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Abstract
The present study aims to give a comprehensive account of the sedimentological characteristics and sedimentary pro-
cesses action on Nile Delta coastal lagoon. The study carried out on 15 surficial sediments samples collected from 
Lake Burullus. Through a detailed sedimentary texture study and using applications (CM diagram, bivariate diagrams 
and multivariant linear discriminant functions) sediment source, transportation and accumulation of Lake Burullus are 
suggested. Results revealed that the increased coarse fractions northward near inlets were due to wave actions which 
indicate the high-energy transporting environments. Moreover, Areas of drains effluents, fine fractions are trapped and 
deposited directly after the entering of the lagoon, then it well-ordered by hydraulic sorting. Mean grain size is mostly 
controlled by sediments sources. Sediment sorting is mainly poor indicating turbulent conditions. Skewness results 
indicate that lagoon is classified as environments undergoing depositional trends spatially southward. The CM divulges 
that the deposition takes place by homogenous suspension and rolling. With strong freshwater processes signatures, 
turbidite deposition, and siltation are more than truncation in the main transportation mode.

Keywords Lake Burullus · Coastal lagoon · Sedimentological characteristics · Sediments transportation · Nile Delta

1 Introduction

Lagoons are coastal bodies of water that have limited 
connection to the open sea; at least one or more of inlets. 
Lagoons usually located parallel to the shore. Along many 
coastlines, a lagoon is separated from open sea by a bar-
rier. Barriers are composed of sand and/or gravel mate-
rial, it are largely built up as results of wave action. Bar-
riers range in size from less than 100 m wide to several 
kilometers. Lagoons are characteristically very shallow, 
reaching only a few metres in depth [48]. A lagoonal sedi-
ments is typically mudstone, frequently organic-rich, with 
thin, wave-rippled sand lamina [3]. In present study, we 
work on the Burullus Lake as a good example of coastal 
lagoons, Lake Burullus is one of “Egyptian” Mediterranean 
coasts lagoons, which represents Ramsar site and has been 
declared as a natural protectorate in 1998. It is a perfect 

coastal wetland depositional basin that received marine 
and freshwater from two main sources, Mediterranean 
Sea water via El-Borg outlet (a natural water pass) and 
freshwater from several other drains [54]. Coastal lagoons 
have great geological and ecological importance due to 
their special hydrological features, it is acting as transi-
tional sites between terrestrial and marine environments. 
In addition to food supply, flora and fauna diversity, and 
biomass productivity.

Grain-size distribution, light minerals petrography, 
surface morphology, and rounding of quartz grains and 
heavy-mineral assemblage’s compositions are different 
techniques that has been widely used for defining sedi-
ments sources, depositional environment, and transporta-
tion mode. Each of them indicates its specific information, 
which complements the other data [23, 26, 31–33, 59, 61].
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Sediments show spatial variations in their textural 
parameters within the same environment, depending 
on its transporting processes. Three mechanisms control 
the grain size trends: abrasion of sedimentary particles, 
hydraulic sorting, and different sources mixed materi-
als [49, 57]. Accordingly, the study of the relationship 
between grain-size distributions and sediment mode of 
transportation explain sediment transportion agents and 
their depositional environment [27–29, 36, 38, 42, 43, 45]. 
Studies of grain size distribution indicate basic relation 
between properties of sediments and their depositional 
environment [11, 16, 17, 33, 38, 58, 60]. Furthermore, sedi-
ment aggregations, transport processes, the sedimenta-
tion conditions, transport-related features, deposition, 
gravitational circulation, and tidal trapping are different 
factors controlling grain size distribution even if it acted 
separately or combined [11, 33, 38, 60].

Moreover, the physical, chemical, and biological param-
eters are considered the main regulators governing sedi-
mentation in lakes and rivers. The physical processes are 
predominating in rivers, particularly those associated 
with the unidirectional flow of water. While the chemical 
and biological processes generally have equal or greater 
effects than physical in lakes. Furthermore, the physical 
processes acting on lakes are varied than those acting on 
rivers. Not only unidirectional flow from fluvial input, but 
also the action of wind and waves and gravitational pro-
cesses have great effects on sedimentation processes [50]. 
Coastal lagoons are usually located at termini of irrigations 
systems, making them a depositional pool with a unique 
depositional system because it is characterized by bi-direc-
tional horizontal flows and strong changes in residence 
time. The continuous inflow of fresh and marine-water 
cause large temporal and spatial variations in sediments 
characteristics and distribution [3, 4, 10, 35].

