Research Article

Nonlinear vibrations of single- and double-walled carbon nanotubes
resting on two-parameter foundation in a magneto-thermal
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Abstract

The excellent mechanical, electrical, structural and thermal properties coupled with high strength to weight ratio of car-
bon nanotubes have tremendously expanded their applications in various industrial, engineering, physical and natural
sciences processes. In this work, nonlocal elasticity theory is used to analyze nonlinear vibrations of single and double-
walled carbon nanotubes resting on two-parameter foundation in a thermal and magnetic environment. With the aid of
Galerkin decomposition method, the systems of nonlinear partial differential equations are transformed into systems of
nonlinear ordinary differential equations which are solved using homotopy perturbation method. The developed ana-
lytical solutions are used to investigate the influences of elastic foundations, magnetic field, temperature rise, interlayer
forces, small scale parameter and boundary conditions on the frequency ratio. From the results, it is observed that the
frequency ratio for all boundary conditions decreases as the number of walls increases from single to double. Also, it is
established that the frequency ratio is highest for clamped-simple supported and lowest for clamped-clamped sup-
ported. Additionally, the results revealed that the frequency ratio decreases with increase in the value of spring constant
(k,) temperature and magnetic field strength. This work will enhance the applications of carbon nanotubes in structural,
electrical, mechanical and biological applications especially in a thermal and magnetic environment.

Keywords Single and double-walled carbon nanotubes - Magneto-thermal environment - Nonlocal elastic theory -
Small-scale effects - Elastic foundations

1 Introduction

The novel nanostructure materials discovered by lijima
[1] have led to considerable number of studies on car-
bon nanotubes due to their promising applications in
nanodevices, nanoelectronics, and nanocomposites.
Also, the excellent mechanical, electrical, structural and
thermal properties coupled with high strength to weight
ratio property of carbon nanotubes have continuously
and tremendously expanded their applications in vari-
ous industrial, engineering, physical and natural sciences
processes. In fact, the nanostructures have merits when

applied to the functionability of transistors and diodes.
However, carbon nanotubes (CNTs) are capable of under-
going large deformations within the elastic limit and
vibrate at frequency in the order of GHz and THz. Con-
sequently, logical investigations and analysis of carbon
nanotube have been a subject of interest such as the
vibrations of a micro-resonator that is excited by electro-
static and piezoelectric actuations. Various studies have
been carried out on beams, carbon nanotube, nano-wires,
nano-rods and nano-beam so as to specifically understand
and achieve their area of best fit [2-13]. In achieving this,
the well know beam models were employed and dynamic
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ranges were obtained in the scope of the structures. In
such studies, Liew et al. [5], Pantano et al. [6, 7], Qian et al.
[8] and Salvetat et al. [9] examined the mechanics of single
and multiwalled carbon nanotubes. Sears and Batra [10]
analyzed carbon nanotubes buckling under the influence
of axial compression. Yoon et al. [11] and Wang and Cai
[12] investigated the impacts of initial stress on multiwall
carbon nanotube with a focus on non-coaxial resonance.
Wang et al. [13] explored the dynamic response of multi-
walled carbon nanotubes using Timoshenko beam model.
Zhang et al. [14] scrutinized the influence of compressive
axial load on the transverse dynamic behaviour of double-
walled carbon nanotubes (DWCNT). Another work on the
vibration of double-walled carbon nanotubes was pre-
sented by Elishakoff and Pentaras [15]. Also, studies on
nonlinear vibration of nanomechanical resonator, nano-
tube and nanowire-based electromechanical systems
have been carried out by Buks and Yurke [16] and Postma
et al. [17] while Fu et al. [18] examined nonlinear vibra-
tion analysis of embedded carbon nanotubes. In the same
year, Xu et al. [19] considered the dynamic response of a
double-walled carbon nanotube under the influence of
nonlinear intertube van der Waals forces. The vibration of
carbon nanotube-based switches with focus on static and
dynamic responses was analyzed by Dequesnes et al. [20].
Few years later, Ouakad and Younis [21] investigated the
nonlinear vibration of electrically actuated carbon nano-
tube resonators. In an earlier work, Zamanian et al. [22]
presented the non-linear vibrations analysis of a micro-
resonator subjected to piezoelectric and electrostatic
actuations. As a continuation of the tremendous work,
Abdel-Rahman, Hawwa, Hajnayeb, and Belhadj [23-26]
performed a vibration and instability studies of DWCNT
using a nonlinear model and considering an electrostatic
actuation as an external excitation agent. In their work, a
DWCNT was situated and conditioned to a direct and alter-
nating voltage and different behaviors of the nanotubes
were recorded as the exciting agent is varied. They went
further to determine the bifurcation point of the DWCNT
and concluded that both walls have the same frequency of
vibration under the two resonant conditions considered.
Belhadj et al. [26] carried out the vibration analysis of a
pinned-pinned supported SWCNT employing nonlocal
theory of elasticity and obtained natural frequency up
to third mode. The authors also put forward an explana-
tion on the advantages of the high frequency obtained
in their work to optical applications. Lei et al. [27] stud-
ied the dynamic behaviour of DWCNT by employing the
well-known Timoshenko theory of beam. The nonlinear
governing equations generated by Sharabiani and Yazdi
[28] derived relations in the application to nanobeams that
are graded and have surface roughness. Wang [29] gener-
ated a close form model for the aforementioned surface
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roughness effect for an unforced fluid conveying nano-
tubes and beams based on nonlocal theory of elasticity
and ascertained the significance of the study for reason-
ably small thickness of the tube considered. Interesting
foundation studies have been considered after modelling
of CNTs as structures resting or embedded on elastic foun-
dations such as Winkler, Pasternak and Visco-Pasternak
medium [30-35]. Other interesting works through mod-
elling and experiment have also been presented to justify
the widespread application of SWCNTs [36-41].

