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Abstract
This study presents learning vector quantization neural network modelling to predict injury severity of driver as well as 
riders, which applies to the backbone of traffic networks for London’s central business district. The potential associations 
between injury severity classes and crash related factors that contribute to their generation are discovered. Accordingly, 
the model is addressed as an identification technique for contributory factors and range of interventions for road safety. 
Unsurprisingly, approaching a T/staggered junction is detected as an accident hotspot. Injuries caused by going ahead 
on a bend and turning manoeuvres are ranked as the next most important contributory factors. Likewise, the affect of 
most junction actions were almost triple compared to the other indexes. All other sensitive predictors approximately 
were held near as equal; injuries involving a stationary or parked vehicle, factors related to junction control, crossing 
facilities, alcohol involvement, rush hours, and vehicle type. Following this implication, with the purpose of maximising 
the likelihood of injury accuracy, the model is predicted through the most sensitive predictors.

Keywords Road safety · Crash prevention · Traffic accident prevention · Injury severity prediction · Contributory factors

1 Introduction

While motor vehicles deliver many profits, they also seri‑
ously harm people. In view of that, road traffic injuries are a 
health crisis that affects roughly 30–50,000,000 individuals 
which are seriously injured and about 1.2 million which are 
killed every year. Moreover, this complex health system 
is a leading cause of death among young people, aged 
15–29 years [1]. Consequently, safety must be a priority for 
roads but unfortunately, traffic accidents are still frequent 
and fatalities and injuries are a common global concern 
along with developed countries such as UK.

UK now has one of the greatest road safety records in 
the world. However, there are still a number of road users 

who die and a lot of people who are injured daily on Brit‑
ain’s roads, so there is much more to be done in relation to 
accident prevention and reduction performances [2]. As a 
result, due to the tragic consequences of road accidents’ 
injuries and fatalities, the government’s vision is a multi‑
million pound investment in terms of road safety. Accord‑
ingly, to quickly eliminate any concerns and to make sure 
that the country continues to remain as a strong global 
leader on road safety [3]. Part of this investment is the 
road danger reduction and active travel plan in the City of 
London. This long term strategy plans to set out the sig‑
nificant goals and objectives to sustain a safe environment 
for all road users. It targets to work towards eliminating the 
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annual number of individuals killed and seriously injured 
in traffic collisions to zero before 2041. [4]

Some road users believe that the crashes are just one 
of those things that occur and they chalk them up to mis‑
fortune, or destiny. But road collisions don’t have to truly 
happen and there are solutions to eliminate or mitigate 
the road safety problems, before they occur. With the 
goal of offering the road users the lowest probability of 
becoming a road casualty, it is vital to find factors before 
they contribute to the injury. These risk factors are related 
to a variety of reasons such as; roadway characteristics, 
vehicle features, environmental factors, human behaviour 
etc. In light of this, injury prediction model is an appro‑
priate mechanism to figure out the complex relationship 
between severity of injury and accident related variables, 
thus it is able to deliver sophisticated analysis including 
the identification of the contributory factors. The factors 
alone can be a major issue or when combined with each 
other can contribute to personal injury severities but gen‑
erally most of the accidents commonly occur because of 
multiple sources. Nevertheless, extra factors that are not 
available for road safety investigators are still remaining 
while they can contribute to the injuries [5]. Hence, this 
paper attempts to predict the injury severity by using 
big numbers of subdivision data [6]. In addition, due to 
the powerful relationship between injury risk and crash 
related factors, utilizing extra input factors leads to achiev‑
ing superior prediction accuracy [7].

Being one of the major steps of accident manage‑
ment, injury severity prediction can forecast classes of 
the severity that may be estimated to happen in result of 
an accident. The injury severities are typically considered 
by several separate levels such as; fatality, serious injury, 
slight injury, and property damage only. Accordingly, the 
prediction model provides crucial information for emer‑
gency responders to evaluate the severity level of acci‑
dents, estimate the potential impacts, and implement 
efficient accident management procedures [8, 9]. The reli‑
ability and results of traffic injury prediction models that 
include the interaction of input and output variables and 
reviewing parameters involved in traffic accidents have an 
important meaning for the improvement of road safety 
management and can definitely help lower the number 
of traffic accidents [10]. Numerous applications have been 
developed to evaluate safety level of various types of road 
entities and to examine effects of safety countermeasures 
[11]. The outcomes of the injury prediction model can play 
a significant role in preventing or reducing casualties as 
well as solving many road safety problems.

In accordance with this, artificial neural network (ANN) 
models accommodate multiple input parameters to fore‑
cast several output classes. Accordingly, they display a 
superior performance in relation to prediction accuracy 

[7–12]. This research makes an attempt to apply learning 
vector quantization neural network (LVQNN) model for 
prediction tasks which is not commonly used with ANN in 
previous injury related studies. In this context, the previ‑
ous studies verified that LVQNN is feasible for predicting 
and determining the traffic parameters [13, 14]. Conse‑
quently, this model can be used to discover the relation‑
ship between accidents’ factors in very complex circum‑
stances, to predict the injury severity classes and to gain 
new insights for the field of road safety.