One of most important indicators of depositional envi-
ronments is sediment texture. It used as a proxy for poten-
tial storm transport and it may used with other parameters 
to differentiate whether sediments come from the sea or 
from the land. Also, in lagoons it may used to provide a 
relevant geomorphic setting to track palaeostorm activ-
ity [21].

The present study aims to deeply understand and inter-
pret the textural features as indicators for both of sedimen-
tological characteristics and sedimentary processes acting 
on Lake Burullus; as a perfect site of the coastal lagoon; 
in terms of special variation in grain size distribution, 
mode of transportation, and origin of the depositional 
environment.

2  Materials and methods

2.1  Study area

Burullus Lagoon is the second largest Egyptian Medi-
terranean coastal lagoon (53 km length, 13 km width, 
and 0.5 to 2.5 m depth). It is located in the center of the 
Nile delta. It lied between the two main Nile branches 
Rosetta to the west and Damietta to the east. It has an 
elongated elliptical shape between longitudes 30°31′ 
and 31°05′ E and latitudes 31°25′ and 31°35′N (Fig. 1). 
The Lagoon is connected to the Mediterranean Sea by 
El-Burg inlet, which is located at its northeast side and is 
separated from the sea by coastal strip, consisted mainly 
from sand sheets and dunes (0.4 to 5.5 km width) [7]. 
Burullus Lagoon receives drainage water through eight 
drains in addition to fresh water from Brimbal Canal 
(southwestward) [37].

2.2  Sampling

During December 2016, fifteen sediment samples were 
collected from the investigated lagoon to cover all the 
lagoon area, each location were selected to represent 
different depositional characteristics of each site e.g. 
near inlet, near drain effluents, and lagoon main basin 
(Fig. 1). Samples were collected using Ekman dredge 
sampler (with volume of 30 cm3). Lagoonal bottom sedi-
ment samples were packed in air-tight polythene bags, 
Then subsamples of the sediments were oven dried at 
105 ̊C to constant weight for analyzing uses.

2.3  Analysis

2.3.1  Grain size analysis

Half of each sample was put in a beaker then HCl (10%) 
and anhydrous crystals of SnCl were added to remove 
carbonates and salts, and then washed.  H2O2 (30%) were 
added to remove organic matter [14]. Finally, the sam-
ples were washed with distilled water and stirred until 
no flocculation was observed. Sediment was dried in an 
oven at 105 °C.

After the quartering of the dried sample, the grain 
size analysis was processed by dry sieving technique. 
The sieves set were arranged where one phi interval 
separated each sieve form the other (seven sets arranged 
from 2 mm to 0.063 mm and pan: to collect mud fraction 
less than 63µ) [15]. Each sample contains mud fraction 
(less than 63 µm) more than 5% were analyzed using the 
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pipette method described by Carver [5] and Folk [15]. 
The grain size data obtained was represented by using 
arc GIS 10® program to present the interpolation of grain 
size distribution over all of studied lagoon.

Textural parameters Cumulative curves were plotted on 
a semi-log probability scale. Textural parameters (mean 
size  (Mz), median (Md) sorting (σI), skewness  (SkI) and kur-
tosis  (KG)) were calculated according to Folk and Ward [16] 
and Folk [15].

The data of textural parameters obtained was rep-
resented by using arc GIS 10® program to present the 
interpolation of grain size distribution over all of studied 
lagoon.

2.3.2  Mode of transportation

By using results obtained from grain-size, CM diagram 
(Where the values of “C” the first percentile are plotted 
against the “M” median grain diameter) and truncation 
lines at inflection points of the cumulative curves have 
been drawn to identify the mechanics of transportation 
[33, 39–41, 58]. Two bivariate diagrams were used in the 
present work following Friedman [17, 18] and Moiola and 
Weiser [30] diagrams in which plotting skewness vs sort-
ing, mean size vs sorting, respectively.

The deposition environment of lagoon sediments has 
been illustrated according to Sahu [52] by using multi-
group, multivariant linear discriminant functions. The fol-
lowing equations are used for calculating V1 and V2 func-
tions, adopting the Eigen-vector matrices of Sahu [52]:

where MZ; (σI)
2; SKI and KG are mean size, variance, skew-

ness, and kurtosis, respectively.

