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Abstract
The detection of maneuvering targets is a challenging work for radar system. During a long integration time, the target’s 
complex motion will cause severe range migration and Doppler frequency migration, which greatly degrade the energy 
integration performance. In order to obtain a well-focused result of the maneuvering target, this paper proposes a novel 
and fast algorithm without any parameter searching process. In our algorithm, a parameter separation (PS) operation is 
conducted to isolate the target’s acceleration from other motion parameters. Then, the second-order keystone transform 
(SOKT) is utilized to correct range curvature and relocate the target’s energy into one range cell. Lastly, the target’s energy 
is integrated along the slow time axis via performing the non-uniform sparse Fourier transform (NUSFT), which is a fast 
implementation of Fourier transform (FT) for the input signal with unequally sampled points and frequency domain 
sparse representation. According to the simulation results, the proposed PS–SOKT–NUSFT method can realize multiple 
targets detection due to its good ability to suppress cross terms. In addition, the runtime of PS–SOKT–NUSFT (106.23 s) 
is much shorter than the PS–acceleration search (AS) method (2168.67 s).

Keywords Radar maneuvering target detection · Parameter separation (PS) · The second-order keystone transform 
(SOKT) · Non-uniform sparse Fourier transform (NUSFT)

1 Introduction

In the application of radar detection for the moving target, 
an effective approach for the improvement of the output 
signal-to-noise ratio (SNR) is prolonging the coherent inte-
gration time. However, the complex motion of the target 
will induce severe range migration and Doppler frequency 
migration after conducting range compression, which 
greatly degrade the detection ability of radar [1, 2].

The linear range migration, i.e., range walk, is caused 
by the uniform motion of the target during a long inte-
gration period. In order to remove range walk, some algo-
rithms have been proposed which aim at accumulating 
the energy along the linear trajectory, such as Radon trans-
form (RT) [3–5], Hough transform (HT) [6–9], Radon Fourier 
transform (RFT) [10–12] and improved axis rotation MTD 

(IAR-MTD) [13]. The above methods need to conduct the 
parameter searching process which has a high computa-
tional burden. In [14], keystone transform (KT) is proposed 
to rescale the slow time axis and eliminate the coupling 
between range frequency and slow time. As a linear cor-
rection algorithm, KT has a good anti-noise performance 
and does not require search. In [15], range frequency pol-
ynomial-phase transform (RFPPT) is proposed to correct 
range walk via reducing the order of slow time variable, 
which has a lower computational complexity than KT.

The target’s high-order motions will induce the nonlinear 
range migration, i.e., range curvature. Meanwhile, Doppler 
frequency migration will occur and cause the target’s energy 
to spread over multiple Doppler frequency cells. In order to 
accumulate the target’s energy in both range and Doppler 
dimensions, some brute-force searching algorithms have 

Received: 7 February 2019 / Accepted: 10 September 2019 / Published online: 16 September 2019

 * Weimin Su, wmsu_njust@163.com | 1Nanjing Electronic Devices Institute, Nanjing, Jiangsu Province, China. 2Nanjing University 
of Science and Technology, No. 200, Xiaolingwei, Xuanwu District, Nanjing, Jiangsu Province, China.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1245-2&domain=pdf


Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1222 | https://doi.org/10.1007/s42452-019-1245-2

been proposed with a heavy computational load, e.g., the 
generalized Radon Fourier transform (GRFT) [16] and poly-
nomial Radon-polynomial Fourier transform (PRPFT) [17]. In 
addition, the high-order KT algorithms without search have 
been adopted, e.g., the second-order keystone transform 
(SOKT) [18] and the third-order keystone transform (TOKT) 
[19]. However, there will be a residual trajectory existing after 
conducting KT when the maneuvering target has a complex 
motion, thus some extra operations are needed to compen-
sate the residual range migration. In [20], the parameter sep-
aration (PS)–acceleration search (AS) approach is proposed 
for target focusing, it only needs to search for the target’s 
acceleration after isolating it from other motion parameters.

