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Abstract
This paper focusses on the application of spectral analysis and continuous wavelet transforms to water drainages from 
full-scale minesite components, such as open pits, waste-rock piles, and tailings impoundments. Three minesite-drainage 
databases included high-frequency monitoring (as frequently as every 15 min) and/or long-term monitoring (up to 
31 years) of both flows and aqueous chemistries. These databases were cleaned only by deleting very obvious outliers 
and ignoring statistical significance, so that extreme events and fractal patterns could be detected. In all three full-scale 
minesite-drainage databases, 1-over-f fractal slopes were common in the spectral analyses, but other slopes mostly 
between zero and 2.0 were also found. Spectral analyses also produced anomalous spectral slopes. Simple simulations 
showed these could be explained by major unseen seasonal changes in water retention by upstream buried ponds or 
subsurface aquitards. Wavelet transforms for the three minesite-drainage databases provided important observations 
such as (1) the varying strengths of periodicity with time, (2) the differing periodicities between physical drainage flows 
and their aqueous chemistries, and (3) the effect of placing a fine-grained soil/till cover over a waste-rock pile. Based on 
all three minesite-drainage databases, the most common wavelengths for strong, persistent periodicities were 1 year 
and 1 week. Other wavelengths of strong periodicity for at least two minesites were 10 years, approximately 4 months, 
and half-monthly to monthly. The minesite with data as frequent as every 15 min also showed strong periodicities over 
1 day and less.
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1  Introduction

Minesites can be divided into physically and environmen-
tally distinct components, such as waste-rock piles, tailings 
impoundments, and open pits [51, 52, 58]. Each full-scale 
component typically has water draining through and from 
it, originating as direct precipitation and from any adjacent 
inflow.

If the drainage from a minesite component is con-
taminated, it typically has to be collected, managed, and 

treated before release to the surrounding environment. 
If the drainage is not contaminated, the flow still often 
has to be re-directed and managed so that other areas of 
the minesite and the downstream environment are not 
adversely affected by additional water.

Therefore, in most cases, understanding the dynamic 
natures of full-scale drainage chemistries and flows is 
important in optimum water management and envi-
ronmental protection at minesites. This paper shows 
that these dynamic natures can be underestimated and 
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misunderstood, primarily due to the common low-fre-
quency monitoring at minesite drainages.

For example, for a full-scale, active, uncovered waste-
rock pile (Fig. 1), a 1-day storm with significant varia-
tions in hourly rainfall produced significant variations in 
drainage outflow over 15-min intervals [43, 44]. This con-
tradicts typical waste-rock models that show that most 
infiltration moves through finer-grained layers rather 
than through coarser layers [e.g. 14, 15, 17, 19, 26, 28, 39, 
57]. This inaccuracy is most often likely due to simulat-
ing the turbulent open-channel flow in full-scale coarse 
waste rock using Darcian-type models with capillarity 
and matrix suction [7, 10]. More realistic approaches are 
available [e.g. 7, 10, 29, 30, 64].

For this same example of full-scale waste rock, the 
daily measurements of a single instantaneous flow, or 
the daily sums of flows and precipitation (Fig. 2), fail to 
reveal the real, dynamic nature of the outflow and its 
relationship to short periods of high precipitation (com-
pare with Fig. 1). This also applies to aqueous chemistry, 
as shown below in this paper for mining catchments and 
in Fig. 3 for non-mining catchments. These short-term 
peaks, albeit short-lived and rarely detected, can lead 
to adverse effects on downstream ecosystems due to 
effects like [42]:

•	 ecological damage per unit of time,
•	 accumulating ecological damage through time,
•	 temporally aligned or offset synergistic and antagonis-

tic interactions, and
•	 slowly reversible or non-reversible uptake and binding 

of some metals and other contaminants.

Therefore, high-frequency monitoring of minesite 
drainages, which is rare, can reveal errors in conceptual 
and digital models that are based on, or calibrated to, low-
frequency monitoring. This has been well documented for 
non-mining catchments [e.g. 2, 35] and for ecosystems in 
general [e.g. 1]. This is discussed further in Sect. 5.

As shown later in this paper, the dynamic natures of 
full-scale drainage chemistries and flows, when portrayed 
as time series, include periodicities and fractal patterns at 
many wavelengths and frequencies of time. In simplistic 
words, the chemistries and the flows “hum” or “buzz” at 
various frequencies and wavelengths through time. This 
understanding determines the techniques (Sect. 2) and 
limits the databases (Sect. 3), available to assess more 
thoroughly and realistically the dynamics of minesite 
drainages.

For emphasis, this paper focusses on full-scale minesite 
components, containing more than 106 metric tonnes (t) 

Fig. 1   High-frequency drain-
age flow, measured every 
15 min (mathematically 
converted to mm, black line), 
and hourly precipitation (in 
mm, red vertical bars), from 
active, uncovered, full-scale 
waste-rock piles, showing 
dynamic, relatable trends in 
both precipitation and flow 
[43]; compare with Fig. 2 from 
about a month earlier with 
lower-frequency data
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of geological materials, constructed in the manner locally 
selected by the mining company. Laboratory-scale test-
ing such as those containing kilograms, and pre-designed 
on-site testing such as “field-scale” piles, cannot provide 
reliable full-scale information [46, 50]. This is due to 
major changes with increasing scale, such as the emer-
gence of certain critical properties and processes as the 
scale increases (discussed further in Sect. 4.5). Common 
expressions for this emergence with increasing scale are 
“the whole is greater than the sum of its parts” and “more 
is different”.