The dynamic behaviour of SWCNTs and DWCNTs have
been characterized and their dynamic behaviour have
been investigated with the aids of experimental meas-
urements, density functional theory, molecular dynamics
simulations, and continuum mechanics. However, there
are difficulties in performing experiment at the nanoscale
level. Consequently, over the years, the classical continuum
models (which do not consider the small-scale effects)
have been widely applied to the small-scale structures as
reviewed in the preceding section. The demerit of such
classical continuum theories is witnessed in their scale-
free models as they cannot incorporate the small-scale
effects in their formulations. For the purpose of correcting
the inadequacy in the classical continuum models, Eringen
[42-45] developed nonlocal continuum mechanics based
on nonlocal elasticity theory. The nonlocal elasticity theory
considers the stress state at a given point to be a function
of the strain field at all points in the body. Therefore, in this
work, nonlocal elasticity theory is used to analyzed nonlin-
ear vibrations of single- and double-walled carbon nano-
tubes resting on two-parameter foundation in a thermal
and magnetic environment. With the aid of van der Waals
interlayer interaction, the nested slender double-walled
nanotubes are coupled with each other. Such study on the
simultaneous influences of thermal and magnetic field,
two-parameter foundation on the vibration of single- and
double-walled carbon nanotubes using nonlocal elasticity
theory has not been presented in literature. Additionally,
the development of analytical expressions for the frequen-
cies, frequency ratio and deflections of the double-walled
carbon nanotubes is shown to be another novel idea of the
present study. The analytical solutions are used to investi-
gate the influences of elastic foundations, magnetic field,
temperature rise, interlayer forces, small scale parameter
and boundary conditions on the frequency ratio.

2 Problem description and the governing
equations

In order to develop the governing equations of motion
for the SWCNTs and DWCNTs, we first consider a SWCNT
under the influence of stretching effects and resting on
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Winkler and Pasternak foundations in a thermal and mag-
netic environment as depicted in Fig. 1. With the aid of the
Eringen’s nonlocal elasticity theory, Euler-Bernoulli beam
theory and Hamilton’s principle, the governing equation
of motion for the SWCNT is given by

L
o*w 0?w EA
Elm+mc()2+kw+kw 3 / 0X2
0
P w 50 62W
~ EAa, T3 AHX a : <mcax26t2 vy
L
ow 0W EA
+ 6k, ( ) +3kw? () - —/
w ox x L ax“
0

— FAa, 7w —nAHZa—W> =0

ox* X ox4 (M

where w(x, t) is the bending deflection of the tube, t is
the time coordinate, El is the bending rigidity, m_ is the
mass of tube per unit length. The term EAa, T denotes
the constant axial force due to thermal effects and the
term nAHj is the magnetic force per unit length due to
Lorentz force exerted on the tube in z-direction. Also, A
is the cross-sectional area of the tube, a, is the coefficient
of thermal expansion and T is the change in temperature.
Also, the term n is the magnetic field permeability and H,
is the magnetic field strength (Fig. 2).

For the purpose of incorporating the interlayer inter-
actions for the DWCNTs with two layers, it is established
that the pressure at any point between any two adjacent
tubes depends on the difference in their deflections at that
point. Therefore, one can express the linearized form of the
van der Waals forces as

Fi = ci(w; —w;_y). ()
where F; is the van der Waals force between the ith tube
and the i—1th tube, ¢; is the coefficient of the van der
Waals force between the ith tube and the (i—1)th tube.
Assuming that the nested individual tubes of the DWCNT
vibrate in the same plane, using the van der Waals forces
in Eq. (2), the developed nonlinear governing equations
of vibration for the embedded DWCNT in a thermal and
magnetic environment with two layers are given as

L
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Fig. 1 The SWCNT on two-parameter elastic foundation in a thermal and magnetic field influnce

Fig.2 The embedded DWCNT
in a thermal and magnetic
environment
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It should be noted that the k; and k; will not enter into
the equations of the inner tubes since only the outer tube
interacts with the elastic medium.

The displacements of the nanotubes are subjected to
the following boundary conditions:

For simply supported (5-S) nanotube,

’w;(0,t)

?w,(L, b)) _o.
d%x

Wi(or t) = or aZX

0, w(Lt)=0,
(5)

For clamped-clamped supported (C-C) nanotube,

ow,(0,6)

ow;(L,t)
— =0.
ox

(0,)=0,
w;(0, t) I

0, w((Lt) =0,
(6)

For a clamped-simply supported (C-S) nanotube,
ow(0,1)
ox

PwLt)

w;(0,t) =0, T

OI Wi(Ll t) = OI O.

7)
3 Solution methodology

Using the Galerkin's decomposition procedure to separate
the spatial and temporal parts of the lateral displacement
functions,

wi(x, t) = p)W,(t) i=1,2. (8)
where w;(x, t) is the lateral displacement functions, W;(t)

is the time-dependent parameter or time-dependent
maximum amplitude of oscillation of the i-th layer of the
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nanotube and ¢(x) is a trial/comparison function that
will satisfy both the geometric and natural boundary
conditions.