Improved from PS–AS, a novel maneuvering target 
detection algorithm is proposed in this paper. The main 
contributions of this work are presented as follows:

1. Through theoretical analysis, it is demonstrated that 
the proposed method has no need to search for the 
target’s motion parameters, thus a lower computa-
tional cost can be obtained compared with the tradi-
tional methods based on brute-force search.

2. The non-uniform sparse Fourier transform (NUSFT) 
has been proposed, which is the combination of non-
uniform fast Fourier transform (NUFFT) [21–24] and 
sparse Fourier transform (SFT) [25].

3. The multiple targets detection ability of the proposed 
method has been analyzed.

4. The good detection performance of the proposed 
method has been validated via the results of some 
simulation experiments.

The outline of this paper is organized as follows. Sec-
tion 2 gives the signal model of radar maneuvering target 
detection. Section 3 introduces the proposed method for 
mono- and multi- targets detection. Section 4 gives the 
computational complexity analysis. Section 5 shows the 
results of some simulation experiments. Finally, the con-
clusion is drawn in Sect. 6.

2  Signal model

Suppose that a radar transmits LFM pulses, where the 
number of coherent integrated pulses is M , the pulse rep-
etition interval is Tr . The transmitted signal has the follow-
ing form:

(1)st(tm, t) = rect

(
t

Tp

)
exp(j��t2) exp(j2�fctm)

In (1), t  is the fast time, tm = mTr is the slow time, where 
m = −

M−1

2
,… ,−1, 0, 1,… ,

M−1

2
 , M is assumed to be an 

odd integer. Tp , fc , � and rect(⋅) represent the pulse dura-
tion, carrier frequency, chirp rate and rectangle window, 
respectively.

The instantaneous slant range between radar and the 
maneuvering target can be represented as

where R0 , c1 , c2 and c3 denote the initial slant range, radial 
velocity, acceleration and jerk of the target, respectively.

The received baseband signal is expressed as

where A1 denotes the signal amplitude, � =
c

fc
 is the wave-

length of the transmitted signal, c denotes the light speed.
After performing pulse compression, the signal in the 

range frequency domain can be expressed as

where A2 denotes the signal amplitude, f  is the range fre-
quency variable, B = �Tp is the bandwidth of the transmit-
ted signal.

After performing the range inverse fast Fourier trans-
form (IFFT), the compressed signal in the range time 
domain is obtained as

where A3 denotes the signal amplitude after performing 
range IFFT. From (5), one can see that c1 will cause range 
walk and Doppler center shift, while c2 and c3 will cause 
range curvature and Doppler frequency migration. During 
a long integration time, both range migration and Dop-
pler frequency migration will deteriorate the target detec-
tion performance. In the next section, we will propose an 
efficient algorithm to overcome the above problems and 
accumulate the target’s energy coherently.
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3  Coherent integration via PS–SOKT–NUSFT

3.1  Mono‑target detection

3.1.1  Range migration correction

According to the aforementioned signal model, it can be 
seen that the slow time axis is symmetric around tm = 0 , 
then the reversed slow time variable �⃖��tm  can be expressed 
as below

Inserting (6) into (4), we obtain the slow time reversed 
form of the range compressed signal, i.e.,

Then, the PS operation is defined as [20]

The expression of (8) in the range time domain is written 
as below

where A4 denotes the signal amplitude.
In (9), it can be seen that the effect of target’s velocity 

and jerk has been removed, whereas there is still a trajectory 
existing, i.e.,

In order to correct the residual range curvature, SOKT is 
conducted to remove the coupling between f  and t2

m
 , i.e.,
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where tn represents the scaled slow time after performing 
SOKT.

Inserting (11) into (8) and performing range IFFT, we 
obtain

where A5 denotes the signal amplitude after performing 
range IFFT.

From (12), one can see that no range migration remains 
after conducting SOKT, thus the target’s energy is located 
in one fixed range cell. However, there is still Doppler 
frequency migration to be corrected in the slow time 
dimension.