Therefore, understanding the dynamics of full-scale 
minesite drainage requires full-scale monitoring data. 
Because full-scale monitoring cannot be neatly organized, 

planned, and executed like laboratory testing, full-scale 
data can be “messy” such as with periodic data gaps 
(Sect. 3). Nevertheless, these imperfect full-scale databases 
can still be used as explained below.

2 � Mathematical approaches

This paper examines selected databases of full-scale mine-
site drainage (Sect. 3) primarily through the mathemati-
cal and statistical techniques of spectral analysis (Sect. 2.1) 
and wavelet transforms (Sect.  2.2). Simple plotting of 
time series is also included here. The primary focus is on 
wavelengths and time periods with relatively significant 

Fig. 2   High-frequency drainage flow measured every 15  min 
(mathematically converted to mm, black line marked with squares), 
daily sums of these short-term flows (in mm, black line marked 
with circles), and daily precipitation (in mm, red vertical bars), from 

active, uncovered, full-scale waste-rock piles [44]; compare with 
Fig. 1 from about a month later and note here the significant reduc-
tion in variability and in correlation with the lower-frequency daily 
data
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spectral or wavelet power. Relatively strong power signi-
fies significant periodicity at that wavelength or during 
that time period.

There are many books, conference proceedings, and 
papers published on spectral analysis and wavelet trans-
forms. Thus, it is the objective of this paper not to discuss 
the underlying mathematics, but to focus on the applica-
tion of these techniques to full-scale minesite drainage. 
Important concepts for proper full-scale application are 
summarized in Sect. 4.

A major issue with most mathematical and statistical 
algorithms for spectral analysis and wavelet transforms 
is the requirement for consistent, evenly spaced data in 
every time series. Full-scale environmental data rarely 
meet this requirement, due to events like equipment 
failure, equipment destruction during active mining, and 
long-term physical settlement of mine wastes with time. 
As a result, this study with real, unevenly spaced, full-scale 
data was greatly limited in the available applicable algo-
rithms, leading to one for spectral analysis (Lomb–Scargle, 
Sect. 2.1) and one for wavelets (Morlet, Sect. 2.2). While a 
comparison of results using several algorithms would have 
been informative, it was not possible, but may be possible 
in the future. (Section 8 lists potential future work.)

While unevenly spaced data can be interpolated, 
imputed, and mapped into evenly spaced data [8], this 
requires some pre-selection of an assumed distribution 
or trend. For the databases examined here, such interpola-
tion can mask or destroy fractal patterns and is thus not 

recommended as the first step for such full-scale environ-
mental databases.

2.1 � Spectral analysis

The minesite-drainage databases in this paper (Sect. 3), 
plotted as time series, were evaluated using least-squares 
spectral analysis to obtain a periodogram with a frequency 
spectrum. This involved statistical least-squares fitting of 
multiple sine waves, with differing wavelengths (frequen-
cies) and amplitudes, to the databases. Such fitting of sine 
waves, although sine waves are rounded and smooth, can 
still reliably address even non-curved or abrupt repeating 
patterns such as step (boxcar) and sawtooth when needed.

The least-squares technique used here is the 
Lomb–Scargle method [11, 12, 38, 61, 62, 66]. The 
Lomb–Scargle method is particularly suited for incomplete 
datasets with unequal spacing and data gaps, which are 
common in environmental monitoring due to unforeseen 
circumstances like equipment failure.

Statistical significance was dismissed so that log–log 
spectral slopes, like fractal 1-over-f slopes, could be evalu-
ated. This is discussed further in Sect. 4.6.

The specific Lomb–Scargle algorithm used here is pro-
vided, maintained, and operated by the California Institute 
of Technology on the NASA Exoplanet Archive website [5]. 
Results of the spectral analyses were downloaded from 
that website for further compilation and interpretation.

Fig. 3   Comparison of high-
frequency and low-frequency 
monitoring in a full-scale non-
mining catchment of aqueous 
chloride (top) and electrical 
conductivity (bottom) adapted 
from [35], showing the signifi-
cant loss of dynamic variation 
and reality in less frequent 
analyses
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Simplified explanations and examples of least-squares 
spectral analysis can be found in [41, 47], based on indi-
vidual and composited sine waves. A brief example is 
included here in Sect. 4.2.

2.2 � Wavelet transforms

This paper used a continuous, complex-valued Morlet 
wavelet, with a method [27] for handling the unevenly 
spaced and irregular minesite-monitoring data that invali-
date most other wavelet software. This limitation to a con-
tinuous, complex-valued Morlet wavelet is not considered 
a disadvantage here for three primary reasons.

First, the full-scale time series shown in this paper 
resemble composited sine curves, as illustrated below, 
with radio waves and ocean waves as simple analogues. 
The Morlet wavelet is a sine curve encased in a Gaussian 
window. Thus, it is a suitable choice for these types of time 
series.

Second, this Morlet wavelet is continuous. The other 
basic category of wavelet is “discrete”, which is less inten-
sive computationally and results in a smaller data file. This 
is why discrete wavelets are more popular and are used for 
image compression, like JPEG2000. However, the result-
ing discrete-wavelet diagrams can be heavily “pixelated” or 
“blocky”. As shown in Sect. 7 of this paper, it was important 
to use a continuous wavelet here to see the relatively “thin” 
wavelengths and time periods with significant wavelet 
power, which would be obscured by “pixelated” discrete 
wavelets.

Third, this complex-valued wavelet provided infor-
mation on periodicity because it provided both real and 
imaginary parts of the complex-valued coefficients. The 
real parts were used as an indication of periodicity in this 
study.