Applying one-parameter Galerkin to a generalized form
of the Egs. (3) and (4), we have

L

/ R(x, t)p(x)dx = 0 (9)

0

where Ry(x, t) is the equation of motion for each wall. For
the outer wall of double-walled carbon nanotubes,

L 0w, 02 P
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After collecting like terms, we have

d*w, N a,Ely + ayky — aspky + (aq p — as) (EAya, T, + nA,HZ) W
2
dt? (ay — asu) pA,

(o, — asp)C,
+| ——— W, =Wy 12
((az—a5,u)pA2) 2 (12)

EA EA
azky — oy 5 — 6agpks — 3azuks + agu =7

W3 =0
(a2 - ocSy)pA2

where

L L
4
m'/wf¢® ,%=/&®M %=/#mm
0 0

d d?
e o] (212 arn)

0

L
2
5_/¢Udam, / <ww>

L L
d¢(X) dp(x) d4¢(X)
“7=/¢3(X)T / P(x) /< ) I dx|,
0 0 0

= (e0a)’, Mgy = pAy,

(13)

Similarly, the same procedure is applied to other inner dw,(0)
walls appropriately. W;(0)=X and =0
Therefore, the governing equations of motion for non- dW,(0) (16)
linear vibrations of embedded DWCNTs in a thermaland ~ W>(0) =X and
magnetic environment in ODE form is obtained as,
3.1 Homotopy perturbation method
d2w, e Ely + (ay p — as) (EA 0, T, + nAH?)
dt? (ay — asu)pA, 1 The nonlinear terms in Egs. (14) and (15) make the devel-
EA, (14)  opment of exact analytical solution. Therefore, for the pur-
_ C_1(W —W)+ (@gh — ag)50 W3 = pose of generating a symbolic solution for the nonlinear
PA; 1 (ay — ocsy),oA1 ! equations, we made a recourse homotopy perturbation

method. The principle and the procedures of the method
can be found in our previous works [46, 47].

2
d*W, + oy Ely + (ay 1t = a5) (EA0, T, + A HY ) W 3.1.1 Analysis of single-walled carbon nanotube
2
dt? (ay — asu)pA,
£A, For SWCNT, the governing equation is given by
(aaﬂ 054)

—_ -~ W3 = O
PA; (ay = asﬂ)l’Az 2 d2|gv Yl El + ayky — aspky + (o pt — a5) (EA, Ty + nAHY) w
0 dt (o — asu) oAy (17)
. 17
<a3k3 - a4% — 6ag ks — 3azpks + aSM% )W3 =0

and the initial conditions are (a — asp)pA
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Introducing the following dimensionless quantities,

/ w
r=\/;, T = wyt, a=7 (18)

After applying the dimensionless parameters in Eq. (18),
Eq. (17) is transformed to

zda

0d2+fa+fa =0 (19)

where f, and f, are defined as

a, Bl + ayky — aspky + (g p — as)(EAa, T, + nAH?)

f,= = @?
(az - as,u)pA
(20)
¢ asks — oq% — 6aguks — 3oy ks + as,u% |
= L
(o — o) pA A
(21
and the initial conditions are
da(0
a=x and 299 _, (22)
T

It is shown from Eq. (19) that

\J a, Bl + ayky — aspky + (ayp — as)(EAa, T, + nAH2)
0= F =
(az - oc5;4)pA
(23)

It should be noted that w is the linear forced vibration
frequency, and w, is an unknown nonlinear angular fre-
quency to be determined.

In order to solve Eq. (17), we construct the following
homotopy with @, as the initial approximation for the
angular nonlinear frequency as

d?a d?
¢ —p){ <d > +a>}+p<wéd—£+f1a+fza3> =0

(24)

It should be noted that the solutions of a = a(z, p) and
o = o(p) of the homotopy change from their initial approxi-
mations a, = a(r)and @, to the required solutions a(r) and
w, of (19) as the embedding parameter p travels from O to 1.
Assuming that the solution of Eq. (19) take the form of:

a(z) = ag(7) + pa, (z) + p*a(t) + p*as(zr) + -,  (25a)

(25b)

After substituting Eq. (25) into the homotopy Eq. (24)
and rearranging the coefficients of the terms with identical
powers of p, we have a series of linear differential equa-
tions of the form

2
P’ o <d +a>=0
dez 70 '
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Wy = Wy + pw, +p2w2 + p3a)3 +

(26a)

with initial conditions

da,(0
a,(0)=X and %O _ 0,
dr

d?a d?aq,
p' :wg[d L —<d72°+a0>]

2

,d“a
Odz

(26b)
+ o +fao+fa =0

the corresponding initial conditions are

da, (0
a,(0)=0 and 9,0 =0,
dr

d’a
p*: a)§<—2 +a, | —wia

dr2 (26¢)
d2

+2
WoW—— dr2

° +fia, —fala, =0

And the initial conditions are given as

da, (0
a,(0)=0 and 0@ _ 0,
dr
Since =2 < a° +a, = 0and =2~ a a"(O) = —a, from Eq. (26a), we
can write Eq. (26b) as
d%a
<d — +a>—a)(2)ao+f1ao+fzag=0, 27)

The solution of the initial zeroth approximation is given
by
ay = Xcost, (28)

On substituting Eq. (28) into the first approximation
equation in Eq. (27), one arrives at

d*a
w; <dTZ1 + a1> — wlXcost + f,Xcost + f,(Xcost)* = 0,
(29)

After the application of trigonometry identities to the
fourth-term in the LHS of Eq. (29), we have

dza1 5
+a, | — wyXcost + f Xcost
: (30)
+ Zf2X3c051- + Zf2X3cos3r =0,

in order to eliminate the secular terms, we set the coef-
ficient of cost in Eq. (30) to zero

— w}Xcost + f, XcosT + %fzxg‘con— =0, (31)

It gives the nonlinear natural frequency as,

wo = 1\/f, + %fzxz, (32)
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It should be noted that the frequency ratio is given as
w= =
Therefore, from Egs. (32) and (23), we have the fre-

quency ratio as

\hi+ 26X
ll/:—:
Vh

430y, (33)

WMD=¢®Mﬂ¢; 38)

Substituting Eq. (36) and the shape functions in the
Table 1 into Eq. (38), for simple simply support, we have

£X3
w(x,t) = [(Xcos-: + m(coﬁr — Cos r)>] \/;sin(g)