2  Literature review

Over the past decades, a large number of the injury predic‑
tion models have been proposed. Statistical models are 
the most traditional one and the commonly used mod‑
els in these systems are perhaps the ordered probit (OP) 
model, multinomial logit (MNL) model, and the binary 
logit (BL) model. Statistical models are able to explicitly 
illustrate the effects of observed explanatory variables 
on the severity of crash occurrence and account for some 
characteristics in crash data. However, complex situa‑
tion of traffic collisions in mass of noisy nonlinear dataset 
makes it very difficult to recognize the contributory factors 
while applying the statistical models efficiently. Further‑
more, poor performance in employing several separable 
factors accompanied by the factors with a large number of 
categorical data is one more weakness for these methods 
[12, 15–18].

ANN prediction models have also been developed by 
many researches to overcome the disadvantage of statis‑
tical models. As a result, ANN methods are verified to be 
more valuable models in prediction of injury severity out‑
comes and attain a superior prediction accuracy in com‑
parison to the statistical methods [5, 7, 17–21]. For exam‑
ple, Xie et al. [5] carried out a comparison between ANN 
and statistical models and the results of the predictions 
showed that back‑propagation neural network (BPNN) and 
Bayesian neural network (BNN) models reached greater 
prediction accuracy compared to traditional negative 
binomial (NB) regression methods.

Among the ANN models, the multilayer perceptron 
neural network (MLPNN) is perhaps the most commonly 
used modelling technique in prediction of accident severi‑
ties. For example, Abdelwahab and Abdel‑Aty [22] used 
this model and fuzzy adaptive resonance theory (ART) 
with ordered logit models for accident prediction tasks. 
Their results showed that MLPNN predicted the injury 
severity outcomes better than other models. In another 
study, two researchers again compared the previous 
study outcomes and verified that the MLPNN had a much 
greater performance than fuzzy ART [23]. Delen et al. [24] 
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tried to discover the sensitive predictors using a series of 
binary MLPNN models. But, exploiting more injury classes 
along with the results of the forecast did not discover any 
improved outcomes than other previous studies [22, 23]. 
Another accident prediction related research was car‑
ried out using MLPNN, function fitting, and generalized 
regression neural networks. Accordingly, the performance 
of the ANN prediction models was measured using Mean 
Square Error (MSE) and multiple correlation coefficient (R). 
The comparison between the models verified that MLPNN 
model achieved superior performance on predicting than 
other prediction models, as a result of lower MSE and 
higher R [25]. Moreover, in MLPNN related predictions, 
Aghayan et al. compared the capability of fuzzy subtrac‑
tive clustering, fuzzy C‑means clustering and MLPNN mod‑
els to predict injury severity classes along with response 
time. MLPNN was a good fit for traffic collision data due 
to achieving maximum R‑value. Likewise, MLPNN had a 
greater accuracy in predicting the collisions between other 
techniques [26].

Support vector machine (SVM) model is also another 
frequently used form of the prediction which was 
reviewed in this literature review [18–20, 27]. For instance, 
Li et al. [19] SVM method in a crash injury related study 
and the findings of the prediction were compared with an 
OP model. The outcome of the comparison showed that, 
the ANN model achieved a better prediction accuracy. 
Another comparison has been done [18] using SVM model 
in the injury severity classes and compared the results of 
the prediction with NB regression. Accordingly, the com‑
parison outcome demonstrated that SVM model produced 
a greater performance in terms of prediction accuracy.

In the last few years, Yu and Abdel‑Aty [27] used SVM 
model, random parameter logit model, and fixed param‑
eter logit model for predictions of crash injury severities. 
The comparison results showed that both the SVM and the 
random parameter methods demonstrated better predic‑
tion accuracy. In most recent comparisons related to the 
injury severities, Chen et al. [28] applied SVM model to 
predict injury severity levels. The researcher found out that 
the SVM models proved more prediction accuracy result‑
ing from the comparison. In addition, the result displayed 
that polynomial kernel had a higher performance com‑
pared to the Gaussian RBF kernel.

Iranitalaba and Khattakb [29] used some statistical 
models and compared the predictions’ outcomes with 
machine learning models. The findings showed that the 
nearest neighbour classification had the higher overall 
forecast performance. SVM and Random forests (RFs) 
methods had the next two acceptable performances and 
the poor performance referred to MNL model. Along this 
line, another ANN related study was done by Aghayan 
et al. [30] using SVM with different kernel functions for 

injury severity prediction. Comparison of the overall pre‑
diction accuracy between the models showed that the 
SVM model was superior to the other models including 
MLP, genetic algorithm, combined genetic algorithm and 
pattern search. Moreover, they displayed that the con‑
structed performance resulting from MLP was slightly 
superior to the SVM.