For each wavelet diagram in this study, many tens of 
thousands of complex-valued wavelet coefficients were 
obtained using Package “mvcwt” in the R Language ver-
sion 3.4.4 [59], with the Rstudio 1.1.447 user interface [60]. 
Results were plotted on 5000-by-5000 grids, using a base-
10 logarithm for wavelet scale. Wavelet scale is generally 
equivalent to wavelength in this case, due to the selected 
Morlet wavelet. Edge effects, scale leakage, and “detec-
tion limits” were included in the interpretations. However, 
statistical significance was dismissed at this time so that 
fractal patterns could be evaluated (Sect. 4.6).

The basic difference between spectral analysis and 
wavelet transforms is that spectral analysis looks at the 
entire monitoring interval, such as 10 years, as one unit. 
On the other hand, wavelet transforms look at consecu-
tive shorter portions of the monitoring interval, albeit with 
significantly fewer datapoints in the shorter portions. The 
mathematical reality is more complex than this simplified 
explanation [41].

Simplified explanations and examples of wavelet trans-
forms can be found in [41], based on individual and com-
posited sine waves. A brief example is included here in 
Sect. 4.2.

Future work (Sect. 8) on these databases will use alter-
native wavelet techniques for confirmation and refine-
ment of these initial interpretations. These techniques will 
include least-squares wavelet analyses that can accommo-
date unevenly spaced data [20–23].

3 � Minesite‑drainage databases

In order to reliably evaluate long-wavelength and short-
wavelength dynamics in full-scale minesite chemistries 
and flows, databases must contain high-frequency meas-
urements, such as hourly or daily, continuing for years to 
decades. Such databases are rare.

Table 1   Summary of the three 
minesite-drainage databases

References for these databases are given in the text
a Duration of monitoring varies among the stations; the longest duration is given here
b The numbers of datapoints (measurements of aqueous concentrations and flows) vary widely with sta-
tion and chemical element
c This database consists of two separate minesites located about 5 km apart

Minesite and deposit type Number of primary 
monitoring stations

Maximum 
duration 
(years)a

Approximate number of data-
points at each stationb

#1—Island Copper
Porphyry Cu ± Mo ± Au

9 15 Hundreds to tens of thousands

#2—Equity Silver
Subvolcanic Cu–Ag–Au (As–Sb)

8 23 Hundreds to thousands

#3—Bell and Granislec

Porphyry Cu ± Mo ± Au
15 31 Many dozens to hundreds
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Instead, minesite-drainage databases are typically 
based on:

•	 annual monitoring programs for regulatory or govern-
mental purposes with weekly, monthly, or quarterly 
sampling,

•	 occasional synoptic sampling, each providing a single 
“snapshot” in time of drainage chemistry around and 
downstream of a minesite or one of its components, 
and

•	 intensive high-frequency (e.g. hourly or daily) sampling 
at one location for only a few days or weeks.

Such monitoring databases are not sufficient here.
For this paper, three databases were chosen that con-

tained (1) high-frequency measurements as frequently as 
every 15 min continuing for years (inevitably with some 
gaps) and/or (2) less frequent measurements continuing 
for decades (inevitably with some gaps). These three data-
bases have been well documented in the past [see refer-
ences and data in 8, 9, 41, 46, 53]. They are summarized in 
Table 1 with selected time series shown in Figs. 4 and 5.

As part of their past documentation, these three data-
bases have been checked for erroneous outliers that were 
corrected or deleted, as explained in those past references. 
Nevertheless, it is worth repeating here, because the iden-
tification and the deletion of outliers in each database can 
strongly determine the subsequent interpretations.

For example, if a database of acid rock drainage (ARD) 
contains pH values mostly around 3.0, with one value of 
0.5, then the 0.5 is a geochemically unreasonable value 
and can be deleted. However, if pH values are around 3.0, 
with one value of 2.2, should that outlier be deleted?

The argument here is “no”, because it may not truly 
be an erroneous outlier. Instead, it could be a rare and 
extreme value [e.g. 6] that is an important part of a real 
trend like a fractal or chaos (Sect. 4.3). If that value is later 
found to be part of a fractal pattern, then it is likely not 
an erroneous outlier. If such a value were initially deleted 
as an erroneous outlier before interpretations, then a 
fractal pattern might not be identified. As a result, only 
very apparent errors were deleted from these databases 
as outliers, and the resulting interpretations in this paper 
(Sects. 6, 7) show this careful approach was justified.

4 � Conceptual development

As explained in Sect. 2, there are books written on spectral 
analysis and wavelet transforms, so a comprehensive sum-
mary is not possible here. Instead, the focus here is on the 
concepts and issues particularly applicable to time series 
of full-scale minesite drainage. The most important con-
cepts are signal filtering and generation (Sect. 4.1), perio-
dicity (Sect. 4.2), time-series fractals (Sect. 4.3), “1-over-f” 
(1/f ) fractal slopes from spectral analysis (Sect. 4.4), emer-
gence (Sect. 4.5), and statistical significance (Sect. 4.6).

4.1 � Signal filtering and generation

Minesite components, such as open pits, waste-rock piles, 
and tailings impoundments, can be envisioned as signal 
filters and generators. For an “input signal” such as water 
infiltration (left side of Fig. 6), a minesite component can 
filter this input signal and create a different “output signal” 
in the outflowing drainage water. When no input signal 
exists, such as undetectable aqueous concentrations of 
metals in the infiltration (right side of Fig. 6), then a com-
ponent can create a detectable output signal.

To be clear, this paper remarkably shows that full-scale 
minesite components act as reliable and persistent signal 
filters and generators. This happens despite these compo-
nents containing more than 106 tonnes of large, relatively 
young, highly disturbed, human-constructed masses of 
blasted and broken rock. This forms the basis of the fol-
lowing subsections.