I . (39)
On substituting Eqgs. (20) and (21) into Eq. (33), we have while for clamped-clamped gives
EA EA\ |
3 (0‘31‘3 — a5 — 6aguks — 3a;uks + “sllz)q o (34)
v = 2
4| ayEl + ayky — aspky + (g 1 — as) (EAa, T, + nAH2)
The solution of Eq. (30) produces f2X3
w(x,t) = |Xcost + ———————(cos37 — cos 1)
\ 32f, + 24f,X2
f,X
a,(r) = 2 (cos3t — cos 1) (35)

32f, + 24f,X2

Hence, the first approximate solution of Eq. (19) can be

written as
£,X3

a(r) = aq, +a = Xcost + ——————
(7) = ao(2) + an(©) © T 32f, + 2462

(cos3t — cos 1)

(36)
From Egs. (8) and (18), we have

wWix, 1) = GOOWE), W=dﬂ¢; 37)

Therefore, the displacement of the nanotube to be
expressed as

L{ <cosh (ﬂ_x) — Cos <‘6—X>)

A L L

_< sinh § + sin g ><sinh <ﬂ_x> —sin< X
cosh f —cos f L

and for clamped-simply support, one obtains

~-®
~——
~——
——

£,X3

32f, + 24f,X2
/ px Px

\/;{ <cosh (T) — cos <T>>
cosh g —cos g . px . Bx

_< sinh f —sinp > <smh <T> _Sm<T>>}

3.1.2 Analysis of double-walled carbon nanotube

w(x,t) = [Xcon + (cos3t — cos 1)]

For a DWCNT, the governing equation is given by

Table 1 The basic functions corresponding to the above boundary conditions [37]

Cases Mode shape, ¢(x) Value of 8
1I.Simply support I sin(%) m
A A
ZICIamped—CIamped support I (cosh (ﬁTx) — cos (ﬂTx)> _ (cs;r;: ztzigs;; ) (sinh (/iL_x) —sin (ﬂTx>) 4.730041
3. Clamped-Simply support <cosh (ﬁTx) — cos (ﬁTx)) _ (c:;: Z::i(:ﬁﬁ ) (sinh (ﬁL_x> —sin (ﬂTx)> 3.926602
]

[ i
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d2w, N a,Ely + (ay pu — as) (EA @, T, + nAH?)
dt? (ay — asu)pA,

In a similar manner to SWCNT, we construct a homotopy
on Egs. (45) and (46) as follows

d*a
EA
3 (agn —a) 5t | “2) @ —p){wé(—; + a1> }
- (W, = W) + Wwi=0 dr
P (e = asp) oA, i, (482)
+p{w§ =t fia, + fa’ — f3az} =0,
d2w, (™ Ely + ayky — aspky + (aqu — as) (EAya, T, + nA,H?) w
2
dt? (0‘2 - asM)PAz
(43)
3 ask; — a4% — 60 ks — 3 pks + as,u% s
+——(W, =W, + w;=0
PA, (a2 - oz_:,y)pA2
Using the following dimensionless parameters, a
(1 —p){wé(d—; + az) }
l1 Wl WZ ’
r=4/—, a,=—, ay=— and T=w,t (44) (48b)
A, r r

On substituting the dimensionless parameters in
Eqg. (44) into Eqgs. (42) and (43), we have the following
dimensionless nonlinear system of equations

,d%a, 3

+p wow +g,a; + 9,05 —gsa, ¢ =0.
The solutions of a, = a,(r,p), a, = a,(r,p) and ® = w(p)
of the homotopy change from their initial approximations
a,o = a,(1),a,5 = ay(7) and w, to the required solutions

2
wgd_a; +fa, + fza? —f,a,=0, 45)  a:1(7),a,(r) and w, of Egs. (49) and (50) as the embedding
dr parameter p travels from 0 to 1.
a Assuming the solution of Egs. (45) and (46) to be in the
w; dfzz +9,a, + 9,03 — gsa, = 0. (46)  following form
where a,(7) = a15(7) + pay (7) + p*a1(7) + pPass(2) + -+, (49a)
— 2 3
El; + (aqu—a a T !
@ Ely + (g u — as) (EAya, T +nAH2) ¢ ay(7) = y0(T) + Pay (7) + pany(7) + pay3(7) + (49b)
1 = + —
_ A
( g:lz asp) pAy P ® = 0 + po; + pPw, + plo; + - (490)
agp — a, [«
f= m, 3= ﬁ Substituting Egs. (45a-c) into the homotopy in
; ° B 1 . AT 4 2 Egs. (44a) and (44b), collecting and rearranging the coef-
9, = <a1 2+ agky — aspky + (o — as) (A T, + i ) ) ¥ CT‘ ficients of the terms with identical powers of p, we have a
(o~ asp) A e series of linear differential equations
<a3k3 - a4EZA;L2 — 6aguks — 3oz ks + ag,uEziLz) < I, )
g2 = m 2
’ (o2 — asi) oA, A o | TR 4a=0 0,0 =X, 2@ =0,
= @ P P day(0) (50a)
%= 0, g2 T a0 =0, 0,0 =X, =2—=0
P2 da;, (0)
1 wg{ ! +a11}—w§a10+f1a10+fzaf0—f3azo=O, a;(0) =0 ZU= =0,
P 5f da for ) (50b)
a)é{ d,? + ay, } - wéazo +g,ay + gza;o =930, =0, a5,,(0) =0, 2_11 =0
C
( 2 2
5 wé{ ddjiz + 012} — @30y + 2w50; ﬁ +fiay +36aj,a;; — f;0, =0, a;5(0)=0 _da;:O) =0,
P 2 [ dPay 2 day 2 day,(0) (SOC)
wo{ dn T 022} — W0y + 20001 5 + G101 + 39,0500y — g3ay; =0, a(0) =0, == =0
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The solution of the initial zeroth approximation in
Eqg. (50a) is simply given by §g—X @5 + % §2x2(fx + fX3>