3  Results

3.1  Grain size analysis

The results revealed that the sediments of the studied 
lagoon are a mixture of sand and mud (Generally, muddy 
sand), even though coarser fractions; gravel fraction; are 
distributed in rare sites. It is represented as shells and 
shell fragments. Gravel size reaching to 44.52% at the 
north-central area of lagoon (site 11). The sand fractions 
were the dominant fraction. Sand sizes varied between 
(12.79–92.12%) (site 15 (front of Brembal Canal) and 
site 2 (front of Boughaze area), respectively). Fine sand 
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Fig. 1  Sampling locations of 
sediment samples from Burul-
lus Lake
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(reached to 61.14% at site 3; Boughaz area) and very fine 
sand (reached to 37.24% at site 4; west to Boughaz) were 
the dominant sand fractions with less amount of other 
sand fractions (Table 1). The mud fraction (silt and clay) 
of the surficial sediments of the investigated lagoon is 
dominated by silt fraction (< 3.15–45.31%; 4–63 µm) at 
the north-central area of the lagoon at site 11 (Mastaroh 
area) and eastward at site 1 (front of East Burullus drain 
area), respectively. Additionally, various amounts of clay 
fraction (0.82–7.44%; < 4 µm) were obtained at site 2 (front 
of Boughaze area) and south-westward at site 15 (front of 
Brembal Canal). Silt fractions were represented by coarse 
and medium and fine silt (reached to 23.29, 16.35 and 
48.06%, respectively) with lesser amounts of fine silt frac-
tions (Fig. 2 and Table 1).

Sediment type varies depending on sampling sites. 
Generally muddy sand was dominant eastward and central 
areas of Lake Burullus, whereas far west at site 15 (front of 
Brembal Canal) was sandy mud. In addition, depth controls 
the sediment type. It directly proportion with both of mud 
and clay distribution (r = 0.79 and 0.76, respectively) (Fig. 2 
and Table 1).

3.2  Textural parameters

The main size fluctuates between coarse sand (0.75Ø) 
northward at site 11 (Mastroh area) and medium silt 
(5.77Ø) at site 15 (front of Brembal Canal area). Generally, 
sorting is poorly sorted (1 to 2Ø) at all of the lagoon region 
except at site 2 (Boughaze area) it is medium well sorted 
(0.6Ø). The skewness is generally very fine skewed east-
ward, and fine-skewed at the central area of the lagoon, 
while is coarsely skewed (− 0.28) south-westward. Kurtosis 
varies between very lepto-kurtic (0.51) northward at site 
11 (Mastaroh) and very platy-kurtic at westward at site 12 
(Abu Amer area) (Fig. 3 and Table 2).

3.3  Mode of transportation and depositional 
environmental interpretation

3.3.1  Application of the CM diagram

By using of CM diagram, results of grain-size distributions 
of lagoon sediments have been studied with the inten-
tion of explaining the mechanism of transportation and 
deposition. Where the values of “C” the first percentile are 
plotted against the “M” median grain diameter.

According to Passega [39, 40], Passega and Byramjee 
[41] and Mycielska-Dowgiałło and Ludwikowska-Kędzia 
[33] results indicate that mode of transportation of most 
of the lagoon areas are homogeneous suspension (S-R) 
(Boughaz area (2), eastward (sites 3, 5, 6), northward (site 
4), southward (site 7) and westward (sites 10, 12)). While 

the mode of transportation of sediments of sites 8, 9, 11, 
13 and 14 are by rolling. The pelagic suspension is rep-
resented only by area facing Bermbal Canal (site 15). 
Whereas only site 1 is suspension with some rolling (Fig. 4 
and Table 3).

3.3.2  Truncation lines at inflection points of the cumulative 
curves

Concerning the modes of sediment transportation, 
according to Visher [58] and Mycielska-Dowgiałło and 
Ludwikowska-Kędzia [33] Burullus lagoon sediments 
showed that truncation between traction and saltation 
highest value is recorded at site 2 (Boughaz area) with 
a weight percentage of 96%. A prominent truncation 
between traction and saltation at a range of 1.00 and 5.00 
Ø with weight percentage ranged between 2.5 and 98.0%. 
Truncation between saltation and suspension highest val-
ues is recorded at areas faced drains effluents. Truncation 
between saltation and suspension is ranged between 4.00 
and 9.00 Ø with weight percentage is ranged between 
32.0 and 49.5%. In addition, results clear that Truncation 
between saltation and suspension is dominant by 8 Ø with 
weight percentage ranged between 1.2 and 96.0%. Sus-
pension load ranged between 0.8 and 7.5% (Table 3).