4.2 � Periodicity

A fundamental concept here is that, through time, mine-
site-drainage flows and chemistries created by the signal 
filters and generators (Sect. 4.1) can display periodicity, 
that is, they generally repeat themselves in patterns. The 
most obvious pattern is seasonal values that approxi-
mately repeat every year, resulting in time-series perio-
dicity with a wavelength of 1 year. Such annual periodici-
ties, or oscillations, often display large seasonal variations 
(amplitudes) in values.

Minesite drainage can also display short-wavelength 
periodicities such as 1 day [e.g. 13, 54–56, 63], or even 
shorter and longer wavelengths. Daily amplitudes (vari-
abilities) are typically much less than annual amplitudes, 
as illustrated below.

The complexity here is that time series of minesite 
drainages can be composites of many periodicities of vary-
ing wavelengths and amplitudes. Approximately 200 years 
ago, Fourier analysis was first developed to identify and 
separate each significant wavelength and its amplitude 

Fig. 4   Examples of temporal trends in full-scale acidic minesite-
drainage chemistry at Minesite 1, spanning a few years, based on 
near-instantaneous samples from one monitoring location, col-
lected as frequently as every four hours. Note y-axis is arithmetic, 
not logarithmic like Fig. 5

◂
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from the others. Spectral analysis, used here (Sect. 2.1), is 
a generalization of Fourier analysis. Additionally, unlike 
spectral analysis, wavelet transforms used here (Sect. 2.2) 
look at discrete portions of the time series.

As simplified examples, the upper left side of Fig. 7 
shows a time series of sine waves with composited wave-
lengths of 1 year, 1 month, and 1 week. The amplitudes 

(ranges of highs to lows) decrease with decreasing wave-
length, and these amplitudes were carefully selected here 
to create a certain spectral slope across the major peaks 
during spectral analysis. As expected, spectral analysis 
produced a log–log periodogram with three major peaks 
at these wavelengths (right side of Fig. 7). The spectral 
slope connecting the three major peaks has a value of 
1.0 (also called a 1-over-f slope, see Sect. 4.4). The smaller 
peaks between the major ones are mathematical artefacts 
caused by the input data at discrete times appearing as a 
type of Dirac comb to the algorithm.

Also, as expected, the corresponding wavelet trans-
form created three horizontal bands of relatively strong 
wavelet power (darker colour) at the three wavelengths 

Fig. 5   Examples of temporal trends in full-scale minesite-drainage 
chemistry, spanning at least one decade, based on near-instanta-
neous samples. Upper row (Minesite 1): acidic drainage; middle 
(Minesite 2) and lower (Minesite 3) rows: near-neutral drainage. Left 
column: copper; right column: zinc. Note y-axis is log10 (concentra-
tion)

◂

Minesite Component
as a Signal Filter

Signal Filter and Signal Generator

Minesite Component
as a Signal Generator

Spectral plot
of Input

Spectral plot
of Output

Spectral plot
of Output

No significant
Input

Fig. 6   For minesite drainage, signal filtering by a minesite compo-
nent causes the spectral slope of the input signal (shown on the 
upper left as primarily random precipitation and infiltration with 
a spectral slope of zero) to change in the output signal (shown on 
the lower left as outflowing drainage water with a spectral slope of 

1.3); signal generation creates a spectral slope in the output signal 
(shown on the lower right as aqueous concentrations in outflowing 
drainage with a spectral slope of 1.0) where input concentrations 
were undetectable
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or scales (bottom of Fig. 7): at 1 year (log10 0.0), 1 month 
(log10 − 1.1 years), and 1 week (log10 − 1.7 years). Because 
the time series was consistent for all three years in this 
example (upper left of Fig. 7), the horizontal wavelet bands 

persist for all three years. However, if one wavelength was 
missing in Year 3 in the time series, for example, then the 
horizontal band for that wavelength would also be missing 
in Year 3 from the wavelet transform.

Fig. 7   (Upper left) three-year time series of combined sine waves 
with wavelengths of 1  year, 1  month, and 1  week, and with 
amplitude decreasing with decreasing wavelength; (upper right) 
log–log periodogram from spectral analyses of this time series 
showing major peaks at 1 year, 1 month (0.083 years), and 1 week 
(0.02 years) with a spectral slope of 1.0 connecting the peaks; (bot-

tom) wavelet transform of this time series showing dark-coloured 
horizontal bands of strong wavelet power persisting for all three 
years at scales (wavelengths) of 1 year (log10 0.0), 1 month (log10 
− 1.1 years), and 1 week (log10 − 1.7 years), and power decreasing 
(lighter colour) with decreasing wavelength of the three bands
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4.3 � Time‑series fractals

The identification and separation of composite periodici-
ties and amplitudes can reveal patterns, which leads to the 
next important concept: fractals. In its basic form, a fractal 
is a repeating pattern that looks the same as one zooms 
in closer and closer to the object. Terms associated with 
fractals include “self-similar at various scales” and “scale 
independent”.

Fractals in two and three spatial dimensions are well 
documented and beautiful in appearance. An Internet 
search will show many, such as the Mandelbrot set.

Less well documented (and still beautiful in this author’s 
opinion) are “one-dimensional” line fractals, particularly for 
time series. This is an important distinction. Time-series 
fractals cannot reverse like spatial fractals, but can only 
move forward unidirectionally in time due to the Arrow 
of Time.

In reality, fractals are fractionally dimensional. As a 
result, a “one-dimensional” fractal drawn as a line actually 
has a fractal dimension between 1.0 and 2.0, but this com-
plexity is ignored in the simplistic terminology used here.

Around the mid-1800s, the equation for these “one-
dimensional” line fractals (long before they were called 
“fractals”) was published. It is now known as the Weier-
strass equation or function and is a summation of an infi-
nite series of cosine or sine waves of varying wavelengths 
and amplitudes. A plot of the first five terms of this series 
is shown in Fig. 8. This plot resembles Figs. 4 and 5, sug-
gesting they are also fractal, which turns out to be the case 
(Sect. 6).