In numerous researches, non‑parametric and artificial 
intelligence models have also been applied to overcome 
the weakness of statistical approaches. For instance, 
Chang and Wang, developed classification and regression 
trees (CART) to examine the association between different 
injury severity outcomes and contributory factors [31].

Yasin Çodur and Tortum [32] developed artificial intelli‑
gence methods including ANNs and genetic algorithms to 
examine the association between accident injury severity 
and several crash related factors. In this prediction, the sig‑
moid activation function was used with Levenberg–Mar‑
quardt algorithm. As a final point, the performance of the 
prediction models is measured by root mean square error 
(RMSE), MSE, and R [32].

Multiple logistic regression, Bayesian logistic and clas‑
sification tree models were applied to analyse numer‑
ous contributing factors in fatal collisions. The outcomes 
gained from the models showed that controlling driver 
errors reduced the likelihood of motorist’s fatality in traffic 
accidents [33].

A latest prediction was carried out by Wang and Kim 
[34] developing MNL and RF models. Using the potential of 
prediction models, they were able to show that only a few 
factors had a significant affect on the outcome of the acci‑
dent severities. The comparison between models verified 
that, RF achieved a greater prediction accuracy than MNL. 
However, the outcomes of sensitivity analysis displayed 
that RF is less sensitive than other models.

In summary, the reviewed literature showed that ANN 
models had a greater performance in terms of prediction 
accuracy. Therefore, a different type of ANN, apart from 
the commonly reviewed ANNs is considered in this paper 
on the modelling of injury severity prediction. Within this 
framework, the learning vector quantization neural net‑
work (LVQNN) model is used by applying personal acci‑
dent injury data for the city of London.

LVQNN has displayed a good pattern recognition 
performance in many more complex prediction tasks. 
Accordingly, the model is able to select from wide range 
of algorithms designed for improved classification effec‑
tiveness [35, 36]. LVQNN model is a successful pattern 
for classifying data with categorical values [37] and has 
reached the greatest overall accuracy in comparison to 
other AANs [38, 39]. In this paper, LVQNN model pre‑
dicts the injury severity of driver/rider into either of the 
following four categories: fatality, serious injury, slight 
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injury, and only damage to property. Furthermore, the 
reviewed literature indicated that specific consideration 
has been emphasized on the prediction of the injury 
severities, but, injury related outcome of the predic‑
tions weren’t the major focus in order to determine the 
contributory factors. Therefore, in response to this limi‑
tation, along with the outcomes of the prediction and 
the potential of injury severity analysis, we attempted 
to predict along with apprehensions of the associations 
between the injury severity classes and the influencing 
factors that contribute to their generation. Thus, the 
greatest sensitive predictors are ranked and measured as 
the contributory factors. Accordingly, the range of inter‑
ventions for road safety and traffic collision clusters are 
recognised. Additionally, the second phase of the predic‑
tion has been made using the three sensitive predictors 
with the aim of maximising the model performance.

3  Materials and models

The data used in this study delivers detailed road safety 
statistics about the statuses of personal injury collisions 
on public roads of Great Britain. The LVQNN model treats 
an accurate modelling technique for prediction of injury 
severity outputs in this study. LVQNN is a powerful tool 
to solve various prediction problems as classification 
tasks [35, 36]. This model is adopted to set up a predic‑
tion model in many previous studies. As a result, numerous 
comparisons between LVQNN and other traditional mod‑
els have proved that LVQNN approach has a greater pre‑
diction accuracy. In alignment with this, LVQNN method is 
used in this research to show the possibility of an effective 
application prospect in the field of traffic injury severity. 
Accordingly, schematic outline of this assignment is shown 
in Fig. 1.

Fig. 1  The flowchart of LVQNN 
prediction
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3.1  Data description

There is constant association among the injury severity 
and the contributory factor. Likewise, using smaller num‑
ber of input data refers to obtaining poor model perfor‑
mance in terms of prediction accuracy [7]. Therefore, we 
attempted to apply a large number of categorical data into 
the model with the aim of minimising prediction error.

STATS19 road safety data used in this prediction 
involved traffic accidents that were reported to the police 
within 30 days of the incident. The data provides details 
of the 3500 personal injury circumstances of diver/rider in 
the city of London that happened during 2014–2018. The 
consequential casualty of driver/rider, crash circumstances 
and types of vehicles involved are covered, which detail all 
the explanatory factors shown in Table 1. Furthermore, we 
refer to DFT [6] for full descriptive statistics and more detail 
information of the factors used in this research.