3.1.2  Coherent integration via NUSFT

In (12), the extracted signal at t = 4R0

c
 is modeled as a LFM 

signal with zero centroid frequency, thus a direct fast Fourier 
transform (FFT) performed along the slow time axis is invalid 
because the sampling points are non-uniform. In order to 
realize coherent integration, we perform FT with respect to 
t2
n
 as below

where fn represents the frequency variable with respect 
to tn , A6 denotes the signal amplitude after conducting FT.

It can be seen that in (13) that the signal’s energy is accu-
mulated as a solo peak and the target can be detected. In 
realistic applications, performing non-uniform discrete Fou-
rier transform (NUDFT) to realize FT needs a large number of 
complex multiplications which are computationally expen-
sive. For the sake of improving efficiency, the existing NUFFT 
algorithm can be adopted to fulfill FT of the non-uniformly 
sampled signal, which has the same computational com-
plexity as FFT [21–24]. Thus, the slow time FT conducted in 
(13) can be implemented via NUFFT which is faster than DFT. 
Here, noticing that the frequency domain output is sparse 
since M ≫ 1 , thus the integration process can be further 
accelerated via replacing the FFT in NUFFT by a faster spec-
trum analysis tool, i.e., SFT [25]. Below, the procedures of the 
the proposed NUSFT algorithm are given.
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Suppose that the input data sn is sampled at non-uniform 
points xn with the length of M which is equal to the length of 
output signal. Set the oversampling factor and interpolation 
length as p and L , respectively. Select Kaiser-Bessel window 
as below [24]

where � = �
(
2 −

1

p

)
− 0.01 is the width of the window 

function.

Conduct the following steps:

1. Calculate the Fourier coefficients:

where �n is a vector which is the nearest integer to pxn.

2. Compute the SFT of uj:

where j = −
pM

2
,−
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2
+ 1,… ,

pM

2
− 1.

3. Scale the values to obtain the NUSFT output:
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M

2
,−

M

2
+ 1,… ,

M

2
− 1.

It should be noted that in (17), SFT is conducted to 
replace the pM-points FFT which is performed in NUFFT. 
Set the sparsity parameter in NUSFT as 1 and under the 
condition that p ≪ M , the computational complexities of 
NUSFT,  NUFFT and NUDFT are,  respectively, 
O
�√

N log2 N log2 N
�

 , O
(
N log2 N

)
 , and O

(
N2

)
 , thus it is 

evident that NUSFT can realize energy integration with the 
lowest computational cost.

3.2  Multi‑targets detection

In the aforementioned analysis, the effectiveness of the 
proposed method for mono-target detection has been 

(14)�(x) =

�
2

�

sinh
�
�
√
L2 − x2

�

√
L2 − x2

(15)𝜙(𝜉) =

�
I0

�
L
√
𝛼2 − 𝜉2

�
, �𝜉� ≤ 𝛼

0, �𝜉� > 𝛼

(16)u�n+l
=

M�

n=1

L�

l=−L

1
√
2�

�
�
pxn − �n − l

�
sn

(17)Uj = SFT
(
uj
)

(18)Sn =
Un

�n

demonstrated. Nevertheless, there might be more than 
one target for radar to detect in practical situations, thus 
it is necessary to discuss the ability of PS–SOKT–NUSFT 
to suppress cross terms. Note that the number of targets 
is K  , then the compressed signal in the range frequency 
domain can be expressed as

where R0,i , c1,i , c2,i and c3,i represent, respectively, the ini-
tial slant range, radial velocity, acceleration and jerk of the 
ith target. After performing PS and SOKT on Sc(tm, f ) , we 
obtain the compressed signal in the range time domain, 
i.e.,

where

From (20) to (25), it is obvious that after conducting 
PS and SOKT, the energy of each self term has been relo-
cated in one range cell, whereas range migration still 
exists for cross terms. What’s more, the first- and third- 
order phase terms will affect the focusing performance 
of cross terms in the slow time domain. Therefore, the 
energy of cross terms will be suppressed while each self 
term will generate as a solo peak after conducting slow 
time NUSFT.