: 4 f3 0 f3 f3 1
dq0(0) = X, cos,

10(0) = X;cosz (51 992”)(8 i f X, +§f2X13+g1X1

a50(0) = X,cosz, (52) 83" @0t fy

Substituting Egs. (51) and (52) into the first approxima- +3 9; £2X3 + ffxf +2X, <f2X2 + _fsz:,)
tion in Eq. (50b), eliminating the coefficient of cos z in the 4f; 16 16
above system to avoid the secular terms, we have the fol- 9, e\ fiX, + 26X 57)
lowing nonlinear system of equations: +§f1 R )“)o +93X — g —f

3 39 27 3
Xy} + X, + 26X X, = 0 (53) - zf—s{ff)‘f + XS+ SO0
9

; + 2+ 22000+ 2h0x] | =0
_Xza’é +9,:X + Zgzxz3 -g3X, =0 (54)
Equation (57) can be written as

From Eq. (53),

M@S + Ay0) + A30% + A, =0 (58)
N X5 + X, + %fzxf 55 where
2= .
f. 39
3 A = __§x13
4 f3
After the substitution of Eq. (55) into Eq. (53), we have
u 1tuti q( )| q( )W \Y b= X1 392X2<fx fX3 9ngfXg
2Z\F Tap Ty )3 g
X% + X +26,X3 —X, 0%+ FiX, + 26X ’
-} = ) +g 2 4 £X 4+ X3
0 f3 1 f3 )’3=<1 1+ZZ 1+g1 392f2X3+_f2X7
f T2 £
3 3
X @2+ F, X, + 26,X3
3 1% 1M 2
+ Zgz( — > ~ 95X, =0 42X, (16 + 028 ) + 5167 (59)
(56) £X +26X3 3
g
Ay = g3X, _91<f—4) 2 f§ f] X1
After expansion of Eq. (56) and collecting like terms, we 3
arrived at ijf + f2f X+ 2f V2]
64 16"
+2[Zf12f2X15 16f1f22X17]}

The roots of the sexic equations are

3 3 2
Y R J AN (A e
27/13 622 24, 34, oA 72 7 62 2

(60a)
3 2
phh AN (2 _ AN (TR Ak A A
27/13 642 24 34 9 2723 6a 24 34
3 2
phh AN (2 J AN (TR Ak e
27/13 642 24 34 92 2723 6a 24
(60b)
3 2
phh A\ (2 _ AN (TR Ak A A
27/13 642 24 34 94 2723 6a2 24 34
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3
: _}“g 12/13 '14 i ﬁ_ﬂ_ﬁ n _)”3 /12/13 /14
\\274 62 2k \ 34 94 2723 62 24
-1
27
+3 _/1; /12/13 /14 ﬁ_i_% _}”; /12/13 /14
\ 73 62 2 \ 34 922 22 62 2
(w0)3 = T 1
3
3 ’1 /12/13 /14 4 ﬁ_’l_g 4 _}”3 /12/13 /14
\ 27/13 612 24 \ 34 94 273 62 24
LV=3 _h
2 34
3 2
e A E O S W N AT T N e BV R Y
\ \ 27/13 617 24 ) \\34 o9 272 622 24
3 2\ 3 3 2
3 (_ﬂz Axds Aq ) ( A3 ) > n < A s Aq )
| \ 272 647 2k ) \\34 94 273 622 24
22
3
I e TV N YA W W S T W s WY NS
\\2743  6af 24 \\34 o4 2723 622 24
(@)=-| L
: < |, Ak _ﬁ>+ <ﬁ_’l_§> <"13 ks Ay
7/13 642 24 34 92 2723 6A2 24
+EEE 4\ 1 1 \ 1 1 1 1 1 a4
24, 34
3
¢ 12/13 /14 _ ﬁ_ﬂ_ﬁ + _)”; }‘213 }“4
\ \ 7/13 612 2A \ 34 94 72 622 24
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(wo)s

3
3( ’13 ﬁz’%_ﬁ)_i_ (ﬁ_’i) +<_}”3 /12/13 14)
3 2 2 3 2
LLON\Z7A e 24 \ 34 94 2703 642 24
24,
3
+3 ’l /12/13 14 ﬁ_i_% 4 _}”; 12/13 /14
\ 27/13 612 2 \ 34 922 22 62 2
= - . (60e)
3
3< )‘ /12/13 /14>+ <ﬁ_/1_§> +(—/l§ /1213 /14>
27,13 642 24 34 9A? 274 64 24
e \ 1 \ 1 1 ] 1 4
2 34
2\3 3 2
I i W S B Y e Y
\ 27/13 647 24 ) \\3h 94 2723 622 24
3
3 < _ﬂg '12'13 A4 >+ < A3 )”5 ) 4 ( _'13 /12/13 44 )
| \ 272 62 2M \ 34 92 272 62 2M
24,
2 2\’ 2 ?
+3 e }‘213 }“4 ﬁ_ 22 ) 4 A Ay _ ﬁ
\\274 62 24 \ 34 92 2723 622 24
(@0)s==| "~ - (60f)
3 2\3 3 2
2z i) (22 (Zosho2)
3 2 2 3 2
5 \\274  6af 24 \ 34 94 2723 622 24 .
24 E
2 2\’ 2 ’
_ (g uﬂ_> (ﬁ__z) +<; ui_>
3 2 2 3 2
\ |\ e 24 \ 34 94 2727 647 241 ) |
The nonlinear natural frequency (w;) for embedded a14(7) = X, coswt (62a)
DWCNTs is obtained from the above solution. The small-
est real value of w, is the nonlinear natural frequency for  a,,(z) = X,coswt (62Db)
DWCNTs. From Eq. (60),
3 —13 A3 Ay ) \/< A3 }% >3 ( }‘3 /1233 Ay >2
2+ - )+ (Z-F) + + - =
g = \/( 72 7 62 24 3,  9A2 m3 ‘622 2 ©61)
(G- i) - (A_a_ﬁ)ﬂr(-_*i m_ﬂ)z_ﬂ_z
273 62 2 3, oA 73 62 2 30

