 0.01) timescales. The 
linear relationship at 12-month and 24-month timescales 
(r = 0.83 and r = 0.79, respectively) remained significant 
at p < 0.01 and the strength subsequently increased to 
r = 0.83 and r = 0.79, respectively (see Table 5). Addition-
ally, the scatter plot diagram in Fig. 5 revealed good posi-
tive linear relationship  (R2 > 0.57) between the values of SPI 
and SPEI at 6-month, 12-month and 24-month timescales. 
However, at 1-month and 3-month time scales,  R2 < 0.49 
were observed indicating the decreasing linear relation-
ship between SPI and SPEI at shorter time scales. 

3.3  Per cent of match between SPI and SPEI

To test the per cent of match between SPI and SPEI, con-
tinuous values had to be transformed into categorical 
data. In doing so, all the continuous values of SPI and 
SPEI were categorized into eight drought severity classes 
as indicated in Table 1. Then the per cent of match was 
computed based on the number of frequencies that the 
results of SPI and SPEI which were classified under the 
same category. Accordingly, the test results (Table  5) 
showed highest per cent of match (51.58%) at 1-month 
time scale. Similarly, above 50% of match was observed at 
6-month and 12-month time scales. However, at 3-month 
and 24-month time scales, low per cent of matches were 
observed at 49.9% and 39.7% respectively. Hence no 
increasing or decreasing pattern in per cent match was 
observed the per cent of match showed no increasing or 
decreasing pattern with changing time scales.

3.4  Bland and Altman plot

The results in Fig. 6 indicate that the mean difference 
(bias) was 0.0036 at 1-month time scale with a 95% con-
fidence interval of − 0.0029 and 0.0029. Accordingly, 
the SPEI tend to give a lower reading by 0.0036 than 
SPI. Similarly, the SPEI-3 and SPEI-6 tend to give 0.0022 
and 0.0023 reading lower than SPI does respectively. 
An even smaller mean difference of 0.0021 and 0.0015 
were observed at 12-month and 24-month timescales. 

Table 4  The longest and strongest drought duration, severities and intensities captured by SPI and SPEI for each time scale between 1901 
and 2016

DD drought duration in months, DS drought severity, DI drought intensity

Time scale DD Year DS Year DI Year

3-month time scale
 SPEI 3 1901–1906, 1908, 1919, 1926–1927, 1931, 1939–1941, 1947, 1952, 1962, 1965, 1966, 1969,1970, 

1982, 1984, 1990–1992, 2002, 2004, 2009–2015
7.25 1902 2.42 1902

 SPI 3 1901–1906, 1908, 1915, 1918, 1928, 1930, 1933, 1939–1941, 1945, 1947–1949, 1951, 1952, 1960, 
1962, 1965, 1966, 1969–1971, 1982, 1984, 1989, 1990, 1992, 1996, 2004, 2009–2015

9.61 1902 3.20 1902

6-month time scale
 SPEI 6 1901,1902, 1904–1906, 1908, 1915, 1918, 1927–1928, 1939–1941, 1947, 1952, 1960, 1966, 1969, 

1982–1984, 1990–1992, 1996, 2002, 2004, 2008–2012
15.5 1902 2.59 1902

 SPI 6 1904–1906, 1918, 1927, 1931, 1939, 1941, 1947, 1955, 1965, 1970, 1973, 1984, 1992, 1999, 2002, 
2004, 2009, 2011–2013

13.4 1902 2.69 1902

12-month time scale
 SPEI 12 1902, 1906, 1919, 1927, 1928, 1931, 1940, 1941, 1970, 1973, 1983–1985, 1990, 1991, 1997, 

2002–2005,2009–2013
22.6 1902 1.89 1902

 SPI 12 1902, 1905, 1906, 1927, 1931, 1940, 1941, 1948, 1949, 1952, 1966, 1969–1973, 1983, 1984, 1990, 
1997, 2010–2013

27.7 1902 2.31 1902

24-month time scale
 SPEI 24 1903–1907, 1927, 1970, 1973, 1984–1985, 1991, 1997–1998, 2003–2005, 2009–2015 47.5 2012 1.98 2012
 SPI 24 1904–1908, 1928, 1942, 1947–1949, 1968–1974, 1984, 1985, 1992, 2005, 2011–2013 46.4 1904 2.47 1902
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Moreover, the small limits of agreement (i.e. lower 
limit = Bias − 1.96 SD, upper limit = Bias + 1.96 SD) at all 
investigated time scales of the analyses indicated an 
acceptable degree of agreement between SPI and SPEI.