3.2  Models

3.2.1  Application of the LVQNN

LVQNN is one of the most powerful methods for classifica‑
tion tasks [40] and has achieved best overall accuracy in 
comparison to other AANs [38, 39]. Previous related stud‑
ies show that this model is also a suitable tool for road 
traffic data analysis [13, 14] as well as it successfully being 
used for classifying data with categorical values [37]. Thus 
due to using a large number of subdivisions for variables in 
this study, LVQNN is considered as a modelling technique 
for the prediction of injury severity along with identifica‑
tion of significant predictors in the traffic collisions.

This algorithm was devised by Kohonen [35]. This model 
of neural network is a precursor to self‑organizing maps 
(SOM) that can be used when there is labelled input data. 
As the value of the date used in this study is label, this 
learning technique is more appropriate for predicting the 
injury severity. The model utilizes the level data to relocate 
the Voronoi vectors slightly, so as to improve the quality 
of the classifier decision areas. It is a two phase procedure 
which consist of a SOM trailed by LVQNN as show in Fig. 2.

The model is an improved method of prediction and 
specifically suitable for clustering problems. The first 
stage is a selection of features that the unsupervised 
recognition of a reasonably minor set of specifications in 
which the important statistics content of the input data is 
focused. The second stage is the classification where the 
feature scopes are referred to individual levels. By using an 
encoder pattern for a big number of input vectors x ∈ IRn , 
and transforming the input into an i‑value which deter‑
mine less significant factors and achieve a superior estima‑
tion to the unique input space.

Given the input vector x and suppose x ∈ IRn , the model 
transforms the label input parameters into an i‑value with 
an encoder form which i ∈ {1, 2, 3,… , k} . Perhaps the most 
efficient means to consider the LVQNN is concerning about 
common encoders and decoders. Figure 3 simply shows that 
the architecture involves two components as an encoder 
and a decoder.

Normally, x is elected at random in relation to some 
likelihood function p(x) . At that point the optimum encod‑
ing–decoding pattern is established by modifying the func‑
tions x and mc to mitigate the expected distortion explained 
by Eq. 1.

In the above equation, � is the expected value (EV) and mc 
is defined as centre of the winner. Once a decoder procedure 
is applied to i, the vector m ∈ IRn , is gained and m remains an 
approximation of x , in the error of the vector quantization 
approximation equation.

The EV and the winning neuron are attained from the 
following equation in which C is the winner and obtained 
from Eq. 2.

To identify the limit of each level, it is essential to display 
the midline of the line segment designed for m1,m2 . In fact, 
the midline specifies a route that the space of all points on 
that route, is equal from the centres of m1 and m2 

(
d1 = d2

)
 . 

In terms of three‑dimensional space, the midline performs 
as a midplane, and generally it is presented as a hyperplane. 
The algorithm initiates through a trained SOM with input 
vector and uses weight/Voronoi diagram if the requirement 
for a range of more centres is identified.

The classification labels of the inputs are used to discover 
the greatest classification label for each Voronoi neuron. As 
the Voronoi neuron boundaries do not match the classifi‑
cation boundaries, the model is attempts to fix this issue 
through shifting the boundaries.

If x(t) does not exist on the boundary 
(
d1 ≠ d2

)
 , the asso‑

ciated centre encourages the classified integer level [ mi(t) 
to becomes nearer to x(t) ] and informs as shown in the fol‑
lowing equations.

(1)E = �

{‖‖x −mc
‖‖2
}
= ∫ ‖‖x −mc

‖‖2p(x)d(x)

(2)C = arg mini
‖‖x −mi

‖‖2

(3)mi(t + 1) = mi(t) + Δmi(t), i = 1, 2, 3,… , k

(4)Δmi(t) = �ci .�(t).
[
x(t) −mi(t)

]

𝛿ci =

{
1 c = i

0 c ≠ i
, 0 < 𝛼(t) < 1
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Table 1  Descriptive statistics of 
input parameters

Variable type Label Total (%)

Junction detail T or staggered junction 55.91
Crossroads 19.09
Not at junction or within 20 m 16.33
More than 4 arms (not roundabout) 04.11
Roundabout 02.54
Other junction 02.02

Junction location Approaching junction or waiting in a queue 50.42
Mid Junction 30.17
Not at or within 20 m of junction 15.89
Leaving/entering main road 03.18
Leaving/entering roundabout 00.19
Entering from slip road 00.15

Vehicle manoeuvre Going ahead bend 48.11
Turning/waiting to turn right 20.02
Parked 09.21
Overtaking 09.15
Waiting to go/held up 03.23
Moving off 03.01
Slowing or stopping 02.57
Changing lane 02.46
Reversing 02.24

Junction control Auto traffic signal 48.12
Give way or uncontrolled 37.69
Not at junction or within 20 m 14.19

Crossing  facilitiesa Pedestrian phase at traffic signal junction 47.15
No crossing facilities within 50 m 45.89
Pedestrian light controlled crossing 04.01
Zebra 02.03
Central refuge 00.51
Footbridge or subway 00.41

