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Abstract
The impact of heat source on magnetohydrodynamic oscillatory flow of a chemically reacting viscoelastic fluid in an 
asymmetric wavy channel is analysed. The governing flow equations are transformed into ODEs by utilizing proper non-
dimensional variables. The subsequent ordinary differential equations are solved analytically. The effects of different 
flow parameters on the fluid flow, thermal and species distributions as well as rate of heat and mass transfer coefficients 
are examined graphically. It is pointed out that the velocity of fluid is parabolic with extreme value along the channel 
centreline and minimum at the walls. The magnitude of fluid velocity increases with an increase in porous parameter 
and high heat transport of a system is due to the presence of oscillatory flow.
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List of symbols
a1, b1	� Amplitudes of the wavy walls
a, b	� Amplitude ratios
B0	� Electromagnetic induction
C*	� Fluid concentration
C1, C2	� Concentrations at walls
CP	� Specific heat at constant pressure
d1 + d2	� Width of channel
d	� Mean half width of the channel
Da	� Darcy number
g	� Gravitational force
Gc	� Modified Grashof number
Gr	� Grashof number
Ho	� Intensity of magnetic field
H1, H2	� Inner and outer walls
K	� Porous medium shape factor
Kr	� Chemical reaction parameter
k*	� Porous permeability coefficient
k	� Thermal conductivity
M	� Hartmann number
Nu	� Nusselt number
Pe	� Peclet number

p	� Pressure
Q	� Heat source parameter
q	� Radiative heat flux
Re	� Reynolds number
R	� Radiation parameter
Sc	� Schmidt number
Sh	� Sherwood number
T	� Fluid temperature
T1, T2	� Temperatures at walls
t	� Time
U	� Flow mean velocity
u	� Axial velocity

Greek symbols
θ	� Fluid temperature
βT	� Coefficient of thermal expansion
βC	� Coefficient of mass expansion
μ	� Coefficient of viscosity
μe	� Magnetic permeability
σc	� Conductivity of the fluid
ρ	� Fluid density
υ	� Kinematics viscosity coefficient
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λ	� Wave length
ω	� Frequency of the oscillation
α	� Radiation absorption coefficient
τ	� Skin friction coefficient

1  Introduction

Recently, many researchers [1–10] explored the MHD non-
Newtonian fluid flows over various geometrical models in 
view of their significance in many engineering and indus-
trial applications such as food processing, making a paper, 
slurry transporting etc.,. Physiological fluid is one of the 
non-Newtonian viscoelastic fluids which play an impor-
tant role in many transport phenomenon’s (such as blood 
circulation, cancer treatment, transport of drugs, drug 
carriers). It is observed that the viscoelastic property of 
blood is less prominent with rising shear rate and gliding 
of cells (see Refs. [11, 12]). The blood flow properties are 
determined by the cell aggregation tendency, red cell con-
centration and mechanical relation between the particles 
(see Refs. [13–19]). The experimental studies reveal that, 
in case of cancer treatment by radiotherapy, chemother-
apy or surgery, they destroy both malignant and normal 
cells. In view of these issues, Nikiforov [20] developed an 
electromagnetic hyperthermia technique where the dan-
gerous cancer cells are exposed to a temperature field 
greater than 41 °C with the help of thermal radiation. In 
this method a magnetic liquid is injected to the malignant 
tissues and then exposing the framework to an alternative 
current. Due to this, the temperature is produced in the 
infused magnetic fluid and there by the cancer cells get 
destroyed (see Ref. [21]). Raftari and Vajravelu [22] studied 
the impact of magnetic field on a visco-elastic fluid flow 
through a channel by applying HAM analysis. Singh [23, 
24] investigated the influence of slip and thermal radiation 
on visco-elastic fluid flow past a vertical channel. Abdalla 
and Abo Dahab [25] explored the rotating and non-Newto-
nian fluid effects in an asymmetric channel with peristaltic 
transport. Many researchers [26–29] considered the differ-
ent mathematical models to study the impact of viscoelas-
tic fluid flow through porous channels.