Spectral analysis of time series is a primary method 
for identifying a fractal time series, where a line connect-
ing the major spectral peaks plot as a straight line on 
a log–log plot of wavelength (or its inverse, frequency) 
and spectral power (proportional to the square of the 
amplitude). This is also known as “power laws”.

For minesite drainage (Sect.  6) and non-mining-
related drainages (Sect. 5), the dominate range of spec-
tral slope is from zero (with zero slope signifying ran-
dom or “white noise”) to two (signifying random walk or 
“red noise”). One important slope lies at 1.0 (upper right 
of Fig. 7), also called “1-over-f” slope and “pink noise” 

Fig. 8   The one-dimensional 
fractal Weierstrass equation 
adjusted to a dominant one-
year wavelength, showing 
the composite of the first five 
terms of the infinite series; 
compare with Figs. 4 and 5
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(Sect. 4.4). Other slopes can be seen at the bottom of 
Fig. 6 and in Sect. 6.

4.4 � 1‑over‑f spectral slopes

As explained in Sect. 4.3, spectral slopes in mining- and 
non-mining full-scale catchments often lie between zero 
(random) and two (random walk). A slope of one is so spe-
cial that it is often referred to as “1-over-f” (1/f ) or “pink 
noise”.

This 1-over-f slope represents a dividing line between 
various mathematical and statistical features such as frac-
tal models, statistical stationarity, and change in statisti-
cal variance as scale and wavelength change [25]. Thus, a 
1-over-f slope, as a dividing line, is theoretically not stable 
and should not persist.

Remarkably, 1-over-f slopes have been documented in 
many sciences and arts. Here is a partial list of their occur-
rence [compiled in 47]: earthquakes described through 
the Gutenberg–Richter law, climatic temperature and 
precipitation, highway traffic flow, river flow, tides, heart 
beats, neural activity, biologic evolution, solar flares, 

psychological models of mental states, light from qua-
sars, electrical current in solid-state devices, epidemics, 
variations in musical styles, insulin uptake by diabetics, 
economic trends, forest fires, application of automotive 
paint, and cavitation in pumps.

This glaring discrepancy has led researchers to say:

We became obsessed with the origin of the mysteri-
ous phenomenon of 1/f noise, or more appropriately, 
the 1/f ‘signal’ that is emitted by numerous sources 
on earth and elsewhere in the universe. [6]
. . . the ubiquity of 1/f noise is one of the oldest puz-
zles of contemporary physics and of science in gen-
eral. [67]

Explanations for 1-over-f slopes range from coincidence, 
to overlap of individual processes and filters (e.g. Fig. 9), 
to self-organized criticality (SOC). SOC was summarized 
by [6]:

… complex behavior in nature reflects the ten-
dency of large systems with many components to 
evolve into a poised, ‘critical’, state, way out of bal-
ance, where minor disturbances may lead to events, 

Fig. 9   Overlap of individual 
process having partial spectral 
slopes of zero and two, result-
ing in a single 1-over-f slope 
as one potential explanation 
(adapted from [47])
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called avalanches, of all sizes. Most of the changes 
take place through catastrophic events rather than 
by following a smooth gradual path. The evolution 
of this very delicate state occurs without design from 
any outside agent.

As explained in Sect. 3, the identification and deletion 
of outliers in the mining databases used here were done 
carefully with the intent of not deleting the critical “cata-
strophic events”. This is also why statistical significance was 
not included here in spectral analysis and wavelet trans-
forms (Sect. 4.6).

4.5 � Emergence

As emphasized several times, this paper focusses on drain-
ages from full-scale minesite components to understand 
the real environmental dynamics and the potential effects 
on downstream ecosystems. This is due to a concern over 
emergence. Smaller-scale laboratory-based and on-site test 
work might be more thorough with less data gaps than 
full-scale databases (Sect. 3), but the smaller-scale test work 
would not likely characterize the full scale reliably.

Emergence can generally be defined as the appear-
ance of distinct patterns or properties as scale increases, 
often attributed to self-organization in complex systems. 

Fig. 10   Examples of spectral slopes from Minesite 1
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For example, “the whole becomes not merely more, but 
very different from the sum of its parts” [3]. Also, “Meaning 
is found in the effective theories or models developed to 
explain a particular phenomenon at its appropriate level 
[scale] of description.” [16]

In fact, for minesite drainage, small-scale laboratory 
results were found to be complex even at the scale of 1 kg 
[46]. However, this small-scale complexity was notably dif-
ferent than full-scale complexity. Thus, this paper focusses 
on drainage from full-scale minesite components.

4.6 � Statistical significance

Common statistical significance, for example based on t 
tests, Z tests, and F test, plays important roles in statistical 
analysis, but should not always be applied rigorously. Sta-
tistical significance can be assessed for spectral analysis and 
wavelet transforms in more complex ways [e.g. 65]. How-
ever, others argue successfully why statistical significance 
should sometimes be discounted or ignored [e.g. 68–70].

This study ignores statistical significance for a simple 
reason. Fractal distributions are common, even universal, 

Fig. 11   Examples of spectral slopes from Minesite 2
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in drainages from mining-related and non-mining-related 
catchments (discussed further in Sects. 5, 6, 7). This means 
that very weak power peaks, which would not be statisti-
cally significant by standard tests, are important parts of 
fractal interpretations. For example, the dismissal of minor 
peaks starting in Fig. 7 (top right) and subsequent figures, 
that are only 1% to 10% of the maximum peak and thus 
not likely statistically significant in a general sense, would 
preclude the assessment of 1-over-f slopes.

