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Abstract
In this paper, a new method to fast compute DFT of generally sparse signals is presented. Firstly, the original signal is 
downsampled with different time shifts, and the discrete Fourier Transforms (DFTs) of downsampled signals are calcu-
lated by FFT. Then the DFTs are used to determine and measure the K non-zero (significant) freq. grids by combining 
the moment preserving problem with the BigBand method. The proposed method is hardware-friendly, and simulation 
results show that the proposed method has better recovery performance compared with other methods.
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1  Introduction

Nowadays, Fast Fourier transform (FFT) is the significant 
approach in fast computing Discrete Fourier Transform 
(DFT) of the signals depending on its time complexity 
O(N log N), where N denotes the signal length. Recently, 
FFT is widely used all over the world for communications 
and signal processing [1–3]. However, it’s still a big chal-
lenge to how FFT can be outperformed and receives atten-
tion. Sparsity is the main feature of the signals to speed 
up FFT in the literature. Signal with N length is known as 
exactly K-sparse, where K non-zero frequencies with K < N. 
Secondly, the signal is generally K-sparse if all frequencies 
are non-zero [4, 5]. But we were only concerned about 
keeping the first K-largest (essential) frequencies in term 
of magnitudes and ignored the remainder, instead of esti-
mating all frequencies [6].

Previously, H. Hassanieh et al. proposed the sparse Fast 
Fourier Transform (sFFT) [7–9]. The main idea of sFFT was 
to sample fewer frequencies (proportional to K) since most 
of the frequencies are zero or insignificant. In [9], BigBand 
was designed for the typical case of spectrum usage, 
where the occupied frequencies were randomly distrib-
uted with sparsity K = O(

√
N) whereas sFFT proved to be a 

worst-case distribution of occupied frequencies (sparsity), 
K = O(N) . BigBand was designed under fewer constraints 
than sFFT so that it can be utilized more effectively com-
pared to sFFT. Importantly, BigBand works with off-the-
shelf low-speed analog to digital converters [9].

The impression behind sFFT is to sample less frequency 
(shortened as freq. hereafter) grids (proportional to K) 
instead of Keeping all freq. grids since most freq. grids are 
zero or insignificant. FFT based on such a downsampling 
strategy which will only cost O(K log K). Nevertheless, as 
the locations and values of the K non-zero freq. grids are 
unknown, downsampled freq. grids frequently lead to data 
loss and cannot achieve perfect reconstruction. Deal with 
this difficulty, sFFT utilizes the strategies of filtering and 
permutation, which can increase the probability of cap-
turing useful information from downsampled freq. grids. 
sFFT [10] is state of the art, but there are some limitations, 
which is followed.1) Filtering and permutation operated 
on x and its related to N. The implementation of sFFT 
for generally k-sparse signals is very complicated, and it 
involves so many parameters that are difficult to set.

Recently, Ghazi et al. in MIT proposed another sFFT ver-
sion [6] that costs O(KlogK) operations for exactly K-sparse 
signals. The basic idea is similar, first downsample original 
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signals before recovering K non-zero freq. grids from the 
downsampled signals via error correction techniques, 
where [6] uses Reed-Solomon code, which is equivalent to 
the Moment-preserving problem considered in [7]. The key 
difference is that Ghazi et al.’s method recovers all K non-zero 
freq. grids once.

Hsieh et al. [10] proposed a new concept about sFFT by 
downsampling in the time domain (sFFT-DT)for the exactly 
K-sparse signals, assuming that distribution of the non-zero 
frequency grid is uniform. Their focus was to downsample 
the original input signal at the beginning; and then, directly 
conducts operations on downsampled signals, where the 
length of downsampled signals was kept proportional to 
O(K ) . Downsampling probably leads to “aliasing,” which 
means that different frequency grids of the original sig-
nal map into the same grid of the downsampled signal. In 
[10–12], the aliasing problem is reformulated as a moment-
preserving problem (MPP) [13–15] and solved via existing 
approaches.