Alcohol involvement Pedestrian 68.63
Pedal rider 12.15
Rider 10.03
Driver 09.19

Time 16:00–19:59 28.12
08:00–11:59 27.02
12:00–15:59 18.86
04:00–07:59 10.12
20:00–11:59 08.86
00:00–03:59 07.02

Vehicle type Car 35.77
Pedal cycle 27.45
Public service vehicles 13.34
Light and heavy goods 12.89
Motorcycle 10.19
Other vehicle 00.36

Light condition Daylight 72.98
Darkness—lights lit 26.32
Darkness—lights unlit 00.39
Darkness—lighting unknown 00.31
Darkness—no lighting 00.00
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where �(t) is a learning rate that falls by the number of s 
epochs or iteration of training process, and in each pro‑
gress, this coefficient is dropped among 0 and 1.

LVQNN1 is an improved form of LVQNN and is updated 
similarly in the adjacent centre. However, if input x(t) and 
associated Voronoi or weight such as, winning output 
node is correctly classified and has the similar label of class, 
encouragement the of mi(t) to x(t) moves closer together as 
in the SOM network. If they have the different level labels, at 
that point, it is penalized, and mi(t) moves apart from x(t) . 
Voronoi vectors or weights corresponding to other input 

areas are left unmoved with Δmi(t) = 0 . Consequently, the 
following equations are attained.

As a result, the following equations are considered.

which si(t) =

⎧
⎪⎨⎪⎩

+ 1 correct Classification

− 1 incorrect Classification

0 if not

In the case of optimised LVQNN1, �(t) in place of being 
similar for all centres, it performs as an individual learning 
rate for each centre. Thereby, the superior classification is 
achieved through the SOM alone. This will be reached if the 
ranking of the input data does not oppose in relation to the 

(5)

Δmi(t) = �ci .fi(t).�(t).
[
x(t) −mi(t)

]
, i = 1, 2, 3,… , k

(6)mi(t + 1) = mi(t) + �ci .fi(t).�(t).
[
x(t) −mi(t)

]

fi(t) =

{
+ 1 if mi(t), x(t) have the same class label

− 1 if mi(t), x(t) have the different class label

(7)mi(t + 1) = mi(t) + si(t).�(t).
[
x(t) −mi(t)

]

Table 1  (continued) Variable type Label Total (%)

1st point of impact Front 38.91

Nearside 24.01

Offside 20.34

Back 10.88

Did not impact 05.86
2nd road  classb A 25.56

B 02.56
C 54.67
Unclassified 17.21

Road surface condition Dry 86.43
Wet or damp 12.56
Flood over 3 cm. deep 00.51
Frost or ice 00.39
Snow 00.11
Mud 00.00

Injury severity classes Y4 Property damage only 53.79
Y3 Slight injury 40.03
Y2 Serious injury 06.02
Y1 Fatal injury 00.16

a This variable is only applied when the crash is at junction, if not the value is blank
b This variable is only used for controlling pedestrians and pedal rider crossing [6]

SOM followed by LVQ
NNinput data level labels

trainer

Fig. 2  Two phase process consist of a SOM followed by LVQNN

Fig. 3  Encoder–decoder archi‑
tecture in LVQNN input vector x encoder

c(x) code c(x)
decoder

reconstructed vector 
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timeframe in a manner that the effect of the initial data has 
no significant difference with the last input, and also, all the 
data have the equal class labels. Therefore, in such circum‑
stances, the following is acquired:

As a result of equating the above relationships, the fol‑
lowing is obtained:

LVQNN2 is the second developed type of the LVQNN that 
is preferred in this study and it moves closer in influence to 
Bayesian decision theory. Likewise, LVQNN2 method which 
is opposite of LVQNN1is updated at the parallel nearer to the 
centre. The method uses the correct and incorrect classifica‑
tion update equations. Therefore, in this case, the winners 
are two members as mi(t),mj(t) . The input vector x gives the 
correct classification through the associated Voronoi vector 
( mi(t) ) and the other nearest centre is incorrectly classified 
( mj(t) ). Additionally, the input vector x is well near to the 
decision boundary and x(t) is in a specified range (W). Con‑
sequently, the following equations are obtained as below.

If d is the space between x and m , the followings are 
considered.

where w  is the boundary width and normally is 
0.2 ≪ w ≤ 0.3 and that results to

where di < dj then we will have the following equations:

(8)Weight of x(t) → �i(t)

(9)Weight of x(t − 1) → [1 − si(t).�i(t)].�i(t − 1)

(10)�i(t) = [1 − si(t).�i(t)
]
.�i(t − 1)

]

(11)𝛼i(t) =
𝛼i(t − 1)

[1 + si(t).𝛼i(t − 1)
, 0 < 𝛼i(t) < 1

{
0 < 𝛼i(t) < 1

𝛼i(0) = 0.3 ∼ 0.5

(12)di = ||x(t) −mi(t)||
(13)dj = ||x(t) −mj(t)||

(14)min

(
di

dj
,
dj

di

)
> s

(15)s =
1 − w

1 + w

7

13
≤ s ≤ 2

13

0.5 < min

(
di

dj
,
dj

di

)
≤ 1

where mi is considered as correct classification and mj as 
an incorrect classification, we will have the equations as 
below.