3.5  Kappa statistics test

The Cohen’s Kappa Statistics result indicated a statistically 
significant fair (0.2–0.4) degree of agreement between 
SPI and SPEI in all investigated time scales at p < 0.01 
(see Table 5). However, the degree of agreement at the 
24-month time scale was the smallest in all-time scales.

4  Discussion

4.1  Characterizing SPI and SPEI based drought 
assessment

Both SPI and SPEI has been widely used to model drought 
all across the globe [25, 66–70]. According to [71], SPI and 
SPEI allow comparisons across climates using a univariate 
probability distribution to normalize the index. However, 

Fig. 4  The temporal distri-
bution of SPI and SPEI at 
1-month, 3-month, 6-month, 
12-month and 24-month time 
scales from 1901 to 2016

Table 5  Test for the degree of agreement between SPI and SPEI at 
the regional level

**significant at p < 0.01

Time scale % of Match (95% CI) Kappa statistics Pearson’s r

1-month 50.50 (47.84, 53.16) 0.34** 0.696**
3-month 49.93 (47.27, 52.59) 0.33** 0.702**
6-month 51.05 (48.38, 53.71) 0.34** 0.754**
12-month 51.85 (49.17, 54.51) 0.34** 0.832**
24-month 39.74 (37.13, 42.39) 0.21** 0.792**
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when it comes to the implementation of SPI and SPEI, the 
deviation between results obtained using these tech-
niques is unavoidable. It was observed in this study that 
the results of SPI and SPEI are different. For instance, the 
3-month time scale drought analyses indicate that 1902 
was the driest year with intensity of drought SPI = 3.2 and 
SPEI = 2.4. Similarly, the 12-month time scale drought anal-
yses indicated the same year (i.e. 1992) as the driest year 
with values of 2.3 and 1.8 for SPI and SPEI respectively. Dif-
ferently, the analyses results revealed that the driest years 
at 24-month time scales are different for SPI (i.e. 1904) and 
SPEI (i.e. 1902).

It is indicated in Table 4 that SPI failed to capture all 
of the major drought years between 2000 and 2016 at all 
investigated time scales. By comparison, SPEI identified 
higher number of drought years that occurred between 
2000 and 2016. This includes years 2003, 2009, 2013 and 
2015 reported as either severe or extreme drought years 
by [11, 72] in different instances. However, SPI performed 

as well as SPEI did and captured most of the major drought 
occurrences before 2000. This finding was in agreement 
with an SPI and SPEI comparison study conducted by [73] 
in Nevada. According to this literature, both indices were 
able to detect the major drought periods of the first half of 
the twentieth century, however, during the late twentieth 
and early twenty-first centuries, SPI was unable to capture 
the magnitude of drought severity indicated by SPEI. The 
only occasion that SPEI and SPI were equally able to iden-
tify drought was only during a cool period. This shows the 
inability of SPI to consider the effects of global tempera-
ture change in drought modelling.

Moreover, when the individual values of SPI and 
SPEI are drawn together, the SPI values appear higher 
than the corresponding SPEI values. These dissimilari-
ties between SPI and SPEI were also detected by other 
studies. A drought severity change research in China by 
[74] reported a variation between SPI and SPEI based 
drought assessment values. Similarly, [75] used the 

Fig. 5  Scatter plot showing the 
linear relationship between SPI 
and SPEI at 1-month, 3-month, 
6-month, 12-month and 
24-month time scales for the 
period 1901–2016
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differences between SPI and SPEI to explain, in a way, 
how changes in temperature could cause discrepancy 
in results when coupled with precipitation than using 
precipitation alone. Hence, this supports the theory that 
these differences could arise from the variation in the 
input data they use to assess drought. SPI, developed by 
[45], is described by [76] as “a standardizing transforma-
tion of the probability of the observed precipitation”, 
indicating that it only uses the observed precipitation 
data as an input. However, SPEI, developed by [21] uses 
precipitation and temperature data as an input, thus 
have the capacity to include the effects of temperature 
variability on drought assessment. However, the exist-
ence of differences between SPI and SPEI values doesn’t 
mean that they give completely different results. In 
areas with low temperature variations, SPI can work as 
strong as SPEI does.