To calculate the linear natural frequencies for DWNT,

substitute
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into Eq. (50b) and neglecting the nonlinear terms give

~X0* + X, =X, =0 (63)
—X,0° + 91X, — gsX; =0 (64)
which can be written in matrix form as
-’ +f,  —f H)q] [o]

= 65
[ -95 -’ +g; || X, 0 (65)

. X .
Since [X1 ] cannot be equal to zero, for nontrivial case
2

to occur, then

-w?*+f,  -f _|o
-g; -—w’+g;| |0]
By equating the determinant of the matrix in Eq. (66) to
zero, the frequency characteristic equation is obtained as

(66)

w* - (f1 +g1)a)2 +fg,—f9;=0 (67)

where the roots of the quartic equation are

. J (f,+)) + /(1) — 419 —95) (6am
() 1 =
2

(f+g;) + \/(f1 +91)2 —4(f,9, — f,95)
(w), = —

2
(68b)

(f1 +91) - \/(f1 +91)2 _4(flg1 _f393) (68¢)
()3 = 2

. _J (f+90) =/ (F+9.) ~a(h9, gy

2
(68d)

The linear natural frequency of DWNTs is the lowest root
of the Eq. (67). From Eq. (68), it is

w=¢ (f1 +g1) _\/(f1 -4-91)2—4()‘191 - 393)

(69)

2

We should recall that frequency ratio is given by y = %
Therefore

3 23 A 2 A 2 3 23
—2 2273 74 3 2 2
\/( 71? + 6&% 24 + 34 9&% + 27&? +

Ak _ da )
642 2

= ﬁ_ﬁ>_ (ﬁ_ﬁf (1 ﬁ_ﬁy_ﬁ (70)
+\/< 2743 + 642 24 34 94 + 2743 + 642 24 34
[I/ =
\ ((f1+91)_ (f1+91)2_4(f191_f393)>
2
On substituting Egs. (51) and (52) into Eq. (50b), we have
2 [ dPay 2 3 _ _ day;(0) _
a)o{ 3t +ay; } — @3X;cost + fiX cost + £, (X, cost)” — fX,co5t = 0, ay(0) =0 == =0,
(71)
2f dan g\ _ 2% cost + g, X,cost + (X,cos )3— X,cost = 0, a,,(0) =0, %2©@ _ g
Wy g2 21 WuA€OST + G1A;COST + G5 | A COST gz o5t =0, 4, (V) =0, = — =

dr?

dr?
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d’a
a)z{ 1 ta, } — wiX,cost + f, X, cost + %fzxfcon + %fzxfcosh- — fyX,cos7 =0,

) [ dPax 2 303 1o x3
) +dy ¢ — wyX;cosT + g, XycosT + L—ngX2 cost + Zgzx2 cos3t — gsX;cost = 0, a5, (0) =0,

After the application of trigonometry identities to the
fourth-term in the LHS

da,;(0)
12—,
dr
da,,(0)
207 o
dr

a,,(0) =0
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The solutions of Eqgs. (72) are

f,X3(cos3t — cos )

ay(r) =
3 3 2
3 _}‘g Ayds Ag A3 }‘i -4 Ayds Ay
\/( 2743 + 642 24 + 34 922 + 2743 + 642 24 (73)
32
3 _'13 Aads Ay A3 '@ } _'13 Aads Aq 2 4
N zz+&E )V r-0) s +E-5) — %
2743 1 622 24 34, 94 2743 1 62 24 34
g,X3(cos37 — cos 1)
a, (1) =

3 2\3 3 2
Nt + Aads e + A M + -4 + Aty e
2743 " 62 22 31, 92 273 " 62 22 (74)
32 1 1 1 1 1 1 1 1
3 2\3 3 2
(2 4 s _ e A AN L (Zhp bk A A
72 T e 2 34, 92 72 T e 2 34,

Therefore, the first approximate solution of Egs. (45) and
(46) can be written as follows:
f,X3(cos3t — cos )

3 2
(2w, [ AV (B ik i
273 62 24 32, 922 273 62 24 (75)
32 1 1 1 1 1 1 1 1
A3
+ 2

3 + A3 Ay A3 '@ 3+ _'13 + 43 Ay 2 4
27/1? 6/1% 24 34 91$ 27/1? 6/1% 21, 34

a,(x,t) = X,cost +

9,X3(cos37 — cos 1)
3 3 2
3 _}‘g A2l A4 A3 A% 5 oXe A4
\/( 2723 + 642 21 + 34, 9A2 + 2723 + 612 21 (76)

3 2\3 3 2
pif( eyl AN (AN p (TR Ak A LA
2743 0 62 24 3, 9 2743 62 24 34

The displacements of the nanotubes to be expressed as
for simple simply support as

a,(x,t) = Xycost +

32

f,X3(cos3t — cos )
3 2
(A ks A\ (e AN (DA Ak
28 62 24 34, 92 28 62 24 /

2 —sin(#) (77)
+3 _/1;4_}“2}‘3_& - i_/l_%3+ _/134_}‘2}‘3_&2_&
2743 0 6A2 24 34, 94 2743 0 62 24 34

X,cost +

wi(x, t) =

A
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9,X3(cos37 — cos 1)