LVQNN acts as a differential mode and moves one cen‑
tre nearer together while moving another node apart. 
Alternatively, the preliminary selection of nodes for the 
LVQNN2 is more complicated, and to work out this weak‑
ness, initially the runs were made using the LVQNN1 and 
then retrieved by the LVQNN2.

LVQNN3 is another variation on this theme which is 
finally used for building more superior classification sys‑
tems. Following this, where mi , mj and x have the same 
class label, the equation is obtained as below [36].

� is dependent on w and 0.1 ≤ � ≤ 0.5

3.3  Sensitive predictors resulting by LVQNN

Typically, the dataset is divided into three parts. Accord‑
ingly, the LVQNN model is fit on training, validation and 
testing subsets. The 70% of the entire dataset is randomly 
divided for training, 15% of the data for validation and the 
remaining is separated for testing data. The aim of this pro‑
cess was to discover the model achieving the best per‑
formance on the data. Likewise, the model evaluated the 
error function by using testing data which is independent 
of that used for the training stage. The model is trained 
by minimization of an applicable error function specified 
analogous training data set. Model performance is then 
compared by assessing the error function via an independ‑
ent validation set, and the model obtaining the slightest 
error according to the validation set is chosen. As a result, 
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]
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the performance of the model is confirmed by evaluating 
its performance on the test set.

In this prediction, the Correlation coefficient (R) meas‑
ured the strength and direction of the association between 
actual and predicted classes. R is a numerical measure of 
some type of association which is a powerful measure‑
ment for relationship between crash related factors [25, 
26, 32].

Consequently, all the R values are used for assessment 
of comparison between training, validation, and a testing 
dataset. Table 2 shows the interpretation for the results 
of each correlation. As a result, sensitivity of the model is 
examined against the absence of each sub‑variable on the 
output, and seventeen labels are discovered as the most 
sensitive predictors.

With respect to this, the highest R value refers to a 
strong relationship between the crash related factors and 
the injury severity outcomes as well as the superiority of 
the model [25, 26, 32].

As seen in Table 2, the most sensitive predictors have 
been identified and ranked in resulting of the LVQNN pre‑
diction model. Accordingly, the most contributory fac‑
tors have been listed according to their R values. Using 
professional judgment, the threshold of R is considered 
as percentage of 25 which is 75% of the range. Hence, sub‑
variables over the threshold of 25% had a greater affect in 

performance of the prediction in terms of accuracy. Like‑
wise, the factors from X1 to X17 proved a stronger relation‑
ship with the injury severity outcomes. Accordingly, they 
have been considered as contributory factors. In different 
circumstances, the label after X17 refers to lower R value 
of 25% which are poor predictors. It should be noted that 
the unreliable factors after X21 haven’t been mentioned 
in the table, due to their insignificant association with the 
injury severity classes. However, their variables have been 
listed in Table 1.

The significant findings demonstrate that the most 
important factors contributed to likelihood of injuries 
while vehicles approaching (X2) to T or staggered junc‑
tions (X1). In line with this, Curiel et al.’s recent research 
[41] found that approximately half of the car accidents 
occurred at 5% of the city’s junctions. Following this, going 
ahead on a bend (X3) and turning (X4) manoeuvres in con‑
nection with junction actions immediately contributed to 
the injuries. These predicaments are injury severity results 
which are consistent with the previous researches display‑
ing that the rise of the injury severity is associated with 
vehicle actions [7, 31].

The next main contributory factor attributes to station‑
ary or parked vehicle (X5) which is typical in the central 
of London, particularly, queues of public service vehicles 
(PSV)s (X14) and traffic behind a road block on streets. This 

Table 2  Sensitivity of LVQNN against the absence of each variables using R

Variable Rank Label Correlation coefficient (R) %

Sensitive predictors Validation All data Test data Train data

Junction detail X1 T or staggered junction 85.7 86.1 84.2 88.3
Junction location X2 Approaching junction 84.9 85.3 84.2 86.5
Vehicle manoeuvre X3 Going ahead bend 79.3 79.8 82.1 82.2

X4 Turning 76.3 78.1 75.2 79.4
X5 Stationary or parked vehicle 49.6 52.2 49.3 53.2

Junction control X6 Auto traffic signal 46.3 48.4 46.1 49.2
X7 Give way or uncontrolled 43.9 46.2 43.2 46.8

Crossing facilities X8 Pedestrian or cyclist phase at traffic signal junction 39.7 40.2 38.2 41.1
X9 No physical crossing facilities within 50 m 36.3 38.2 36.1 38.9