4.2  Linear relationship between SPI and SPEI

The Pearson’s correlation coefficient is a parametric test 
to assess possible linear relationship between two con-
tinuous variables [57, 77]. It has been used in different 
researches to show the linear relationship between vari-
ables [78–80]. The test for a linear relationship between 
SPI and SPEI, in this study, indicates that the two variables 
have shown a significant and positive correlation (r = 0.69, 
r = 0.70, r = 0.75 at p < 0.01) at 1-month, 3-month and 
6-month timescales respectively. The positive correlation 
between SPI and SPEI can also be seen from scatter plots 
in Fig. 5. The strength of linear relationship however has 
increased at 12-month and 24-month time scales (r = 0.8, 
r = 0.79 at p < 0.01). Looking at the general pattern of the 
linear relationship between SPI and SPEI, this study has 
unveiled a consistently increasing trend in the strength 

Fig. 6  Bland and Altman plot 
for SPI and SPEI at a 1-month, 
b 3-month, c 6-month, d 
12-month and e 24-month 
time scales
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of the linear relationship as the time scale of analyses 
increased from 1- to 12-months.

In contrary to the finding of this study, a decreasing 
trend has been reported in comparative analyses research 
by [81] carried out in the Chi River basin, Thailand. The 
results of this research work indicated that the correlation 
between the SPI and the SPEI were close at shorter time-
scales (1–6 months) and then dramatically decreased at 
longer timescales (9–24 months). It is stated in [60] that 
PCC is wrongly used to evaluate the level of agreement 
between methods. This is mainly due to the fact that two 
methods might have a perfect positive or negative cor-
relation but with no agreement between them. This was 
reinforced by [54, 82], which recommended against the 
use of correlation as a method for assessing the compa-
rability between methods. Hence, in this study, the PCC 
results strictly indicate the direction and strength of the 
linear relationship between SPI and SPEI not the degree 
of agreement between them. Moreover, the independ-
ent t test has indicated that there existed no significant 
variation between the means of SPI and SPEI ratings in the 
study area at p < 0.05.

4.3  Degree of agreement between SPI and SPEI

This study implemented Bland and Altman plot, useful 
graphical representation of the agreement between the 
two tests or measurement tools [59], and Cohen’s Kappa 
statistics [65] to test for agreement between SPI and SPEI. 
Bland and Altman’s plot has been used in researches 
of different disciplines to test the agreement between 
methods [83–85]. In this study, the Bland and Altman 
plot revealed that SPI and SPEI agreed at all time scales. 
The mean difference (bias) was the primary tool that was 
used to decide the agreement or disagreement between 
the methods. In an ideal situation where the two meth-
ods agree completely the mean difference would be zero 
[54]. Accordingly, the study results revealed that the mean 
difference values between SPI and SPEI were near to zero 
(i.e. 0.0036, 0,0022, 0.0023, 0.0021 and 0.0015 at 1-month, 
3-month, 6-month, 12-month and 24-month time scales 
respectively), hence indicated good agreement between 
SPI and SPEI at all time scales. Moreover, the test results 
agreed with [82] which stated that good agreement can 
be expected if the scattering of points is diminished, and 
points lie relatively close to the line which represents 
mean bias. This proved that there existed a good level of 
agreement since most of the scattering points lie within 
the upper and lower limits of agreement close to the mean 
difference of each time scale (see Fig. 6).

Similarly, the Cohen’s Kappa statistics, a very well-
known measure of agreement between two methods 
[86], result showed fair agreement between SPI and SPEI. 

Fair level of agreement (0.2–0.6) shows that these tech-
niques agreed for 40–60% of the total study years. Hence, 
the study result was in agreement to drought compari-
son study in the horn of Africa by [87], even though some 
disagreements between SPI and SPEI were also reported 
in some parts of Central Africa.

5  Conclusion

This study examined the degree of agreement between 
SPI and SPEI using Bland and Altman method, per cent 
of match and Cohen’s Kappa Statistics. The results show 
that there is a fair agreement between the two methods at 
all timescales. The degree of agreement remained almost 
constant at all time scales except at 24-month time scale. 
This was clearly visible in the per cent of match which 
shows that the per cent of time that these methods agreed 
ranged from 49.9 to 51.8% at all investigated time scales 
except at 24-month time scale. The per cent of agreement 
was lowest at 24-month time scale (39.7%). However, the 
PCC increased slightly from 0.69 at 1-month time scale to 
0.83 at 12-month time scale. It then dropped back to 0.79 
at 24-month time scale.

Hence, based on the findings of this research, it can be 
inferred that SPEI performs better than SPI in Tigray region, 
especially in recent years. However, the agreement analy-
ses have also indicated that SPI can be used in place of 
SPEI at all time scales keeping in mind that the two indices 
agreed to some extent. Hence, in the absence of tempera-
ture data and/or appropriate analyses tools to carry out 
SPEI, it is safe to say that SPI can be used to assess drought 
in the study area at all investigated time scales.
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