Now a days chemical reactions play a significant role 
in many science and engineering applications at different 
stages such as; chemical engineering processes, moisture 
over agricultural fields, energy transfer in a cooling tower 
power, cooling industry for drying, and the flow in desert 
cooler etc.,. In view of these, the visco-elastic fluid flow 
through a porous channel with chemical reaction was 
estimated analytically by Devika et al. [30]. Gireesha and 
Mahanthesh [31] explored the chemically reacting heat 
transfer flow of viscoelastic fluid through non uniform 
channels. Nayak et al. [32] analyzed the first order chemical 

reaction effects on viscoelastic fluid in the presence of 
porous medium. Venkateswarlu et al. [33] contemplated 
the chemically reacting viscoelastic fluid flow past a verti-
cal channel.

It is also worth noting that most of afore mentioned 
studies have been considered in channels. Therefore, it 
would be interesting to explore the study of non-New-
tonian fluid in an asymmetric wavy channel. In this way, 
the main aim of the present work is to investigate the 
visco-elastic fluid behavior of MHD oscillatory flow in an 
irregular channel. The governing equations are solved ana-
lytically. Impact of various flow parameters on the fluid 
flow characteristics are analyzed through graphs. Further, 
the comparison of the skin friction coefficient and Nus-
selt number for various values of magnetic field and heat 
source parameters are displayed in Table 1.

2 � Mathematical formulation

Unsteady incompressible, chemically reacting and ther-
mally radiating non-Newtonian fluid is considered in an 
irregular channel with heat source. A constant magnetic 
field of strength B0 is assumed normal to the flow. The fluid 
flow along x-direction is generated due to the oscillatory 
pressure gradient at the walls as shown in Fig. 1. T1 and T2 
are respectively the temperatures of the fluid at walls of 
the channel. The magnetic Reynolds number is assumed 
to be very small compared to the external one and hence 
the induced magnetic field can be negligible. The inner 
and outer walls H1 and H2 are respectively given by [2, 34] 

where a1, b1, d1, d2 and ϕ  satisfies the condition 
a2
1
+ b2

1
+ 2a1b1 cos� ≤

(
d1 + d2

)2
, 0 ≤ � ≤ �.

The governing flow, energy and concentration equa-
tions are given by [2, 26, 34] 

(1)

H1 = d1 + a1 cos
2�x

�
and H2 = −d2 − b1 cos

(
2�x

�
+ �

)
,

Table 1   Comparison of skin friction coefficient and Nusselt number 
for different values of M and Q respectively

M τ Q Nu

Ref. [2] Present Ref. [2] Present

1.0 3.2578 3.257683 0.1 1.4152 1.415587
2.0 3.2847 3.284695 0.3 2.0280 2.028342
3.0 3.3297 3.322859 0.5 3.1336 3.133548
4.0 3.3928 3.392673 0.7 5.8087 5.808621
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The boundary conditions are defined as [2, 34] 

The thermal radiative is defined by Ogulu and Bestman 
[35] as

where �2 =
∞

∫
0

K�w
�eb�

�T
d�.The dimensionless variables are:

(2)
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(5)
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The corresponding boundary conditions are

w h e r e  a ,  b ,  d  a n d  ϕ  s a t i s f i e s  t h e  fo r m 
a2 + b2 + 2ab cos� ≤ (1 + d)2.

