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Abstract
One of the most important steps which is used in every data mining projects is searching an object or some similar 
objects in a data set. For geometric data, there are some methods that measure the difference between two objects. 
In recent years, researchers have focused on these types of metrics and used them in different applications (e.g., shape 
matching, machine vision, map generation, etc.). The query problem in these kinds of applications is more complicated 
when we have big data. In this paper, a new metric is presented which works efficiently when the geometric objects 
are in discrete form (e.g., polygon or chain). The presented method is important from a theoretical point of view, and its 
differences with other similar metrics are discussed in this paper.
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1  Introduction

Nowadays, with the advent and development of devices 
such as PDA smartphones and car navigation systems 
equipped with positioning systems such as GPS, the pos-
sibility of collecting position data generated by moving 
objects has increased dramatically. In addition, sensor 
tracing techniques, such as satellites and radars, collect 
and process large volumes of motion data. Generally, these 
tools generate raw data of motion with an identifier of the 
object and its position at a moment’s time. These data are 
mostly stored as a string of spatial and temporal points, 
and called the trajectory. Tracing a moving object takes 
place continuously in a geographic space, so that a path 
only contains an example of the locations of the moving 
objects. One of the most common ways is the use of a vari-
ety of GPS-equipped vehicles. Moreover, sampling from 
other paths is likely to come from smartphones, online 
registration data. As a result, moving objects can be indi-
viduals, animals, vehicles, and even natural phenomena 
(e.g., storms). There is a wide range of applications that can 
be retrieved and improved by routing data.

In the first place, storing a large amount of rapidly 
growing data is considered as a primary task for process-
ing path data, and then, a metric of similarity for compar-
ing paths (which is an essential function in extracting 
routing data) should be specified, because the paths are 
probably produced by different sampling strategies and 
with different sampling rates. Finally, query processing is 
done on track data, which is difficult in terms of space and 
time complexity. To address these issues, a wide range of 
approaches and ideas has been proposed, and we classify 
them according to the main method of data mining.

In Sect. 2, we review some of the most commonly used 
meters in this regard, and then we introduce the metric 
that has been used previously only in statistical issues. This 
meter is the same as the Bhattacharya meter, which we 
will develop in Sect. 3, and we will propose a new meter 
that can be used to compare geometric shapes. Section 4 
includes conclusions and suggestions that can be made 
in the future.
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2 � Some common metrics

In many applications, data are recorded as a set of the 
length and latitude and/or geometric shapes and vis-
ible scenes [1]. These geometric data lead to the pro-
duction of knowledge and the extraction of new con-
cepts in which various data mining tools are used in this 
process. An important part of these processes is query 
operation that requires searching and comparing geo-
metric objects and data. Due to the storage space con-
straints, different paths of moving objects are sampled 
at different rates. Vehicle routing data usually have a 
higher sampling rate than mobile devices because vehi-
cles can provide proper battery and storage. In many 
applied scenarios [2, 3], a path is divided into sub-routes, 
each of which is often referred to as a section, a parti-
tion, or a frame. In as segmented approach, it attempts 
to simulate a person’s description of reading the path 
data. It also divides the path into several partitions that 
move according to the behavior of the objects. In order 
to store the sampling points of a moving object that are 
aligned at intervals, the paths are divided into frames. 
Data recovery and processing [4] are critical in a storage 
system. The purpose of processing is to obtain the suit-
able data successfully. A location-based query tries to 
find paths that are close to all query locations in which 
a query is a small set of locations or without special 
order constraints. A typical program can recommend a 
route to travel to multiple locations. For example, sup-
pose a passenger at a specified location wants to find 
a suitable way to transfer a request from a location to 
the destination. The route query range is essential for 
routing data mining applications [5]. Finding the nearest 
neighborhood is another major issue in spatial–temporal 
data mining. Several types of query of the nearest pos-
sible neighboring with inputs of a given path and a time 
interval are investigated based on a profile of unspeci-
fied paths as random processes. The main focus is mostly 
on the most similar paths for a path given in uncertain 
routes. The logical solution is to properly determine the 
similarity of two unknown paths. And this is the main 
topic of this paper that reviews the similarity criteria and 
introduces a new meter.