We proposed a new fast DFT method for generally sparse 
signals. The proposed method consists of three steps. First 
is downsampling of the original signal � . Second is the cal-
culation of the discrete Fourier Transform (DFT) of down-
sampled signals by using FFT, and third is the use of DFTs 
to determine and measure the K non-zero (significant) freq. 
grids � . Downsampling will lead to “aliasing,” where different 
frequencies become indistinguishable in terms of their posi-
tions and values. According to, possible positions of nonzero 
freq. grid can be obtained from the solution of MPP. Based 
on the possible positions, several over-determined systems 
can be constructed, and the accurate positions and values 
of the aliasing terms can be determined by solving these 
systems. For generally sparse signals, the proposed method 
has a better recovery performance than the sFFT-DT method 
[10], and its complexity is reduced compared with the SFFT-
DT method [10].

2 � Methodology of proposed method

The proposed method consists of three steps. (1) Downsam-
ple the original signal in the time domain. (2) Calculate the 
discrete Fourier transform (DFT) of the downsampled sig-
nal by FFT. (3) Using the DFT of the downsampled signal to 
locate and estimate k-nonzero freq. girds of X. Steps 1 and 2 
are simple and straightforward; thus, the proposed method 
focuses on step 3.

Suppose �d  is the downsampled signal taken 
from an original signal � of length N,  where 
xd[k] = x[dk], k ∈

[
0,N∕d − 1

]
 an integer d ≥ 1 is known 

as a downsampling factor. The length of the downsampled 
signal �d is N∕d . Let �d be DFT of �d , where

From Eq. 1 it can be observed that each frequency grid 
�d is the sum of d terms � . When more than two terms 
on the right side of Eq. 1 are non-zero, “aliasing “occurs 
(Fig. 1).

For the solution of the aliasing problem, the shift property 
of DFT plays an important role [10]. Let xd,l[k] = x[dk + l] , 
where l represents the shift factor. Each freq. grid of �d,l , 
which is the DFT of �d,l , can be described as

Xd,l[k] ’s can be obtained for different l’s. On the right 
side of Eq. 2, there usually exists d number of terms, and 
each term contains two unknown variables. For example, 
X [k]ei2�kl∕N composed of two variables X [k] and ei2�kl∕N . 
Let a represent the number of non-zero terms on the right 
side of Eq. 2 and its ranges 1 ≤ a ≤ d . So, 2a equations are 
required to solve these 2a variables, and l lies within the 
range [0, 2a − 1].

Under the situation that no aliasing occurs ( a = 1 ) we 
have Xd,0[k] = X [s1]∕d and Xd,1[k] = X [s1]e

i2�s1∕N
/
d , where 

s1 denote the position of the non-zero freq. grid term. The 
unknown position s1 can be obtained from ||Xd,1[k]||

/ ||Xd,0[k]|| , 
and the value X [s1] at the position s1 can be estimated by 
X [s1] = dXd,0[k].

When aliasing occurs, we shall consider Eq. 2 in another 
aspect. Let the product of known values d and Xd,l[k] be 
denoted by ml , i.e. ml = dXd,l[k] . Let pj and zl

j
 describe the 

unknown X [sj] and ei2�sj l∕N , respectively, with 1 ≤ j ≤ a and 
sj ∈ Sk , where Sk =

{
k, k +

N

d
,⋯ , k +

(d−1)N

d

}
 . Then (2) can 

be written as

(1)

Xd[k] =
1

d

(
X [k] + X [k + N∕d] +⋯ + X

[
k + (d − 1)N∕d

])
.

(2)
Xd,l[k] =

1

d

(
X [k]ei2�kl∕N + X [k +

N

d
]ei2�(k+

N

d
)l∕N +⋯

+X [k + (d − 1)
N

d
]ei2�(k+(d−1)

N

d
)l∕N

)
.

(3)ml = p1z
l
1
+ p2z

l
2
+⋯ + paz

l
a
, 0 ≤ l ≤ 2a − 1

Fig. 1   Aliasing and its iterative solver
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It is noticeable that ml it is the “l”th moment with 
ml =

∑a

j=1
pjz

l
j
 . The problem of solving pj ’s and zj’s with 

given different moments ( ml’s) is known as the MPP. Addi-
tionally, MPP is also equivalent to the error locator polyno-
mial problem [13] reported by Ghazi et al.’s sFFT, which is 
a commonly used procedure in Reed-Solomon decoding 
[12]. Based on orthogonal polynomials [14], the solution 
of MPP is provided [15], and complete analytical solution 
for a ≤ 4 was derived by Tsai et al. [15]. For example, the 
complete analytical solution a = 2 is

Then the unknown positions sj ’s and values X [sj] of the 
aliasing non-zero terms on the right side of Eq. 2 can be 
determined from pj and zl

j
 with j = 1, 2.