X,cost +
3 Iy 2 2 23 Iy 4 \?
\/(27/13+ 62/1; _i>+\/(ﬁ_ﬁ> +(27/13+ 62/133 _ﬁ> | nzx
wo(x, t) = 2 —sin(—) (78)
3 2 A /
{Fem-0) Va2 e 2
2743 0 62 24 34, 94 2743 0 62 24 34
while for clamped-clamped are given as
f,X3(cos3t — cos )
X,cost +
3 2\3 3 2
(T s A\, (A B (A Ak A
272? 6/1f 24 34 9)»% 27&? 6/1$ 24
wi(x, t) = 32
3 2\3 3
+3 —4 /12)“3 /14 _ ﬁ _ i 4 4 /1213 )”4 12 (79)
272? 6/12 2/11 34 9)@ 27/1? 6/12 211 3/11
| <cosh< )—cos(’%))
VA ) o () s 2))
cosh f—cos f L
X3(cos3t — cos T
X,cost + 9oX« )
(i o) (L_£>3 (2 H_A_)2
\/(27/13 622 24 + 351 9/12$ + 27/13 + 62,133 2;1
Wy (X, t) = 32
s -3 i, 2 ! 23 -2 A L\ g
(P N Ty Y Sy o0
| <cosh <ﬂx) — cos (’%))
X Z _( sinhp+sinf ( (ﬂ—)—sm( )
cosh f—cos L
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And for clamped-simply supports, we have

f,X3(cos3t — cos )

X,cost +
3 2
3 Joks s Jy B doky _ e
0.0 5 \/(27/13 + 642 244 ) + \/( 34, 92 + 27/13 + 642 244
w;(x, t) =
3 _/13 Aot Aq A3 /l% } _/lg Aok A4 2 A
+\/< 2743 + 642 24 34, 94 + 2743 + 642 24 34
| (cosh < — Cos (’%))
X Z cosh f—cos f§ px —sin
sinh p—sin g L
X-cosr + 9,X3(cos37 — cos 1)
2
B A 2 2 23 Jrh 4 \?
2 273 __ 24 + 23 20 + + 273 __ 24
5 (27/13 642 2 ) (3/11 9,1$> (27/13 642 2 )
wo(x, t) =

—A

2

3 3
+ <27A§

i s

sinh p—sin g

3
+}“2)‘3_ﬁ - A B + _'1;4_
642 24 34, 94 2743

cos (%))

) (snh

(s

) -sn(%))

Aads Ay 2 A
642 24 34

4 Results and discussion

Using the material and geometric parameters of the car-
bon nanotubes, E=1.1 TPa, p=1300 kg/m3, /=45 nm, the
outer diameter do=3 nm, and the thickness of each layer,
h=0.68 nm, the frequency ratio against non-dimensional
maximum amplitude for the nonlinear vibrations of SWC-
NTs and DWCNTs in a thermal and magnetic environment
are given in Figs. 3, 4, 5, 6, 7, 8, 9 and 10. The results of
the simulation and the effects of various parameters on
the frequency ratio of nonlinear vibrations of embedded
single- and double-walled carbon nanotubes in a thermal
and magnetic environment are presented and discussed.

4.1 Effects of boundary conditions on the frequency
ratio of the carbon nanotubes

Figures 3 and 4 show the effects of boundary conditions
on the frequency ratio for the nonlinear vibrations of
SWCNTs and DWCNTs, respectively in thermal and mag-
netic environment (k, = 10" N/m?, k;=108 N/m?, T=40K,
H,=10"A/m, e,a=1.5x10"° and ¢;=¢,=¢3=0.3x 10" N/
m?). As it is depicted in the figures, the frequency ratio for
all boundary conditions decreases as the number of wall

increases. This is due to the fact that carbon nanotubes
generally have weak shear interactions between adjacent
tubes and become more predominant as the number of
walls increases. It could therefore be inferred that in an
application where linear vibration is preferred for system
stability, DWCNTs will perform better than SWCNTs of
the same geometry and size. Also, the figures show that
for both the SWCNTs and DWCNTs, the frequency ratio
is highest for clamped simple supported and least for
clamped-clamped supported. This establishes that the
clamped-clamped supported system provided the best
grip (support) for the nanotubes and this can be used to
control nonlinear vibration of the system.

4.2 Effects of spring stiffness (k,) on the frequency
ratio of the carbon nanotubes

The impacts of the spring stiffness (k;) on the dimension-
less frequency ratio of the single- and double-walled car-
bon nanotubes in thermal and magnetic environment are
shown in Fig. 5 and 6. It is depicted that he frequency ratio
decreases with increases in the value of spring constant
(k;) for CNTs. This is because, the linear frequency increases
as the value spring constant increases. At large value of
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Fig.3 Frequency ratio versus 1.8 T T T T T
non-dimensional amplitude for
SWCNT under various bound- —&— Clamped-simple supported
ary conditions 1.7F Simple-simple supported 7]
—*— Clamped - clamped supported
1.6

Frequency ratio, ( ¥ )
=
T

1.2F
1.1F
1‘ - z 1 1 1 1
0 0.5 1 1.5 2 25 3
Nondimensional maximum amplitude, ( X)
Fig.4 Frequency ratio versus 1.5 T T T T T
non-dimensional amplitude for p
DWCNT l.Jrlwder various bound- 1.45- S&— Clamped-simple supported _
ary conditions Simple-simple supported
1.4} —%— Clamped - clamped supported _
1.35F
L1
i=)
®
> 1.25F
o
f=
[}
3
o
o 1.2F
[T
1.15F
1.1F
1.05F
1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Nondimensional maximum amplitude, ( X)

ky (ky=10"" N/m?), the vibration of the system becomes 4.3 Effects of nonlinear spring stiffness (k)

stable and this can be used as good measure in controlling on the frequency ratio of the carbon nanotubes

nonlinear vibration of the system.
Figure 7 shows the effect of nonlinear spring stiffness (k;)
on the frequency ratio of outer walled of embedded DWC-
NTs in a thermal and magnetic environment. It could be
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Fig.5 Effect of Winkler con- 1.8 T
stant (k1) on amplitude—fre-
quency ratio curve for SWCNT

Frequency ratio, ( ¥ )

—S— Winkler constant, k1 =0 N /m?2
Winkler constant, k1 = 108 N /m?