Statistical significance has its place. However, that does 
not necessarily include fractal time series of drainages 
from full-scale minesite components unless performed 

with careful knowledge of the fractal pattern. This paper 
is the first step in delineating those fractal patterns in 
minesite drainage, so statistical significance may become 
important later (Sect. 8).

5 � Previous work

For minesite drainage exclusively, years of searching paper 
documents and the Internet have failed to yield any pre-
vious full-scale studies focussed on spectral analysis and 

Fig. 12   Examples of spectral slopes from Minesite 3
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wavelet transforms, other than those related to this paper 
[41, 45–49]. Therefore, this is a novel application of both 
spectral analysis and wavelet transforms.

However, for full-scale non-mining catchments, excel-
lent work with spectral analysis was conducted, primar-
ily between the years of 2000 and 2013, by Kirchner and 
colleagues [e.g. 4, 18, 24, 31–37]. For these non-mining 
catchments, spectral analysis of high-frequency analyses, 
including up to dozens of chemical elements and param-
eters, showed that fractal 1-over-f slopes were so common 
as to sometimes be called “universal”. However, these past 

papers did not include wavelet transforms which provide 
additional information on shorter intervals (e.g. Fig. 7).

Therefore, 100% of every non-mining catchment with 
sufficient high-frequency monitoring over a long period of 
time showed at least some fractal 1-over-f slopes. As pre-
sented in this paper (Sects. 6, 7), this 100% occurrence in 
high-frequency monitoring also applies to the few detailed 
databases for full-scale minesite drainage (Sect. 3).

Where this long-term high-frequency monitoring is 
lacking in other studies, the data are treated stochastically 
or deterministically, yet both could be incorrect. There 

Fig. 13   Examples of spectral slope anomalies from the three data-
bases, showing discontinuities, ranges of wavelengths with two 
slopes of spectral power, and changes in spectral slope at specific 

wavelengths. This can be explained with simple simulations, as 
shown in Fig. 14, and thus reflect real full-scale processes active in 
minesite components
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would be no way to be certain without high-frequency 
monitoring.

6 � Results of spectral analyses

Most spectral slopes for all three databases (Table 1) gen-
erally followed straight lines on the log–log plots over at 
least two orders of magnitude of wavelength. This indi-
cated their practical fractal nature. Some of these spectral 
slopes are shown in Figs. 10, 11, and 12, and hundreds 
more can be found in the appendices of [47].

Spectral analyses of drainages from non-mining catch-
ments found 1-over-f fractal spectral slopes so common 
as to be “universal” in some catchments (Sect. 5). Spec-
tral analyses of the three full-scale drainage databases 
examined here (Sect. 3) showed that 1-over-f slopes were 
indeed common. However, other slopes between zero and 
approximately 2.5 were also observed for drainage flows 
and aqueous elements.

The 1-over-f slopes occurred for parameters as diverse 
as pH, alkalinity, aluminium, zinc, electrical conductivity, 
and flow (Figs. 10, 11, 12). Nevertheless, 1-over-f slopes 
could exist for parameters like zinc at some minesites 
(Fig. 11), but be virtually zero (random) for zinc at others 
(Fig. 12).

In general, most spectral slopes of aqueous elements 
at the minesites did not match the corresponding slopes 
of flow. This further supports the widely observed general 

independence of full-scale flow and full-scale chemistry 
from minesite components [e.g. 47, 51, 52].

Electrical conductivity reflects the ionic content of 
water and is easily and frequently measured in-field with 
a probe, metre, and data logger. However, at many moni-
toring stations, conductivity displayed significant spectral 
differences from those of individual elements. As a result, 
the high-frequency measurement of this easily measured 
in-field parameter would not have been a reliable surro-
gate for laboratory-based chemical analyses, which was 
also observed in non-mining watersheds (Sect. 5).

At Minesite 2 (Fig. 11), drainage from the waste-rock 
pile originates as a poorly constrained combination of (1) 
infiltration through the fine-grained soil cover placed at 
closure and (2) upwelling groundwater from the upgradi-
ent, undisturbed catchment. Because these two sources 
mix together before exiting the waste rock, they cannot 
be readily differentiated. However, based on upgradient 
monitor wells and on variations in infiltration through the 
cover, the two sources could be distinguished based on 
the relative spectral power of the two peaks at 0.5 and 
1.0 years (e.g. bottom left and bottom right of Fig. 11). In 
effect, the spectral peaks can sometimes act as a “tracer” 
of the original water sources.

Of note, spectral analysis assumes the entire record of 
data repeats consistently. If this is not the case, spectral 
analysis can yield unusual results that could be consid-
ered “errors”. However, if such errors are caused by real 
processes and events, then the erroneous results lead 

Fig. 14   Spectral analyses of simple spreadsheet models with major variations in seasonal upstream water retention by ponds or aquitards, 
explaining anomalies observed for full-scale drainage in Fig. 13 (adapted from [49])
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to important observations about the full-scale minesite 
component.

For example, Fig.  13 contains anomalous full-scale 
spectral slopes including (1) discontinuities in spectral 
power, (2) ranges of wavelengths with two slopes of spec-
tral power, and (3) changes in spectral slope at specific 
wavelengths. Relatively simple hypothetical simulations 
(Fig. 14) with spreadsheets show that these anomalies can 
be explained by major seasonal changes in water reten-
tion by upstream ponds or subsurface aquitards [49]. Such 
upstream retention was not visibly apparent in some full-
scale minesite components, yet apparently affected the 
periodicities of the flows and chemistries of the drainage 
waters passing those monitoring points.

