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Abstract
With the rise of large-scale social networks, network mining has become an important sub-domain of data mining. 
Generating an efficient network representation is one important challenge in applying machine learning to network 
data. Recently, representation learning methods are widely used in various domains to generate low dimensional latent 
features from complex high dimensional data. A significant amount of research effort is made in the past few years to 
generate node representations from graph-structured data using representation learning methods. Here, we provide a 
detailed study of the latest advancements in the field of network representation learning (also called network embed-
ding). We first discuss the basic concepts and models of network embedding. Further, we build a taxonomy of network 
embedding methods based on the type of networks and review the major research works that come under each category. 
We then cover the major datasets used in network embedding research and describe the major applications of network 
embedding with respect to various network mining tasks. Finally, we provide various directions for future work which 
enhance further research.
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1 Introduction

Networks provide a fundamental model for defining a 
relationship between various entities. Networks have 
applications in diverse domains like social computing [82], 
systems biology [76, 141], cyber-physical systems [148], 
recommender system [74], language modeling [125], and 
network medicine [4]. Social network reflects the relation-
ship between people, citation network relates research 
papers, a biological network can define protein–protein 
interactions, a word co-occurrence network defines lin-
guistic relationships and many more. Analysis and mining 
of these complex networks can generate various insights, 
which can be very useful for both scientific and business 
community. Friend recommendation in social networks, 
protein function prediction from protein interaction 

networks, terrorist group identification from communica-
tion networks, influential paper detection from citation 
networks etc. are some typical examples. We usually define 
these tasks formally as link prediction [71], node classi-
fication [8], graph clustering [105], and influential node 
detection [79]. Performing these tasks on large real-world 
networks pose various challenges.

Traditional methods for network embedding use graph 
algorithm based approaches, which uses adjacency matrix 
as network representation. Also, these methods adopt 
iterative processing, which results in high computational 
cost when applied to large networks. For example, for 
node classification, most of the approaches like iterative 
classification algorithm (ICA) [91] and label propagation 
[149] are iterative approaches. Machine learning meth-
ods cannot be directly applied to networks because such 
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methods assume that the data have independent and 
identical distribution (i.i.d), which is not true in the case 
of graph-structured data. Using sparse adjacency matrix 
representation is also not practical to perform machine 
learning. An alternate method to perform machine learn-
ing on network data is to use hand engineered features 
generated using network statistics and other measures 
[34], which is a time-consuming process. Traditional dis-
tributed computing platforms [26] are not well suited for 
parallel processing of graph-structured data. Many spe-
cialized distributed graph analytic platforms like Pregel 
[78], Giraph [81] and Graphx [137] are developed, but 
their efficiency is limited by the complex phenomenon of 
real-world networks like scale-free property and power law 
distributions.

An interesting direction towards applying machine 
learning on network data is to map the data to a low 
dimensional latent space, and then to apply traditional 
machine learning algorithms. This process of mapping the 
network data to vector space is known as network embed-
ding. Many linear and non-linear dimensionality reduction 
methods [126] were initially used to generate network 
embedding. Most of these methods were based on matrix 
factorization, and hence suffered from scalability issue. 
More recently, machine learning community has come 
up with new theories and architectures to learn complex 
features from high dimensional data. These approaches 
are referred to as representation learning,1 which aims 
at finding a set of transformations that can map the high 

dimensional data to a low dimensional manifold. With the 
success of representation learning on image [44, 60, 128, 
134], speech [23, 40, 48], and natural language processing 
[19, 21, 108], researchers attempted to use these methods 
on network data and created fruitful results.

Given an input network, we can generate embedding 
in different output formats, which includes node, edge, 
subgraph and whole-graph embedding. Edge embedding 
aims to map the edges of a network to a latent space, and 
subgraph embedding attempts to map the graph com-
ponents (subgraph structures) to a vector space. Whole-
graph embedding aims to generate the representation of 
a complete graph in vector space, and many works used 
graph kernel methods [3, 127] for generating whole-graph 
representations. Node embedding, which represents ver-
tices of a graph in vector space, is the more focused and 
well-studied problem, which is covered throughout this 
survey. Figure 1a shows Gephi [5] visualization of a small 
subset of github user interaction network, and Fig. 1b 
shows its 2-D representation in vector space, generated 
by DeepWalk [96], and plotted using t-SNE [75]. Generat-
ing low dimensional vectors as node embedding from a 
large real-world network is not straightforward. The vec-
tor representation should preserve the structural proper-
ties of the network which includes the first order, second 
order and higher order proximities between nodes. The 
network data is highly sparse and usually non-linear, and 
the embedding algorithm should generate the embed-
ding from sparse and non-linear data. Many real-word 
networks contain millions of nodes and edges, and the 
embedding algorithm should be scalable. In reality, many 
networks may be heterogeneous, attributed, scale-free 

Fig. 1  Subset of github user interaction network

1 The terms network representation learning and network embed-
ding are used interchangeably in this paper.
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and dynamic, and the embedding method should adapt 
to all such situations.