—*— Winkler constant, k1 = 10° N /m2

—<— Winkler constant, k1 = 1010 N /m?2

1 1.5 2 2.5 3
Nondimensional maximum amplitude, (X)

Fig.6 Effect of Winkler con- 1.5 T
stant (k;) on amplitude—fre-
quency ratio curve for DWCNTs 145k

1.35F

Frequency ratio, ( )
o
(6]
T

—O— Winkler constant, k1=0 N m?
Winkler constant, k1=108 N /m?

—k— Winkler constant, k1=10° N /m?

—<— Winkler constant, k1=10"0 N /m?2

o oo

0 0.5

seen that the frequency ratio increases with increases in
the value of the nonlinear spring constant. This is because
the nonlinear frequency increases as the value of the
nonlinear spring constant increases without producing

1 1.5 2 25 3
Nondimensional maximum amplitude, ( X)

any effect on the linear frequency. The value of nonlinear
spring constant should be kept as low as possible since it
makes the vibration of the system to be nonlinear and this
can lead to the instability of the system.
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Fig.7 Effect of nonlinear 6 T
spring constant constant (k3) Nonlinear Winkler constant, k3=0 N /m?2
on amplitude—frequency ratio 55l —©— Nonlinear Winkler constant, k3=10%% N /m?
curve for DWCNTs ) —*— Nonlinear Winkler constant, k3=10% N /m?
—<— Nonlinear Winkler constant, k3=1027 N /m?
B
g
®
>
2
()
3
o
(0]
I
ST 05 1 1.5 2 2.5 3
Nondimensional maximum amplitude, ( X)
Fig.8 Effect of Van der waals 1.8 T T T T T
forFe on amplltude—frequency —o— coefficient of van der waals forces, c = 0 N/ m?2
ratio curve for DWCNTs 12 2
17k —K— coefficient of van der waals forces, ¢ = 0.3*10'2 N/ m
1.6
> 1.5
I}
T
> 1.4F
2
()
3
o
o
L 1.3F
1.2
1.1F
1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
Nondimensional maximum amplitude, ( X)
4.4 Effects of Van der Waal force on the frequency in a thermal and magnetic environment. It can be seen that
ratio of the carbon nanotubes when the coefficient of the van der Waals forces is zero i.e.

c=0N/m?, it means a single-walled carbon nanotube with
Figure 8 presents the effects of Van der Waal force on the ~ the same dimension and geometry with double-walled
frequency ratio of the SWCNTs and DWCNTs, respectively, ~ carbon nanotubes. The results reveals that the frequency
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Fig.9 Effect of temperature 1.45 T T T T T
on amplitude-frequency ratio —— Temperature, T = 0 K L
curve on outerwall of DWCNTs ——+— Temperature, T = 1000 K
1.4F ’ -
—— Temperature, T = 2000 K
—©— Temperature, T = 3000 K
1.35} Temperature, T = 4000 K
1.3F
B
o 1.25F
®
>
o
c
g 12
o
Qo
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1.15F
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1.05F
1,,‘1.\A@w‘| 1 1 | 1
0 0.5 1 1.5 2 2.5 3
Nondimensional maximum amplitude, (X)
Fig. 10 Effect of magnetic 1.45 T T T T T
force Strength onamplitude- T Magnetic field strength, Hx = 0 A /m
frequency ratio curve on ) 8 )
outerwall of DWCNTs 141 ©— Magnetic field strength, Hx = 10° A /m e
* Magnetic field strength, Hx = 10% A /m J
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Fig. 11 The linear and nonlin- 5 T
ear vibration deflection-time
curve of outer wall of DWCNTs

mid point deflection w(x,t)

5 L

—©— linear vibration
nonlinear vibration

ratio decreases as the number of walls increases. Increas-
ing the number of walls can be used as a good parameter
to control the nonlinear vibration of the system.

4.5 Effects of temperature on the frequency ratio
of outer wall of DWCNTs

Figure 9 illustrates the influence of temperature on the
frequency ratio on the outer wall of DWCNTs in a thermal
and magnetic environment. The result presents that as the
temperature increases, the frequency ratio decreases. This
shows that increase in temperature leads to increase in the
value of linear natural frequency of the system.

4.6 Effects of magnetic force strength
on the frequency ratio of outer wall of DWCNTs

Figure 10 presents the impact of magnetic force strength
on the dimensionless frequency ratio. From the figure, it is
established that as the magnetic field strength increases,
the vibration of the system approaches linear vibration
and become linear at higher value of magnetic force
strength, H=10° A/m.

4.7 The linear and nonlinear vibration
deflection-time curve of outer wall of DWCNTSs

Figure 11 shows the comparison of the linear vibration
with nonlinear vibration of the DWCNT. It could be seen
in the figure that the discrepancy between the linear and
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10 15 20 25 30
Time, (sec)

nonlinear amplitudes increases and the vibration time
progresses.

5 Conclusion

In this work, nonlocal elasticity theory has been used to
analyze the nonlinear vibrations of single and double-
walled carbon nanotubes resting on two-parameter
foundation in a thermal and magnetic environment. The
effects of the various controlling parameters on the non-
linear to linear frequency ratio have been analyzed and
discussed. The results established that the frequency ratio
for all boundary conditions decreases as the number of
walls increases from single to double. Also, it is established
that the frequency ratio is highest for clamped-simple
supported and least for clamped-clamped supported.
Additionally, the results revealed that the frequency ratio
decreases with increase in the value of spring constant (k;)
temperature and magnetic field strength. This work will
enhance the applications of carbon nanotubes in struc-
tural, electrical, mechanical and biological applications
especially in a thermal and magnetic environment.
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