Alcohol involvement X10 Pedestrian 34.7 35.6 34.2 36.8
Time X11 08:00–11:59 and 16:00–19:59 Rush hours 31.6 32.3 31.5 33.7
Vehicle type X12 Car or taxi 30.8 30.9 30.5 32.9

X13 Bicycle 27.6 27.9 27.2 29.8
X14 PSV 25.8 25.8 25.2 26.9

Light condition X15 Daylight 26.1 26.1 25.9 26.6
1st point of impact X16 Front 25.6 25.6 25.1 26.5
2nd road class X17 C 25.2 25.2 25.3 26.1
Road surface X18 Wet 17.6 16.3 16.9 19.1
Junction detail X19 Crossroads 14.2 13.9 13.3 15.2
1st point of impact X20 Nearside 11.8 10.6 9.9 13.9
Light condition X21 Darkness—lights lit 4.6 2.8 2.3 6.5
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finding fits the City of London’s report displaying that most 
collisions in the daylight having occurred around parked 
vehicles and a lot of pedestrians obscured while crossing 
from between stationary or queuing vehicles. Thus crossed 
road masked by the vehicles and oncoming drivers failed 
to see or anticipate a crossing vulnerable road user [4, 42]. 
In addition, cycling collisions when hit by an opening door 
of stationary vehicle was caused without looking at pass‑
ing riders.

The next variable refers to the same contributory factors 
which associated with junction actions [41]. Accordingly, 
junction control contributed to the injury when driver/
riders did not stop at the traffic signal set at red (X6). They 
also disobeyed give way signs or road markings (X7). 
Moreover, an uncontrolled intersection (X7) was one of 
the leading causes of accidents related to junction control.

The next variable again refers to the injuries at junc‑
tions. X8 donates to wrong use of the crossing facilities 
by pedestrian or cyclists at junctions controlled by traffic 
signals which has an indicator light for the vulnerable road 
users [4].

Furthermore, the most common injuries suffered by the 
vulnerable road users occurred where the crossing facili‑
ties were not available within 50 m (X9). In this regards, a 
previous study discovered that the vulnerable road users 
were considered to affect the high likelihood of being 
involved in crashes [31]. Furthermore, a Dutch accident 
study showed that more than half of the killed or seri‑
ously injury accidents which vulnerable road users were 
involved in occurred while crossing the road [43].

X10 attributes to pedestrian impaired by alcohol. In that 
context, alcohol involvement for pedestrians was reported 
by the city’s council as the most frequent contributing fac‑
tors [4].

This study found that collisions at dawn and dusk were 
less than in the daytime. Time band between 08:00–11:59 
and 16:00–19:59 during the weekday’s morning and even‑
ing was more likely to be assigned as a contributory factor.

Consequently, despite the typical morning and evening 
rush hours’ stats which injuries are exposed to, the sever‑
ity of injuries did not decrease between 12.00 and 16.00 
as most road users adjusted their travel throughout the 
daytime in tourist areas of London accordingly [4, 42].

According to the key findings of prediction, the impact 
of vehicle type is very sensitive and plays a major role 
in outcome of injury severities. This result fits previous 
researches in which vehicle type is recognised as a main 
role in occurrence of injury severity [22, 23, 31]. Further 
to this, the most significant finding is related to cycling, 
which after cars, became the most common type of acci‑
dent on the City streets [4]. Moreover, road user injuries in 
crashes involving the vehicle group indicated that alarm‑
ing rises in PSV accidents in the capital’s roads over the 

recent years are revealed today [44]. Transport for London 
(TfL) has decided to perform a bus safety standard in order 
to decrees the frequency of accidents as well as to mitigate 
the injury severities related to PSVs [45]. In respect to the 
inconstant factors which were located on the bottom of 
the table, it can be noted that, unusually, results of injuries 
on a wet road surface were lower R value.

3.4  Result of the injury severity classes applying 
sensitive predictors

As a result of the prediction, with the intention of general‑
ising the dimensional feature space, the unreliable factors 
with minor R values were eliminated and dropped to 17 
factors. Following this, the reduced data is aimed at imple‑
mentation of the final prediction classes. All the sensitive 
predictors are normalised between 0 and 1, and the run 
was completed using random division of 70% and 30% in 
the training and testing datasets.

The confusion matrix is used to summarise and evaluate 
the performance of the prediction mission. Consequence 
of that, accuracy (ACC), error parameters, and sensitivity 
(SEN) measures are used with the aim of calculating the 
number of correct and incorrect predictions of each level. 
Sample of the confusion matric is shown in Fig. 4 and the 
related equations are defined as below.

As seen, TP and TN are true when observations for 
their values are positive and negative, respectively. FN 
appears to be a false negative, and it happens when 

(22)ACC =
TP + TN

TP + TN + FP + FN

(23)Error =
FP + FN

TP + TN + FP + FN

(24)SEN =
TP

TP + FN

Fig. 4  A sample of confusion matrix
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the class of observation is negative while the classifier 
label signifies as positive. Moreover, FP shows a false 
positive, and it takes place when the class of observa‑
tion is positive, even though, the classifier label appears 
as negative.