A few efforts are already made to survey [22, 38, 46, 89] 
the various approaches for network embedding. In this 
survey, we focus on the recent methods for node embed-
ding which are inspired by the recent advancements in 
representation learning. We provide a taxonomy of node 
embedding methods based on the type of the networks. 
Networks are classified into broader categories such as 
homogeneous networks, heterogeneous networks, attrib-
uted networks, signed networks, and dynamic networks. 
We discuss the common models of network representa-
tion learning and reviews the major works which come 
under each model with respect to each type of network. 
Further, we discuss the applications of network embed-
ding along with the data sets used in the network embed-
ding research.

2  Terminologies and problem definition

Definition 1 A Network is a graph G = (V , E) , where 
V = {v1, v2 … vn} , is the set of vertices and e ∈ E is an edge 
between any two vertices. An adjacency matrix A defines 
the connectivity of G, Aij = 1 if vi and vj are connected, else 
Aij = 0.

Definition 2 A homogeneous network is a network 
G = (V , E) , where each node vi ∈ V  belongs to the same 
type and each edge ei ∈ E also belong to the same type.

Definition 3 A attribute network can be defined as 
GA = (V , E ,A, F) where V is the set of vertices, E is the set 
of edges, A is the adjacency matrix and F ∈ Rn×k , ith row 
of F denotes the k dimensional attribute vector of node i.

Definition 4 A heterogeneous network is a network 
G = (V , E) , where each node vi ∈ V  and each edge ei ∈ E , 
are associated with mapping functions F(v) ∶ V → Tv and 
f (e) ∶ E → Te , where Tv and Te denotes the entity and rela-
tionship types respectively.

Definition 5 A signed network is a network G = (V , E) , 
v ∈ V  , e ∈ E and for each edge, eij = +1 or eij = −1 , denot-
ing a positive link or a negative link between vi and vj.

Definition 6 A dynamic network can be defined as a 
series of snapshots G = {G1,G2 …Gn} where Gi = (Vi , Ei) 
and n is the number of snapshots.

Definition 7 First order proximity describes the pair wise 
proximity between the vertices which is defined using the 
edge weight eij between node vi and node vj.

Definition 8 Second order proximity for a pair of nodes vi 
and vj is the proximity of neighborhood structures of the 
nodes vi and vj.

Problem  1 Network embedding—Given a network 
G = (V , E) , the task is to learn a transformation function 
f ∶ Vi → Ki ∈ Rd , where d << |V | , such that f preserves the 
first order, second order and higher order proximities of 
the network. d defines the number of dimensions of the 
real valued vector.

3  Models of network embedding

Researches used various models for network embedding 
which includes both linear and nonlinear dimensionality 
reduction techniques. Models based on matrix factoriza-
tion, models that combine random walk sampling with 
shallow neural networks, and deep neural architectures 
are the most commonly used models. Other approaches 
focus on modeling an optimization function based on the 
structure and the properties to be preserved and solving 
it using gradient based methods.

3.1  Matrix factorization

Network embedding can be considered as a structure-pre-
serving dimensionality reduction process, which assumes 
that the input data lie in a low dimensional latent space. 
Network data can be represented in matrix form, which 
includes adjacency matrix, laplacian matrix, node transi-
tion probability matrix and many more. A matrix factori-
zation can be applied on any of these matrices to gen-
erate node embeddings. Locally linear embedding [103], 
Laplacian eigenmaps [6], Structure preserving embedding 
[107], Graph factorization [2], GraRep [14], HOPE [94] etc. 
are some among the matrix factorization based methods 
for network embedding. A detailed survey on these meth-
ods can be found in [13, 22, 33]. In this paper, we focus on 
the methods based on recent advancements in represen-
tation learning.