3.3.3  Bivariate plots

Plotting of the textural parameters results on the bivariate 
diagram of sorting vs skewness (Fig. 5a) according to Fried-
man [18] and Moiola and Weiser [30] revealed that all the 
sediment samples fall in the field of freshwater deposits. 
The other bivariate of mean size vs. sorting according to 
Friedman [17] (Fig. 5b) supports a freshwater regime for 
deposition of lagoon sediments.

3.3.4  Multigroup multivariant discriminant functions V1–
V2 plot

According to Sahu [52], a rigorous statistical method of 
multigroup multivariant linear discriminant functions was 
used for estimating the environment of deposition of Lake 
Burullus surficial sediments. Results obtained by the dis-
criminant functions of V1 and V2 (Table 3) were plotted on 
the multigroup multivariant discriminant diagram (Fig. 6). 
Only one sample (site 15; area facing Bermbal Canal) fall in 
the field of the riverine environment, while samples of all 
other sites represent the turbidite environments deposi-
tion. This may be due to the low depth of water column, 
which records great wind activities effect on sediment and 
redeposition of fine sediments in relatively deeper areas.
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Fig. 2  Bathymetric map and spatial distribution of grain sizes 
(gravel, sand, and mud percent) in Burullus Lake
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4  Discussion

Sediment characteristics (grain size and textural param-
eters) are considered as the topmost factor in controlling 
and regulating coastal lagoons systems. Also, it is signifi-
cant to its structure and effective in management and 
conservation. The data obtained are broadly consistent 
with the major trends which state in a coastal lagoon, the 
wide distribution of coarse fractions in/near sea connec-
tions signifies high-energy transporting environments, 
whereas fine fractions characterize quieter depositional 
environments within the lagoon [8].

Like the other Southern Mediterranean coastal 
lagoons, Nile (riverine) deposits supplies are stopped as 
a result of Aswan High dam building with consequent 
appeared erosion problems on the seaward margin of 
the lagoon. Moreover, the fresh but often contaminated 
Nile water inflow into Egyptian coastal lagoons is now 
completely regulated by Irrigation Ministery [1, 53, 56].

In agreement with Flower et al. [12], aquatic vegeta-
tion within Burullus lagoon controls transportation and 
deposition of sediment. Increasing of coarse fractions 
northward may be due to wave actions and lacking 
sources of fine suspended matter (away from drains 
effluent), in addition to high productivity (which partly 
explains the high accumulation of carbonate shells, i.e. 
high gravel fraction sites). Areas in which drains dis-
charge their effluents, fine fractions trapped and depos-
ited directly after entering of the lagoon. The relative 
affluence of mud fractions (silt and clay) are well-ordered 
by hydraulic sorting. Moreover, as silt fraction (as rela-
tively coarse fractions) are more likely to be amassed 
in shallow destinations than the smaller clay particles, 
which reaccumulated in more profound destinations of 
the tidal pond. In addition, our results concurred with [3, 
35] who revealed that the lagoonal sediments are muddy 
and considered as organic-rich sediments with thin and 
wave-rippled sands.

Present results of mean grain size indicate that it was 
controlled by sediments sources. Studied sites receive 
sediments from biogenic (alloctnous) and terrigenous 
(autoctonous) sources with different transporting 
agents. The spatial variation of mean grain size (coarse 
sand to medium silt) may verify different sediments 
sources, different erosion and accretion regions, as well 
as, the impact of shell fragments. Sediments sorting 
indicates fluctuations in kinetic energy or changes in 
depositing agent velocity [51]. Fine sediments are bet-
ter sorted than coarser to medium sediments. Sorting 
of Burullus sediments was poorly sorted, which indicate 
turbulent conditions [19, 20, 38, 62]. Skewness meas-
ures the asymmetry of a frequency distribution. Positive 

Fig. 3  The spatial distribution of textural parameters (mean size 
(Mz), sorting, ske wness (Sk) and kurtosis (ku)) of Burullus Lake sedi-
ments
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Table 2  Textural parameters of 
Burullus Lake sediments

Site Mean size (Mz) Sorting (σI) Skewness  (SKI) Kurtosis  (KG)