Template Extracting [6] is an analysis of the moving 
model of a motion object or movement objects. There 
are several patterns, such as collecting patterns, sequen-
tial patterns and periodic patterns. There is also a branch 
of research that addresses the issue of clustering the 
route. Clustering is the same as dividing the paths into 
groups with similar movement patterns. Groups of mov-
ing objects are identified based on information about 
the route (e.g., spatial dispersion, duration, velocity) as 

well as meaning, location meanings. Compared to the 
density-based clustering [7], there is also the use of 
motion-based clustering, whose logic is a simple obser-
vation, for example, a vehicle with high mobility (veloc-
ity). It probably indicates the low population of that area. 
Mobility-based clustering is based on less density-based 
clustering of the size of the path data set. Calculating the 
difference and the amount of difference between the 
two geometric shapes has many uses in other sciences. 
For example, in the discussion of artificial intelligence 
and machine vision, one of the most fundamental ques-
tions is finding the most similar form of data available to 
the requested data.

In mapping topics, drawing, comparing city maps, dif-
ferent applications of robot locator or unmanned car can 
be seen in the abundance of applications of the problem 
of determining the difference between two geomet-
ric shapes. Hausdorff, Frechet and the turning function 
meters are commonly used meters, which are described 
below. In addition, other meters are also used for this 
application, which, however, are not very efficient. An 
important point to be taken into account in these meters 
is that some of these meters (such as the turning function) 
measure only the similarity of the two shapes, and in either 
case they first measure the two shapes and then the simi-
larity measures between them. This is while some other 
meters (such as the Frechet distance) without measuring 
the two shapes obtain the distance or difference between 
them. One of the methods of measuring the similarity is to 
approximate each curve with a set of points and then use 
the Hausdorff distance defined as:

Here d is the Euclidian distance between two points. 
A and B are two sets of points that describe the two 
curves we want to compare. In this method, first we 
convert each curve to a set of points: then, we obtain 
the minimum distance of each point of a curve with 
another curve. We do the same for the other curve, and 
eventually we report the largest value as the Hausdorff 
distance. While Hausdorff distance is a good measure 
of measurement in many applications, it is not always 
the case. The reason for this difference is that the Haus-
dorff distance only looks at a set of points in both curves 
and does not pay attention to the direction of the curve. 
However, curve direction is important in many applica-
tions. Suppose a man and his dog are walking and both 
should move on separate curves, and both can inde-
pendently control their speed but are not allowed to 
return back. The Frechet distance of the two curves is 
equal to the minimum length of the dog’s leash, which 
is necessary for both the man and the dog to move on 
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their curves. Since it is difficult to perform mathematical 
operations on curves of arbitrary shape in some cases, 
the curves are approximated by a polygon curve, and in 
this case, the polygon curve.

The man’s position is represented by a function based 
on t with P (α (t)) and the position of the dog with Q (β (t)). 
The distance between the two curves is defined as follows:

Another common method for comparison is the use of a 
turning function. In this way, the comparison of the forms 
with each other is done on a scale, so the difference in size 
is not taken into account and only the degree of similarity 
in the structure of the forms is examined. For this, first, 
a diagram, whose axis x is the length of the shape and 
the y-axis is the angle in radians, is considered. Then on 
the shape of a rib, we start drawing by angle size toward 
the vertical axis and edge length toward the horizon. In 
the next step, the next side and the amount changing 
its degree are included in the chart. This will continue 
to return to the starting point. Similarly, the same steps 
for another were performed. To calculate the difference 
between two shapes using the turning function, it is 
enough to calculate the area between the two graphs. 
But it is worth noting that changing the starting point in 
the bug gives you different answers. In order to overcome 
this problem, separate diagrams should be drawn from 
each vertex at the beginning of the figure, and among all 
of them, the acceptable answer, is that it shows the least 
difference.

We now consider two series of data, each of which is 
divided into N categories. According to the distribution, 
each of the categories has a probability that the total prob-
ability of occurrence of all data in a series will be equal to 
one.

If the probability of each category is represented by a 
rectangular diagram, the total height of all rectangles in a 
group is equal to one. Now, if the probability of each cate-
gory of the first series of data is represented by P, the prob-
ability of each category is represented by p1,p2,… ,pn , 
respectively, and the probability of each category of the 
second series of data is represented by P′ . We give the 
probability of each group being p�

1
,p�

2
,… ,p�

n
 , respectively.