In view of non-dimensional quantities Eqs. (2)–(4) can be 
written as (neglecting bar symbols)

The corresponding non-dimensional boundary conditions 
are

3 � Method of solution

In order to solve the system of PDEs (9)–(11) the following 
pressure gradient for purely oscillatory flow, velocity, ther-
mal and concentrations fields are assumed as (see Refs. [34, 
36–39])

where f is the u, θ and φ, f0 is the u0, θ0 and φ0.
In view of Eq. (13), the Eqs. (9)–(11), are reduced to

(8)
h1 = 1 + a cos 2�x, and h2 = −d − b cos (2�x + �),

(9)

Re
�u

�t
= −

�p

�x
+

�2u

�y2
+ Gr� + Gc� − (M + 1∕K )u + �

�3u

�y2�t
,

(10)Pe
��

�t
=

�2�

�y2
+ (R + Q)�

(11)
��

�t
= Sc

�2�

�y2
− Kr�,

(12)
u = 0, � = 1, � = 1, on y = h1,

u = 0, � = 0, � = 0, on y = h2,

(13)−
�p

�x
= �ei�t , and f (y, t) = f0(y)e

i�t ,

(14)(1 + i��)
d2u0

dy2
− n2u0 = −� − Gr�0 − Gc�0,

(15)
d2�0

dy2
+m2�0 = 0,

Fig. 1   Physical model of the problem
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The boundary conditions are

Solving the Eqs. (14)–(16) with the help of boundary condi-
tions Eq. (17), we get the solutions for velocity, tempera-
ture and concentration are as follows

The skin friction coefficient, Nusselt and Sherwood num-
ber at the wall are define as follows

The amplitude and phase angle of the rate of 
heat and mass transfer are respectively given by 
J = Jr + iJi , � = tan−1(Ji∕Jr), F = Fr + iFi , � = tan−1(Fi∕Fr)

where l2 = Kr + i�∕Sc, m2 = Q + R − i�Pe, n2 = M+

1∕K + i�Re.

(16)
d2�0

dy2
− l2�0 = 0,

(17)
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(18)
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�
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{
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+
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)
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(
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sinh l(h1 − h2)
ei�t = |F| cos (�t + �),

4 � Results and discussion

The aim of this paper is to analyze the non-Newtonian 
fluid behavior and oscillatory flow of visco-elastic fluid in 
an irregular channel. The solutions of the Eqs. (18)–(20) 
are obtained by using MATLAB code and the results are 
displayed through Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
and 15 for various parameters entering into the problem. 
Table 1 displays the comparative study of skin friction and 
rate of heat transfer coefficients for Newtonian fluid with 
those of Ref. [2] by choosing ω = 0.1, λ = 0.1, t = 0.1, π = 3.14, 

a = 0.2, b = 1.2, d1 = 2.0 and Re = 0.1. It is found to be good 
agreement between them.

Figure 2 displays the influence of porous parameter 
K on the velocity profile for both Newtonian (β = 0) and 
non-Newtonian (β ≠ 0) cases. It is noticed that the veloc-
ity profiles attains the maximum value with increase of K. 
Physically, rising estimations of K results the larger holes of 
porous medium and henceforth resistivity of the medium 
might be disregarded. Further, the velocity of Newtonian 
fluid is more than that of non-Newtonian fluid.

The impact of M on u is discussed in Fig. 3. It is noticed 
that the velocity along the boundary layer pulverizes with 
raising values of M. This is because of the way that the 
Lorentz force has the tendency to diminish the motion 
of the fluid and henceforth the fluid velocity diminishes.

The influence of Gr and Gc on u is displayed in Fig. 4. It 
is observed that the velocity mounting with rising values 
of Gr and decline with Gc values. Physically, Gr signifies 
the general impact of the thermal buoyancy force to the 
viscous hydrodynamic force in the boundary layer. Thus, 
as Gr increases the velocity of the fluid reaches maximum 
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value in the middle region of the asymmetric channel and 
after that rots easily to the free stream velocity.

The influence of various values of Pe and Reynolds 
number Re on u across the boundary layer is shown in 
Fig. 5. The Peclet number is the ratio of thermal energy 

convected to the fluid to the thermal energy conducted 
within the fluid and the Reynolds number is the ratio of 
inertial forces to viscous forces. The results of velocity pro-
file increase with increase in Pe and reverse effect with 

Fig. 2   Influence of K on u 
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Fig. 3   Influence of M on u 
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rise of Re. These parameters may play an important role in 
convective heat transfer processes.