Accordingly, the predicted outcomes of injury sever‑
ity using training and testing data are applied and the 
obtained results are broken down into each class as 
seen in Fig. 5. Accordingly, the blue marks donate the 
actual class of data and the pink marks present the pre‑
dicted classes by each network. The interpretation of 
the results indicates that, if the pink marks integrate 
with the blue marks, the network succeeded to predict 
injury severity highly accurate, however if there is no 
integration, this indicates that the network predicted 
with less accuracy.

The accuracy measure in the training and testing 
stages for the injury severity outputs are specified in the 
Fig. 4. Nonetheless, for Y1, due to lack of data for fatal 
injury, the model had a very poor performance and was 
able to evaluate only three correct predictions in the 
training phase. Therefore, in the test stage, the amount 
of sensitivity for death was equal to one.

As for the prediction of seriously injured (Y2), again 
due to the lack of data, the incorrect classification still 
remains.

On account of the sufficient number of the data asso‑
ciated to slight injury, the attained results of Y3 was very 
satisfactory compared to the Y2 and Y1. Thus the model 
was able to extremely increase the accuracy rate of pre‑
diction in this class. Likewise, the performance of the 
model had highly improved and the classification was 
practically desirable and the amount of sensitivity for 
the training and test phase is obtained approximately 
80%.

As a final point, the LVQNN model was capable to 
maximise the accuracy rate of the injury severity pre‑
diction used for damage only levels (Y4). Accordingly, 

the sensitivity values for the training and testing are 
achieved about 81% and 87%, respectively.

4  Conclusion

This research primarily focused on further developments 
in predicting of injury severity of driver or rider by apply‑
ing learning vector quantization model. Based on the 
data which related only to personal injuries involving 
traffic accident in central London, the accident preven‑
tion method estimates maximum likelihood of the injury 
severity classes into; fatal injury, serious injury, slight 
injury, and damage only. Additionally, the outcome of 
the prediction leaded to better understanding of the 
relationship between the injury severity classes and the 
crash related factors. Following this, a number of sen‑
sitive predictors are recognised which we believe have 
contributed to the severity of injuries sustained by driv‑
ers or riders.

Along the lines of the key findings, the impact of the 
junction actions and vehicle manoeuvre are discovered 
as overhead factors. Thus, they had above double affect 
compared to the other key influences, and played a large 
role in the likelihood of injury severity outcomes. Style 
of T or staggered is the inferior performing junction and 
the stats of vehicles approaching the junction was cer‑
tainly an accident hotspot for all the road users. After 
this, more significant finding was liked to going ahead 
on a bend and turning manoeuvres resulting in junction 
actions. Another factor related to manoeuvre refers to 
stationary or parked vehicle. The next main contributory 
factors again were results of junction actions. Drivers or 
riders contributed to the injury when they disobeyed 
at the automatic traffic signals and when they didn’t 
give way at sign or road markings, or while they met an 
uncontrolled junction. Next factor refers to wrong use of 
the crossing facilities by the vulnerable road users at a 

Fig. 5  Graph represents the correct and incorrect forecasts of actual and predicted classes
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junction controlled by traffic signals. Moreover, the most 
common injuries suffered by unprotected road traffic 
participants which took place where a number of cross‑
ing facilities were not sufficient. Pedestrian impaired 
by alcohol, was a sensitive factor influencing the risk of 
the severity of injuries that result from accidents. The 
most dangerous times for all road users were between 
08:00–11:59 and 16:00–19:59 and during night times 
seemed more likely to reduce the injury crashes. In the 
crash data, it is evident that type of vehicle contributed 
to injuries. In this respect cars and bikes presented the 
maximum concentration of the injuries.

This study ends by maximising the model’s performance 
in terms of accuracy designed for the injury severity pre‑
diction. Consequently, the LVQNN model was conducted 
by applying the most sensitive predictors which consid‑
ered as contributory factors. As a result, due to the lack 
of data for Y1 and Y2, killed and seriously injured classes 
led to poor classifications. On the other hand, as the data 
for slight injury and damage only classes in training stage 
was sufficient enough, the best levels were connected to 
Y3 and Y4. Also, for Y2, quantitative effects of each input 
sub variables on the injury severity could not predict prop‑
erly and it tended to work with Y1. So, in terms of future 
work, with the purpose of achieving improved outcomes 
in classes used for killed and seriously injured, the Y1 and 
Y2 would be merged together as killed or seriously injured. 
Furthermore, as in this study, the detection of sensitive 
locations and groups were most in requirement of a road 
safety intervention, it would be valuable to focus on valu‑
able road users—motor vehicle collisions approaching T/
staggered intersections.
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