3 � Proposed method

In this article, we propose a new method to fast compute 
DFT of generally K sparse signals. The schematic illustra-
tion of our proposed method a = 2 is demonstrated in 
Fig. 2, and this method is feasible for a ≤ 4 the analytic 
solutions of MPP.

For a = 2 , we use three time shifts to get four downsam-
pled signals �d,l with 0 ≤ l ≤ 3.The DFT �d,l of the down-
sampled signals can be expressed as

where s1 and s2 denote positions of the two aliasing terms, 
and X [s1], X [s2] denote their values.

According to the above section, we can estimate the 
values of (s1, s2) based on the solution of MPP. If the signal-
to-noise ratio (SNR) of the original signal x is sufficiently 

(4)

cd =
|||||
m0 m1

m1 m2

|||||
, c0 =

1

cd

|||||
−m2 m1

−m3 m2

|||||
, c1 =

1

cd

|||||
m0 −m2

m1 m3

|||||
,

z0 =
1

2

[
−c1 − (c2

1
− 4c0)

1∕2
]
, z1 =

1

2

[
−c1 + (c2

1
− 4c0)

1∕2
]
,

pd = z1 − z0, p0 =
1

pd

|||||
m0 m1

m1 z1

|||||
, p1 = m0 − p0.

(5)

Xd,l[k] =
1

d

(
X [s1]e

i2�s1 l∕N + X [s2]e
i2�s2 l∕N

)
, 0 ≤ l ≤ 3

large, the solution of MPP can approach to the real value of 
(s1, s2) . However, when the original signal is with low SNR, 
the estimated positions (ŝ1, ŝ2) based on the MPP method 
might no longer belong to the set Sk . Let s′

1
 and s′

2
 denote 

the values in Sk that nearest to ŝ1 and ŝ2 respectively. Then 
we can consider that the real positions (s1, s2) satisfy.

For simplicity, define �1 =
[
s�
1
− N∕d, s�

1
, s�

1
+ N∕d

]
 and 

�2 =
[
s�
2
− N∕d, s�

2
, s�

2
+ N∕d

]
 . Then we can get nine possi-

ble (s1, s2) pairs, by choosing one value from �1 and choose 
the other one from �2 . In order to determine the accurate 
positions (s1, s2) , we use the possible pairs to construct 
over-determined systems. Then the accurate positions and 
values of the aliasing terms can be recovered by solving 
these systems [8].

For each possible pair of (s1, s2) , Eq. 5 becomes an over-
determined linear system of equations, in which there 
exist four equations and two unknowns X [s1], X [s2] . Let 
� =

[
X [s1], X [s2]

]T
 and � =

[
Xd,0[k], Xd,1[k], Xd,2[k], Xd,3[k]

]T
 . 

Then Eq. 5 can be written into matrix form as � = �� , 
where

As the matrix A is with full column rank, the unknown 
z can be solved by �̂ = �†� , where �† = (�H�)−1�H is the 
Moore–Penrose pseudo-inverse of A.

The recovery error can be defined as e = ‖𝐲 − 𝐀𝐳̂‖2 . 
After solving the over-determined system for each possi-
ble pair, the accurate positions (s1, s2) , as well as the corre-
sponding values X [s1], X [s2] , can be determined by finding 
the minimum recovery error.

In the BigBand method proposed by H. Hassanieh 
et al. [9], there are d(d − 1)∕2 possible (s1, s2) pairs, which 
means that d(d − 1)∕2 over-determined systems need to 
be solved. Meanwhile, with the assistance of the solution 
to MPP, only nine possible pairs need to be considered 
in our method. As normally d >> 5 , our method requires 
less digital computation compared to the BigBand method 
and sFFT-DT.