1 Very fine sand Poorly sorted Strongly fine-skewed Platy-kurtic
2 Fine sand Medium well sorted Strongly fine-skewed Meso-kurtic
3 Very fine sand Poorly sorted Strongly fine-skewed Lepto-kurtic
4 Very fine sand Poorly sorted Strongly fine-skewed Lepto-kurtic
5 Very fine sand Poorly sorted Strongly fine-skewed Lepto-kurtic
6 Very fine sand Poorly sorted Strongly fine-skewed Lepto-kurtic
7 Very fine sand Poorly sorted Strongly fine-skewed Very lepto-kurtic
8 Coarse sand Poorly sorted Fine –skewed Very platy-kurtic
9 Very fine sand Poorly sorted Fine –skewed Very lepto-kurtic
10 Coarse silt Poorly sorted Near symmetrical Lepto-kurtic
11 Coarse sand Poorly sorted Strongly fine-skewed Very platy-kurtic
12 Coarse silt Poorly sorted Strongly fine-skewed Meso-kurtic
13 Coarse silt Poorly sorted Strongly fine-skewed Meso-kurtic
14 Very fine sand Poorly sorted Fine –skewed Very lepto-kurtic
15 Medium silt Poorly sorted Coarse-skewed Lepto-kurtic

Fig. 4  CM diagram for Burullus 
Lake sediment (a: according 
to Passega [40] and Passega & 
Byramjee [41]; b: according to 
Ludwikowska-Kędzia [24])
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skewness exemplifies the area of deposition, whereas 
the sediments are negatively skewed where high-energy 
environment prevailing [6]. Consequently, positive skew-
ness of Burullus sediments indicates that it is classified 
as environments undergoing depositional trends. Kur-
tosis values indicate the medium of deposition flow 

characteristics [2, 47]. With no particular trend, the 
majority of eastern sites were lepto-kurtic in its nature, 
these indicates that the sediment is a mixture of a main 
population of medium sand in addition to a subordinate 
populations of other grain sizes [13]. Other sites were 
platy-kurtic. Platy-kurtic nature of sediments with vari-
ation in sorting values reveal both maturities of the sedi-
ments particles and continuous addition of finer/coarser 
particles with variable proportions [46].

Sedimentation occurs when the energy of the trans-
porting medium decreases to the lowest level to con-
tinue the transport process. Then, sediments accumu-
lated in horizontal layers, one top to the other. As result 
of this process, certain characteristic depositional fea-
tures develop within the sediment layers, indicating 
clear information about the mode of deposition, and 
therefore evidences of its environment of deposition 
[25, 34, 38, 57].

Grain size has the basic role in classifying sedimentary 
facies, mode of transportation and deposition environ-
ments. Several studies indicate many criteria and appli-
cations to distinguish the grain size distributions and its 
mode of transportation. Cumulative curves consist of a 
number of different line segments, each one clears cat-
egories of particles (populations), which was transported 
in different modes of transportation [22, 33, 38, 55, 58]. 
CM diagram is used to identifying sediments mode of 
transportation by processing the results of grain-size for 
determining the environment dynamics of their trans-
port and. CM diagram differentiates between traction 

Table 3  Mode of 
Transportation and paleo-
environmental used 
applications results of Burullus 
Lake sediments

Site C-M Mode of Transportation Truncation lines at inflection points of 
the cumulative curves

Discriminant Func-
tions

Traction/
Saltation

Saltation/
Suspension

Suspension

Code Mode Ø Wt% Ø Wt% Wt% V1 V2 Envi.

1 (P-Q) Suspension and rolling 3.00 31.00 8.00 65.00 4.00 3.08 1.06 Turbidite
2 (S-R) Homogeneous suspension 5.00 98.00 8.00 1.20 0.80 2.33 1.54 River
3 (S-R) Homogeneous suspension 1.00 2.50 8.00 96.50 1.00 3.68 0.92 Turbidite
4 (S-R) Homogeneous suspension 4.00 84.00 8.00 14.00 2.00 3.32 1.09 Turbidite
5 (S-R) Homogeneous suspension 4.00 72.00 8.00 23.50 4.50 3.52 0.93 Turbidite
6 (S-R) Homogeneous suspension 4.00 75.50 8.00 18.50 6.00 3.39 1.26 Turbidite
7 (S-R) Homogeneous suspension 4.00 81.00 8.00 15.00 4.00 3.46 1.35 Turbidite
8 (I) Rolling 2.00 64.00 4.00 32.00 4.00 2.88 −0.82 Turbidite
9 (II) Rolling 2.00 9.50 8.00 87.50 3.00 3.45 1.82 Turbidite
10 (S-R) Homogeneous suspension 4.00 34.00 8.00 59.00 7.00 4.89 0.86 Turbidite
11 (I) Rolling 2.00 58.00 4.00 39.00 3.00 3.14 −1.06 Turbidite
12 (S-R) Homogeneous suspension 3.00 29.00 8.00 66.00 5.00 4.07 0.87 Turbidite
13 (II) Rolling 2.00 4.50 8.00 89.50 6.00 4.90 0.30 Turbidite
14 (II) Rolling 2.00 11.50 8.00 87.00 1.50 4.92 0.97 Turbidite
15 (T) Pelagic suspension 7.00 43.00 9.00 49.50 7.50 4.73 1.45 Turbidite