7 � Results of wavelet transforms

With wavelet transforms, the primary interest here is (1) 
the length of time that periodicity at a particular wave-
length persists (horizontal bands of darker colour, bottom 
of Fig. 7) and (2) a short-lived increase in periodicity across 
many wavelengths (vertical bands of darker colour). Wave-
let transforms for the three full-scale minesite databases 
(Table 1) are shown in Figs. 15, 16, 17, 18, and 19, and doz-
ens more can be found in the appendices of [41].

Figure 15 contains wavelet transforms for a monitoring 
station at Minesite 2, with aqueous copper at the top and 
aqueous zinc at the bottom. The overall temporal trend in 
copper over the decades was towards lower concentra-
tions, and the top of Fig. 15 shows this was accompanied 
by a trend towards relatively weaker periodicity (lighter 
colours) at many wavelengths (“scales”). The orange-
coloured spikes at the bottom represent missing data at 
those wavelengths.

Fig. 15   Wavelet transforms for aqueous copper (top) and zinc (bot-
tom) at a monitoring station at Minesite 2, showing the periodic-
ity of copper decreasing (lighter colour) across many wavelengths 

(scales) through the years and the periodicity of zinc increasing 
(darker colour); orange-coloured spikes rising from the bottom rep-
resent missing data at those wavelengths (frequencies)
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In contrast, zinc generally increased in concentrations 
through the decades (bottom of Fig. 15). This was accom-
panied by relatively increasing periodicity at wavelengths 
such monthly (log10 − 1.1) and half-monthly (log10 − 1.4). 
Periodicity particularly strengthened around Mine Year 14, 
when the minesite closed and a fine-grained soil/till cover 
was completed to reduce infiltration into the waste-rock 
pile.

At two nearby monitoring stations, the wavelet trans-
form for drainage flow showed some increase in periodic-
ity when the minesite closed in Mine Year 14 (Fig. 16), with 
slightly darker, vertical bands of strong periodicity typically 
occurring in very wet spring months (April–June) with high 
precipitation and snowmelt. Notably, these vertical bands 
of periodicity in spring increased significantly in strength 
starting in Mine Year 18. This is interpreted as weakening 
of the soil cover’s ability to reduce and smooth high spring 
infiltration after only four years of closure. Although flow 
was affected this way, corresponding aqueous chemistry 
was not (see pH in Fig. 17), consistent with the common 

observation of general independence between full-scale 
flow and its corresponding aqueous chemistry.

For minesites with acid rock drainage (ARD) from sul-
phide mineral oxidation, near-neutral pH can only be 
maintained if neutralizing minerals such as calcite (CaCO3) 
are sufficiently and aggressively reactive and long-lasting. 
Where this rapid neutralization is occurring, dynamic geo-
chemical tension is high [41] and, like stretched and oscil-
lating coiled springs, periodicities of the relevant aqueous 
parameters are high at many wavelengths. For example, 
several persistent horizontal bands of strong periodicity 
can be seen in wavelet transforms of alkalinity and calcium 
from a monitoring station at Minesite 1 with ongoing sul-
phide oxidation and acid generation (Fig. 18).

In full-scale waste-rock piles with more than 106 
tonnes of broken, blasted, and unsorted rock, long-term 
ongoing breakage and settling of the rock is typical and 
expected but rarely documented. Like an “avalanche” [6] 
(see also Sect. 4.4), an extreme degree of such breaking 
and settling should occur rarely. From a geochemical 

Fig. 16   Wavelet transforms for flow at two monitoring stations at 
Minesite 2, showing some increase in spring-time periodicity (ver-
tical bands of darker colour) after the minesite closed and a fine-
grained soil/till cover was completed in Mine Year 14; significant 

increases in spring periodicity at many wavelengths at Mine Year 
18 suggest high spring infiltration could not be as reduced and as 
smoothed as before; orange-coloured spikes rising from the bot-
tom represent missing data at those wavelengths (frequencies)
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perspective, this can appear as a short disruption in 
aqueous concentrations.

At Minesite 2 with strong ARD, such a disruption 
was detected around Mine Year 21–22 as short-term 
increases and decreases in concentrations of acidity 
(Fig. 19). The wavelet transform (right side of Fig. 19) 
showed this occurred as briefly increased periodicities 
across a large range of wavelengths (scales) as a thin ver-
tical band of darker colour. Such brief peaks of aqueous 
concentrations can cause additional adverse impacts on 
downstream ecosystems (discussed in Sect. 1), but are 
rarely detected by common, low-frequency monitoring 
at minesites.

When wavelet transforms from all three databases 
(Table  1) are compiled, strong periodicities at certain 
wavelengths are common. The two most common wave-
lengths are:

•	 one year (annually), likely due to annual Canadian cli-
mate cycles, and,

•	 one week, which is not a commonly expected strong 
cycle but detected at all minesites, except at Granisle 
which did not have the higher-frequency monitoring 
to check for it.

The physical, geochemical, and/or biological pro-
cesses accounting for the common weekly periodicity 
are not readily apparent, but are obviously common 
and important. This weekly periodicity persisted even 
through major changes in pH, showing the processes 
causing weekly oscillations were not strongly pH 
dependent. Moreover, the persistent periodicity through 
major changes in pH and aqueous chemistry showed 
there was no chaotic behaviour, in the mathematical or 
general sense of the word [40].

Other wavelengths, common for at least two of 
the minesites, were: equal to or greater than 10 years, 
approximately 4 months, and half-monthly to monthly. 
Because Minesite 1 was the only one to have data as 
frequent as every 15 min, it was the only one to produce 
strong periodicities at wavelengths of 1 day and less.