3.2  Random walk

Capturing the network structure is a primary concern 
while generating node embeddings. A random walk is a 
well-known method which can capture the local structure 
of the graph. Even if each row in an adjacency matrix cor-
responds to a node vector which defines the connectivity 
structure and is analogous to a one hot vector representa-
tion, it is very sparse and high dimensional. The word2vec 
model [85] succeeded in developing a word representa-
tion by generating dense low dimensional vectors from 
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sparse high dimensional one hot vectors, using a shallow 
neural network architecture. Word2vec defines two neural 
architectures, namely continuous bag-of-word model and 
skip-gram model [86]. The training is done using stochastic 
gradient decent(SGD) [9]. Word2vec uses two optimiza-
tion strategies called hierarchical softmax and negative 
sampling to speed up the training process. Many network 
embedding methods [29, 42, 92, 96, 101] are inspired from 
word2vec, which first applies a random walk on the net-
work to generate node sequences that are analogous to 
sentences in word2vec, followed by using the skip-gram 
architecture to generate node embeddings. Random walk 
based approaches try to maximize the probability that the 
nodes that tend to co-occur on truncated walk lay closer 
in the embedding space. A general architecture of random 
walk based procedure for network embedding is shown 
in Fig. 2.

3.3  Deep architecture

The aim of network embedding is to map the nodes from 
a high dimensional network space to a low dimensional 
feature space. Some works used specialized neural net-
work models [84, 104], while many others used general-
ized models over graph-structured data to represent graph 
in a euclidean space. Network data is inherently non-lin-
ear, and using shallow neural network architectures for 
generating node embedding may result in sub-optimal 
solutions. Deep neural networks [7, 63, 106] have been 
successfully used in various domains to learn multiple 
levels of feature representations from complex and non-
linear data. To train large neural networks with more than 
one hidden layers, may theories and architectures were 
proposed recently, which includes deep belief networks 

(DBN) with greedy layer-wise pre-training [49], deep con-
volutional neural networks (CNN) [60], long short-term 
memory networks (LSTM) [41], and generative adversarial 
networks (GAN) [37]. An autoencoder is a neural architec-
ture which acts as a building block in training deep belief 
networks. An autoencoder is a three-layer neural network 
which reconstructs the input vectors at their output layer 
through a number of non-linear transformations on the 
input. As an unsupervised feature learning technique, an 
autoencoder can generate a deep latent representation for 
the input data. Multiple layers of autoencoders are stacked 
together to form a stacked autoencoder and it is used as 
the deep neural architecture for generating node embed-
dings in many works [15, 39, 129]. Convolutional neural 
networks, which are very popular in image processing 
tasks, are not directly applied to graphs, but some works 
use convolutional architectures [18, 27, 56, 57], which use 
spectral graph theory [47] to generate node embeddings. 
Generative adversarial networks (GANs) are deep neural 
network architectures comprised of two components, a 
generator and a discriminator, competing one against the 
other. A few works [24, 130] on network embedding are 
inspired from GANs. A general architecture of using deep 
architectures for network embedding is shown in Fig. 3.

4  Network representation learning methods

In this section, we review the major works which come 
under each model with respect to each type of network. 
The classification of network embedding methods based 
on different types of networks is depicted in Fig. 4.

Fig. 2  A flow diagram of random walk based approaches for network embedding

Fig. 3  A flow diagram of deep 
architecture based approaches 
for network embedding
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4.1  Homogeneous network

Most of the works on network embedding focus on non-
attributed, static, unsigned homogeneous networks. 
Preserving the structural property of the network is the 
primary objective of homogeneous network embedding 
methods. Figure 5 shows the major works on homogene-
ous network embedding which are grouped under major 
models of network embedding. Table 1 shows a summary 
of the input, objective function, model used, and prop-
erties preserved by some of these methods. Proximity 
preservation during network embedding is the main aim 
followed in most of the random walk based methods. 
Among those, DeepWalk [96] gained a lot of attraction, as 
it is inspired from the well-studied word2vec algorithm. 
DeepWalk algorithm involves a two-step process. (1) A 
truncated random walk on the network to generate a 
sequence of vertices, which creates an analogy of sentence 
in word2vec. (2) Using a skip-gram model, which uses a 
shallow neural network architecture to generate node 
embeddings. The skip-gram is a generative model whose 

objective is to maximize the probability of neighbors in 
the walk, given the representation of a vertex. For each 
node vi , skip-gram assigns a current d dimensional rep-
resentation, �(vi) ∈ Rd and maximizes the co-occurrence 
probability of its neighbors in the walk to update this rep-
resentation. The optimization becomes,

where vi−w ,… , vi+w denotes the neighbors of vi in the node 
sequence, and w is the context size. Computing the soft-
max at the output layer of skip-gram is computationally 
expensive and DeepWalk approximates softmax using two 
strategies, hierarchical softmax and negative sampling. 
These strategies reduces the time complexity of skip-gram 
model and speed up the training process. As random walk 
being a sampling strategy, the time complexity to perform 
random walk is linear w.r.t the number of edges. The com-
plexity of the skip-gram architecture is proportional to 
O(C(D + Dlog2(V ))) , where C is the context window size, 
D is the number of dimensions and log2(V ) is the time to 
build the hierarchical softmax over V vertices. DeepWalk is 