The detailed procedures of the proposed method are 
shown as below.
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(23)Δc1,ij = c1,i − c1,j
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(25)Δc3,ij = c3,i − c3,j
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1. Perform pulse compression of the radar echo data 
and obtain the signal Sc(tm, f ) in the range frequency 
domain.

2. Multiply Sc(tm, f ) with its slow time reversed result 
Sc( �⃖��tm, f ) to remove the effect of velocity and jerk.

3. Conduct SOKT and range IFFT to correct residual range 
curvature.

4. Carry out NUSFT along the slow time axis to fulfill 
coherent integration and detect the target.

The flowchart of the proposed algorithm is shown in 
Fig. 1.

4  Computational complexity analysis

In this section, the computational complexity of the pro-
posed method is analyzed. Denote that the number of 
range cells and integrated pulses are N and M , respec-
tively. The number of large frequency coefficients in 

NUSFT is set as 1. For the PS operation which needs a 2-D 
complex multiplication, the computational complexity is 
O(NM) . Subsequently, the chirp-z transform (CZT) based 
SOKT and range IFFT are performed with the computa-
tional complexity of O

[
NM

(
log2 N + log2 M

)]
 . Lastly, the 

slow time NUSFT is conducted with the computational 
complexity of O

�
N
√
M log2 M log2 M

�
 . As for the the 

energy accumulation process in the PS–AS algorithm [20], 
a 2-D matched filtering process is conducted in each 
search for acceleration, which has the computational 
complexity of O

[
Ns2NM

(
1 + log2 N + log2 M

)]
 , where Ns2 

represents the searching times of acceleration. For com-
parison, Table 1 shows the computational complexities of 
PS–SOKT–NUSFT and PS–AS. Define the the computa-
tional complexity ratio as the complexity metric of 
PS–SOKT–NUSFT divided by that of PS–AS, Fig. 2 depicts 
the curve of computational complexity ratio against pulse 
number under the assumption that N = M = Ns2 . It is evi-
dent that with the increase of pulse number, 
PS–SOKT–NUSFT has a much lower computational com-
plexity than PS–AS, due to its two advantages: (1) It has 
no need to search for the target’s motion parameters; (2) 
It applies NUSFT instead of NUDFT to speed up the coher-
ent integration process.

Fig. 1  Flowchart of the proposed method

Table 1  Computational complexities

Method Computational complexity

PS–SOKT–NUSFT
O(NM) + O

[
NM

(
log2 N + log2 M

)]
 + O

�
N
√
M log2 M log2 M

�

PS–AS O(NM) + O
[
N
s2NM

(
1 + log2 N + log2 M

)]

Fig. 2  Computational complexity ratio
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5  Numerical experiments and performance 
analysis

In this section, several simulation experiments are con-
ducted to validate effectiveness of the proposed method. 
Radar system parameters are listed in Table 2, complex 
white Gaussian noise is added to the radar echo signal 
with the input SNR set as − 3 dB.

5.1  Proposed method with mono‑target detection

Consider a maneuvering target which has the motion 
parameters of c1 = 100 m/s , c2 = 30 m/s2 and c3 = 15 m/s3 , 
respectively. At tm = 0 , the target is located at the 200th 
range cell. Figure 3a shows the target’s trajectory after 
performing range compression, it can be seen that severe 
range migration occurs due to the long time complex 
motion of the target. Figure 3b gives the target’s trajec-
tory after conducting the PS operation, it is observed that 
only the symmetric range curvature caused by accelera-
tion exists. According to (2) and (10), it can be calculated 
that the migrated range cells before and after conducting 
PS operation are, respectively, 183th → 200th → 230th 
and 413th → 400th → 413th.

Figure 3c shows the result after performing SOKT, it is 
evident that the range curvature has been corrected effec-
tively. Finally, the target is well focused via carrying out the 
slow time NUSFT, as shown in Fig. 3d.