4 � MMP error analysis problem

When we are dealing with generally k sparse signal, the 
solved roots no longer belong to the set Sk of real roots, as 
mentioned above. Which correspond to candidate correct 

(6)
s1 ∈

[
s�
1
− N∕d, s�

1
, s�

1
+ N∕d

]
,

s2 ∈
[
s�
2
− N∕d, s�

2
, s�

2
+ N∕d

]
.

(7)� =
1

d

⎡⎢⎢⎢⎣

1 1

ei2�s1∕N ei2�s2∕N

ei4�s1∕N ei4�s2∕N

ei6�s1∕N ei6�s2∕N

⎤⎥⎥⎥⎦

FFT

DS FFT

DS

For each
freq.grids

MPP

For each
possible pair
solve over-
determined
system

,0dx

,3dx

Output

Inputx

,0dX

X
1 2( , )s s

,3dX

Fig. 2   Schematic illustration of the proposed method
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positions. However, if SNR is large (> 20  dB), then the 
observation shows the z’s can approach real roots. Figure 3 
shows the real roots (in red) and solves roots (in blue) in 
complex coordinates under different SNR values. The real 
roots must locate with in the unit circle with radius = 1, sine 
they belong to Sk, and each element of Sk satisfies ||||e
i2�

(
k+

N

2

)
l∕N|||| = 1.

Nevertheless, the solved roots could deviate from the 
real roots and cannot be located within the unit circles. In 
order to close the gap between the candidate positions 
and estimated positions, the proposed method uses the 
minimum mean square method.

5 � Proposed algorithm flow chart

See Fig. 4.

6 � Result and discussion

During simulations in the following work, the signal � , in 
time domain was generated as followed. Firstly, generate a 
frequency-domain signal �0 , which consists of K non-zero 
entries and N − K zeros where N = 1024, Then � is obtained 
by adding the inverse FFT of �0 with white Gaussian noise.

Simulations are conducted to compare the proposed 
method with SFFT-DT and BigBand in terms of recov-
ery performance and computational time. For all three 
methods, the downsampling factor d = 16 is fixed, and 
we suppose that the maximum number of non-zero 
aliasing terms is am = 2 . Define successful rate as the 
fraction of occupied frequencies, which are successfully 
recovered. For different sparsity K, the successful rate of 
the proposed method versus SNR has been measured 
and reported in Fig. 5. Experimental results show that 
the recovery performance improves gradually with the 
decrease of K, as larger K causes more aliasing situations. 
Figure 6 shows the results of reconstruction accuracy 
versus SNR for the three methods mentioned before 
with K = 25. It is observed that our proposed method 
algorithm has a better recovery performance with the 
other two methods. In the BigBand method proposed 
by H.Hassanieh et al. [9], there are d(d − 1)/2 possible 
pairs, (s1, s2) which mean that d(d-1)/2 over-determined 

Fig. 3   The bias between solved roots/estimated locations (blue cir-
cle) and real roots/candidate locations (red circle) in the polar plane 
under SNR = 25

Fig. 4   Flow chart of the proposed algorithm
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systems need to be solved. Meanwhile, with the assis-
tance of the solution to MPP, only nine possible pairs 
are needed to be considered in our method. As normally 
d ≫ 5, our method requires less digital computation 
compared to BigBand as shown in Fig. 7].

The false-alarm probability is defined as the fraction 
of empty frequencies, incorrectly reported as occupied. 
Figure 7 shows that the proposed method has lower 
false-alarm rate compared with the other two methods 
under different SNRs. The false-alarm probability of pro-
posed method stays below 0.04 with SNR ≥ 25 dB (Fig. 8).

7 � Conclusion

For generally sparse signals, this paper presents a new 
fast computing DFT method. This method is based on 
downsampling and combines MPP with the BigBand 
method. All operations of solving MPP are linear with 
analytical solutions involved. The BigBand method is uti-
lized to modify the error of the solution to MPP, caused 
by the interference of insignificant freq. grids. Theoreti-
cal complexity analysis and simulation results demon-
strate that the proposed method is hardware-friendly 
and has a better performance as compared to other 
reported algorithms.
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