Fig. 5  Bivariate plots of Burullus Lake sediments
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(rolling), saltation (homogenous suspension) and sus-
pension with rolling [24, 33, 38–41].

CM application is widely used by many authors to 
interpret different depositional environments [9, 22, 34, 
38, 44, 55]. CM patterns of the studied sites mostly indi-
cate homogenous suspension (S-R segment) especially 
at regions of drains discharge, where drains effluents 
enter the lagoon carrying suspended particles, which 
begin to deposit directly after entering of the lagoon 
(due to a sudden decrease in current velocity). Further-
more, at anywhere else; due to re-disposition of fine 
sediments particles in relatively deeper areas homog-
enous suspension occurred. CM indicates rolling pattern 
(I and II sectors) at sites where coarse fractions percent 
increase (indicating the impact of shell and shell frag-
ments northward).

With clear different sectors, straight line and inflection 
points of created cumulative curves of studied lagoon 
sediments indicate that siltation is the main transportation 
mode, followed by suspension whereas truncation was of 
less importance. These results support the CM diagram 
results. Additionally, it implies that sediments are classi-
fied as the third type of cumulative curves, which could be 
a transitional group involving blended sediments shaped 
by short-lived depositional forms (i.e. dregs coming about 
from a number of covering forms and depositional situa-
tions) [22, 33, 38, 58].

Sediments textures indicate the sedimentary pro-
cesses (weathering, erosion, and mode of transport). 

It acts as the basis for classifying sedimentary envi-
ronments as well as the source material of sediments 
[16–18, 30, 38, 51, 57].

Bivariate plots of several granulometric parameters 
(i.e.  Mz vs. σI and σI vs.  SkI) are used for understanding 
and interpretation of depositional history and mode of 
transportation of ancient as well as modern sedimentary 
deposits [17, 18, 24, 30, 33]. The combination between 
bivariate diagram results indicates strong freshwater 
processes signatures in the deposition of sediments. 
These results may be due to that the investigated lagoon 
is a part of River Nile delta, in addition to the lake is 
located at termini of a great irrigation system.

Moreover, determination of depositional environment 
of coastal lagoon has been carried out using the multi-
group multivariate discriminant algorisms suggested by 
Sahu [52]. Results reveal that Burullus Lagoon sediments 
fall in the field of turbidite deposition. These results sup-
port results obtained by both of CM diagram applica-
tion and straight line and inflection points of created 
cumulative curves. These results are in good agreement 
with other studies which have shown that homogenous 
suspension suggests higher turbulence, which proposes 
definite characteristics of grain-size distribution in sedi-
ments transported by running water and turbidity cur-
rents [24, 33, 38–41].

Fig. 6  Multigroup multivariant 
discriminant functions V1–V2 
plot for Burullus Lake
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5  Conclusion

Based on the results it can be concluded that, in Burul-
lus Lagoon, the wide distribution of coarse fractions in/
near inlet signify high-energy transporting environments, 
whereas fine fractions characterize quieter depositional 
sites within the lagoon. The mean grain size was controlled 
by sediments sources. Poorly sorted sediments indicate 
fluctuations in kinetic energy or changes in depositing 
agent velocity. Deposition environment of Burullus coastal 
lagoon sediments is turbidite dominant with strong fresh-
water processes signatures. The saltation was the main 
mode of transportation, followed by suspension while 
truncation was of less importance. Burullus Lagoon sedi-
ments are classified as sediments resulting from a number 
of overlapping processes and depositional environments, 
which proposes definite characteristics of grain-size dis-
tribution in sediments transported by running water and 
turbidity in addition to the rolling pattern at sites where 
coarse fraction percentage increase existed.
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