Figures 6 and 7 display the consequences of veloc-
ity and concentration of dissimilar values of Kr and Sc 
respectively. It is noticed that the velocity of the fluid 
increases and concentration decreases with rising val-
ues of chemical reaction parameter. In addition, Schmidt 
number shows reverse effect on these two profiles. 

Physically, Schmidt number Sc is characterized as the 
ratio of momentum and mass diffusivity. Hence, as Sc 
increases the velocity and boundary layer thickness 
reduces and concentration of the fluid increases.

The influence of R on u is outlined in Fig. 8. It is seen 
that the velocity elevate with the ascent of R in the flow 
regime. This is due to the fact that the fluid particles get 
the heat energy from the electromagnetic waves and 

Fig. 4   Influence of Gr and Gc 
on u 

Fig. 5   Influence of Pe and Re 
on u 
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hence move very fast. Also the velocity of viscous fluid 
(β = 0) is more than that of non-Newtonian fluid (β ≠ 0).

Figure 9 represents the impact of R, Q and Pe respec-
tively on θ. Plainly the temperature increment for every 
single developing value of R, Q and Pe in the stream locale. 
Physically, the thermal radiation is responsible for energy 
transfer by the emission of electro-magnetic waves which 
carry energy away as the fluid flows along asymmetric 

wavy channels and consequently the thermal bound-
ary layer thickness winds up more slender. Experimen-
tally, when blood flow in capillaries, there is a significant 
increase in the thickness of boundary layer due to rise in 
thermal radiation. Hence, the temperature of the bound-
ary layer is raised by an appreciable extent.

Figures 10 and 11 display τ for diverse values of K and 
M respectively, for both Newtonian and non-Newtonian 

Fig. 6   Influence of Kr and Sc 
on u 

Fig. 7   Influence of Kr and Sc 
on ϕ
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Fig. 8   Influence of R on u 

Fig. 9   Influence of Pe, Q and 
R on θ 
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cases (β = 0 and β ≠ 0). It is clear that the skin friction coef-
ficient vary periodically at asymmetric surface. The vari-
ations of heat and mass transfer rates against the time 
series for different values of R and Kr are respectively plot-
ted in Figs. 12 and 13. From these graphs it is clear that Nu 
and Sh both vary periodically due to asymmetric surface 
motion.

Figure 14 illustrates the rate of heat transfer against H 
for dissimilar values of R at the walls y = h1 and y = h2. It is 
observed that the growth in R leads to a rise in the values 
of Nu at y = h1 and opposite behaviour at y = h2. Thus, the 
rate of heat transfer from the porous asymmetric chan-
nel decreases with the increase of R.

Fig. 10   Influence of K on skin 
friction coefficient
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Fig. 11   Influence of M on skin 
friction coefficient
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Figure 15 displays the variations of Sh against Kr for 
different values of Sc. It is clear that the rate of mass 
transfer decline with increase of Sc at the wall y = h1 
whereas the opposite effect at y = h2.

5 � Conclusion

The present study describes the effect of non-Newtonian 
visco-elastic fluid behaviour of MHD oscillatory flow in 
an irregular channel. The main conclusions of this study 
are:

Fig. 12   Influence of R on Nus-
selt number
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Fig. 13   Influence of Kr on 
Sherwood number
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•	 The temperature profiles increase for all increasing 
values of R, Q and Pe in the fluid flow along an asym-
metric wavy channel.

•	 The velocity and skin friction coefficient in case of New-
tonian fluid is more than that of non-Newtonian fluid. 
This is due to the presence of high viscosity.

•	 The skin friction coefficient, Nu and Sh are varying peri-
odically due to surface motion.

•	 The heat transfer near the wall decrease with the rise 
of R.

•	 The Sherwood number reduces with rise of Sc at the 
walls y = h1 and y = h2.

Fig. 14   Influence of R on Nus-
selt number
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Fig. 15   Influence of Sc on 
Sherwood number
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