Table 2  Radar system parameters

Carrier frequency 0.5 GHz
Bandwidth 15 MHz
Sample frequency 30 MHz
Pulse repetition frequency 1000 Hz
Pulse duration 10 μs
Pulse Number 2049

Fig. 3  Simulation results of a single maneuvering target. a Target’s trajectory after performing range compression. b Target’s trajectory after 
performing the PS operation. c Target’s trajectory after performing SOKT. d Focused result of slow time NUSFT
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5.2  Proposed method with multi‑targets detection

In this section, the radar is used to detect two maneu-
vering targets. The motion parameters of target 1 are 
the same as that in Sect. 5.1, the motion parameters of 
target 2 are c1 = 30 m/s , c2 = −15 m/s2 and c3 = −5 m/s3 , 
respectively. At tm = 0 , target 2 is located at the 220th 
range cell. The result of range compression is shown in 
Fig. 4a, where severe range migration occurs for both 
targets. Figure 4b gives the result after performing PS, 
it can be seen that two trajectories of cross terms exist 
in addition to that of self terms. Subsequently, SOKT is 
conducted and the result is shown in Fig. 4c, it is evident 

that the range curvature of self terms has been removed, 
while range migration still remains for cross terms. Lastly, 
slow time NUSFT is conducted to accumulate the energy 
of self terms and detect the targets, as shown in Fig. 4d. 
For comparison, Fig. 4e and f give the vertical views of 
the proposed method which is implemented by NUSFT 
and NUFFT, respectively. It can be seen that NUFFT out-
puts all the accumulated coefficients, whereas NUSFT 
only outputs the large frequency coefficients while 
setting the small coefficients (including the outputs of 
noise and cross terms) as 0.

Fig. 4  Simulation results of 
two maneuvering targets. 
a Target’s trajectory after 
performing range compres-
sion. b Target’s trajectory after 
performing the PS operation. 
c Target’s trajectory after per-
forming SOKT. d Focused result 
of slow time NUSFT. e Vertical 
view of slow time NUSFT. f Ver-
tical view of slow time NUFFT
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5.3  Detection performance and runtime

In this section, the detection per formance of 
PS–SOKT–NUSFT is compared with PS–AS and RFPPT. The 
number of searches in PS–AS is set as 1000. For each input 
SNR, 500 Monte Carlo experiments are conducted. Figure 5 
shows the curves of detection probability against input 
SNR for the three methods. It can be seen that as a coher-
ent integration method, PS–SOKT–NUSFT outperforms 
RFPPT which neglects the target’s high-order motion. 
However, PS–SOKT–NUSFT suffers a slight performance 
loss compared with PS–AS due to the effect of interpola-
tion and subsampled FFT in NUSFT. Each coin has its two 
sides, according to the runtime comparison in Table 3, it is 
evident that PS–SOKT–NUSFT has a much higher efficiency 
than PS–AS.

6  Conclusion

This paper focuses on the topic of radar maneuvering 
target detection and proposes a fast algorithm to cor-
rect range migration and Doppler frequency migration. 
The proposed method includes three steps: PS, SOKT 
and slow time NUSFT, which can realize acceleration 

isolation, range curvature correction and coherent 
integration, respectively. As a non-searching method, 
PS–SOKT–NUSFT can avoid the 4-D brute-force search 
which is widely adopted in the traditional methods such 
as GRFT and PRPFT. The simulation experiments have 
validated the effectiveness of the proposed method in 
multiple targets detection. In addition, the runtime of 
PS–SOKT–NUSFT and PS–AS in the numerical experi-
ment are, respectively, 106.23 s and 2168.67 s, which 
indicates that PS–SOKT–NUSFT has a higher efficiency 
due to its non-searching process and NUSFT operation. 
Since the target’s highest motion order considered in 
PS–SOKT–NUSFT is 3, the future work might concern the 
fast detection of the target with a higher order motion 
model. Besides, it might be of interest to research the 
algorithm under the clutter or interference background.
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