Fig. 17   Wavelet transforms for pH at the same monitoring stations as Fig. 16, but showing no increased spring-time periodicity at Mine Year 
18 as shown by drainage flow; orange-coloured spikes rising from the bottom represent missing data at those wavelengths (frequencies)
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Fig. 18   Wavelet transforms for aqueous alkalinity and calcium at 
a monitoring station at Minesite 1, showing strong periodicities 
(darker horizontal bands) at many wavelengths as calcite (CaCO3) 

rapidly neutralizes acidity generated by sulphide mineral oxidation; 
orange-coloured spikes rising from the bottom represent missing 
data at those wavelengths (frequencies)

Fig. 19   Time series (left) and wavelet transform (right) for acidity at 
a monitoring station at Minesite 2, showing a brief instability with 
strong periodicities across wavelengths (vertical darker-coloured 

band) in Mine Years 21 and 22; orange-coloured spikes rising from 
the bottom of the wavelet transform represent missing data at 
those wavelengths (frequencies)
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8 � Future work

This study is the first step in the detailed characteriza-
tion and explanation of oscillations in full-scale minesite 
drainage. The ultimate goal is to understand and predict 
more reliably (1) these dynamic physical flows and aque-
ous chemistries of the drainages and (2) their consequent 
impacts on downstream/downgradient ecosystems not 
often detected and explained by current regular moni-
toring (e.g. Fig. 3).

As the first step, several paths of future work and 
interpretation are available, although heavily limited by 
the unevenly spaced data in full-scale databases. These 
include:

•	 application of other wavelets, such as the Mexican Hat 
which can better characterize the infrequent disconti-
nuities,

•	 least-squares wavelet analysis which accommodates 
unevenly spaced data [20–23],

•	 finely scaled discrete wavelets,
•	 other non-spectral time-series techniques for examin-

ing periodicity in unevenly spaced environmental data,
•	 closer examination of narrow wavelengths with signifi-

cant spectral and wavelet power,
•	 implementation of statistical techniques like binning 

as well as appropriate statistical significance, and
•	 any newly developed algorithms that accommodate 

unevenly spaced environmental data.

9 � Conclusion

This paper has applied both spectral analysis in the 
wavelength-frequency domain and continuous wavelet 
transforms to drainages from full-scale minesite compo-
nents. These components were located at three minesites 
with (1) high-frequency measurements as frequently as 
every 15 min continuing for years (inevitably with some 
gaps) and/or (2) less frequent measurements continuing 
for decades (inevitably with some gaps). The monitoring 
databases were cleaned only by deleting very obvious out-
liers and ignoring statistical significance, so that extreme 
events and fractal patterns could be detected in this initial 
evaluation.

Important concepts in the application of spectral analy-
sis and wavelet transforms included signal filtering and 
signal generation by minesite components, periodicity, 
time-series fractals, 1-over-f spectral slopes, emergence, 
and statistical significance. This is a novel application for 
minesite drainage, but spectral analysis without wavelet 

transforms has been applied previously to full-scale non-
mining catchments.

The non-mining spectral analysis showed that fractal 
1-over-f spectral slopes were so common as to be “univer-
sal” in some catchments for dozens of aqueous elements 
throughout the Periodic Table. Therefore, 100% of non-
mining catchments with sufficient high-frequency moni-
toring over a long period of time showed fractal 1-over-f 
slopes.

Similarly, for all three minesite-drainage databases 
examined here, 1-over-f fractal slopes were common, 
but other slopes mostly between zero and 2.0 were also 
found. In particular, spectral slopes of flow often differed 
from the slopes of the aqueous elements it carried, sup-
porting the common observation that full-scale flows 
are generally independent of the corresponding full-
scale aqueous chemistries. Spectral analysis also indi-
cated electrical conductivity, which is easily measured at 
high frequency, is not necessarily a reliable surrogate for 
chemical analyses of individual elements. At one mine-
site, the relative strengths of two spectral peaks could be 
used as a “tracer” to distinguish two sources of inflowing 
water.

Additionally, spectral analyses produced anomalous 
full-scale spectral slopes including (1) discontinuities in 
spectral power, (2) ranges of wavelengths with two slopes 
of spectral power, and (3) changes in spectral slope at spe-
cific wavelengths. While these can be considered “errors”, 
relatively simple simulations showed that these anoma-
lies can be explained by major seasonal changes in water 
retention by upstream buried ponds or subsurface aqui-
tards. In other words, the errors pointed to real full-scale 
processes that may not otherwise be detected.

Whereas spectral analysis evaluates an entire time 
series as a unit, wavelet transforms evaluate shorter por-
tions of a time series, albeit based on fewer datapoints 
in the shorter portions. Wavelet transforms for the three 
minesite-drainage databases provided important obser-
vations such as (1) the increasing or decreasing strengths 
of periodicity and oscillation with time, (2) the differ-
ing periodicities and strengths between physical drain-
age flows and their aqueous chemistries, (3) the effect 
of closing a minesite and placing a fine-grained soil/till 
cover over a waste-rock pile, (4) the strong periodicities 
caused by pH-neutralizing minerals forced to dissolve 
quickly in response to acid-generating sulphide oxida-
tion, and (5) the extreme but short-lived events when 
periodicities in aqueous concentrations increase sharply 
across a large range of wavelength.

Based on all three minesite-drainage databases, the 
most common wavelengths for strong, persistent perio-
dicities were 1 year and 1 week. Whereas strong perio-
dicity over 1 year is expected based on annual Canadian 
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climate cycles, plausible explanations for 1 week are not 
apparent. Other wavelengths of strong periodicity for 
at least two minesites were 10  years, approximately 
4 months, and half-monthly to monthly. The minesite 
with data as frequent as every 15  min also showed 
strong periodicities over 1 day and less.
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