The formula for the Bhattacharya coefficient indicated 
by ρ is as follows:

The maximum Bhattacharya coefficient occurs when 
the one-by-one rectangles (the probabilities of the classes) 
are the same, and its value is equal to one, and if there are 
many differences, this value is zero or close to zero. The 

�F(P ⋅ Q) = min{maxd(p(�(t)) ⋅ Q(�(t)))}

�
�
P ⋅ P�

�
=

N�

i=1

√
p(i)p�(i)

Bhattacharya meter is defined by the Bhattacharya coeffi-
cient as follows:

Contrary to the Bhattacharya coefficient, more similarity 
means less Bhattacharya coefficient for two same shapes, 
the Bhattacharya meter approaches zero. This formula is 
defined for Bhattacharya meter in interval [0,1], for the solu-
tion of this problem this meter is also introduced as d = − ln 
(ρ). In this case, if the similarity is high, the Bhattacharya 
coefficient is equal to 1, and if ln (1) = 0, then the value of 
the Bhattacharya is zero, and if the similarity is low, the Bhat-
tacharya coefficient is equal to zero and ln(0) is equal to the 
infinite negative; therefore, the value of the Bhattacharya 
distance positive is infinitely reported.

3 � Determining similarity in queries

In this section, Bhattacharya meter is introduced to measure 
similarity in the calculation of the difference between two 
chains (trajectory). For the two chains (or part of the path) 
given by P1 and P2 , we first divide them into pieces in Fig. 1. 
This division on the x-axis is a1 … an . The slope of each point 
on each of the paths gives the angles of that point.

�
Pi
j

 is the angle corresponding to the point aj on the path 
Pi . In this way, for the paths P1 and P2 , the following angular 
vector is obtained:

The Bhattacharya coefficient between two paths P1 and P2 
is defined in the general (continuous) case as follows:

This coefficient is always a real number in the interval 
[0,1]. If the two paths P1 and P2 are exactly the same, the 
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Fig. 1   Segmentation of two trajectories to calculate the Bhattacha-
rya distance
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slope difference at any desired point between the two 
paths is equal to zero and the face of the fraction is equal 
to the image of the path P1 or P2 on the X-axis. Means ||||P1|||| 
at the bottom of the fraction is the same amount. There-
fore, for two completely identical paths, Bh

(
P1 ⋅ P2

)
 is equal 

to 1.
The calculation of the above integral for a discrete state 

in which the entire image of the paths on the X-axis is con-
verted to the intervals x1, x2,… , xn is also similarly calcu-
lated as follows:

The above formula is not required; the lengths of the 
intervals are the same, and it is also obvious that whatever 
n is larger, more precision is measured.

As mentioned, Bh
(
P1 ⋅ P2

)
 is always a number in the 

interval [0,1], and to convert it as a meter to measure the 
difference between two paths, perform the following 
transformation, and the distance between two paths P1 
and P2 is as:

With the above mapping, we will have 0 ≤ dBh < ∞ 
and the greater the difference between the two paths, 
the more dBh they are.

4 � Conclusion and future works

Query is one of the key steps in most data mining pro-
cesses. When the volume of data increases, this becomes 
much more complicated, and often, if the appropriate 
methods are not considered, it reduces system perfor-
mance. This issue becomes more complicated when data 
themselves are given in non-numeric form. This paper 
introduced a new method that can be used in query pro-
cesses for a data mining project. The basic application 
of this approach is to compare two geometric shapes. 

Bh
�
P1 ⋅ P2

�
=

∑n

i=1

�����
cos

�
�
p1
�i

− �
p2
�i

�����
�n − 1�

dBh
(
P1 ⋅ P2

)
= − ln

(
Bh

(
P1 ⋅ P2

))

Although our definition for all input states is correct, for 
some apps and also to increase performance, we propose 
it for discrete geometric data. Introducing a new metric 
for measuring the difference between two chains is theo-
retically important which is presented in this paper. For 
subsequent research, one can focus on its various uses 
in machine vision and image processing, as well as data 
related to GIS.
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