(1)max log P(vi−w ,… , vi+w|�(vi))

Fig. 4  Network embedding methods based on the types of networks

Fig. 5  Homogeneous network embedding methods
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parallelizable and can be implemented without the knowl-
edge of entire graph, which makes it suitable for large-
scale machine learning. DeepWalk motivated many sub-
sequent works [17, 24, 29, 42, 92, 95, 101] and also acted as 
a baseline for various works in the area of network repre-
sentation learning. Walklet [97] modified the random walk 
used in DeepWalk by explicitly preserving the proximities 
between vertices during the random walk, and showed 
that the multi-scale representations thus generated can 
improve the performance of multi-label classification task. 
Max-Margin DeepWalk [121] and Discriminative Deep Ran-
dom Walk [69] extended DeepWalk by associating classi-
fication objective with embedding objective and thereby 
demonstrated the performance improvement of the multi-
label classification task.

The quality of the network embedding can be further 
improved by preserving the structural equivalence of the 
nodes along with the proximity information. Node2vec 
[42] works towards this goal by performing a biased ran-
dom walk which can provide more flexibility in exploring 
neighborhood compared to DeepWalk. During random 
walk, node2vec uses two sampling strategies, breadth-first 
search (BFS) and depth-first search (DFS) which traverse 
the search space by exploring both community structures 
and structurally equivalent nodes in the network. Based on 
the random walk sequence, node2Vec extends skip-gram 
architecture to optimize the objective function,

where vt is the node taken from the random walk sequence 
Wv , vt′ is the neighbor node of node vt within the window 
w, and �(vt) ∈ ℝ

d is the feature representation of the node 
vt . Node2vec incurs additional space and time complexity 
over deepwalk as it involves BFS and DFS search during 
random walk. Node2vec can preserve the structural equiv-
alence of nodes in the network but is limited by the size 
of the context window. Struc2vec [101] aims at preserving 
structural equivalence to a better extent by computing 
the structural similarity between each pair of vertices in 
the network. Struc2vec constructs a multilayer network, 
where each layer denotes a hierarchy in measuring the 
structural similarity, and then applies random walk sam-
pling followed by skip-gram learning on the multilayer 
graph to generate the embedding of each vertex.

Preserving higher order structural patterns in large-
scale networks is a challenging issue. HARP [17] is a meta-
strategy that can achieve this goal. HARP can be used to 
improve the state-of-the-art NRL algorithms [42, 96, 115] 
so as to avoid these algorithms to get stuck in local optima, 
as these models rely on non-convex optimization, solved 

(2)max

N∑

vt∈Wv

∑

−w≤t�≤w

log P(vt� |�(vt))

by SGD. HARP progresses through three steps—graph 
coarsening, embedding and representation refinement. 
In coarsening, a large network is divided into smaller net-
works by preserving the original structure using two strat-
egies, edge collapsing and star collapsing. The embedding 
algorithm is applied to the coarsest graph and the embed-
ding is generated. The last step is to prolong and refine the 
network from coarsest to finest. To perform refinement, 
HARP uses two strategies, multilevel hierarchical soft-
max and multilevel negative sampling.The overall time 
complexity of HARP (with deepWalk) is O(�|V |) where � 
is the number of walks and V is the number of vertices. 
Experiments show that the HARP extension can improve 
the performance of DeepWalk, LINE, and Node2vec over 
multi-label classification.

Network structure is inherently non-linear, and using 
a shallow neural network for network embedding may 
lead to suboptimal solutions. SDNE [129] addresses this 
challenge by using a deep architecture, build with stacked 
autoencoders, to generate network embeddings. SDNE 
deploys a deep belief network, implements multiple lay-
ers of non-linear functions, and map the data into a non-
linear feature space. In order to maintain the structure-
preserving property and to address sparsity, SDNE trains 
a joint optimization function (shown as equation 3) which 
preserves the first order and second order proximities. 
This function preserves the second order proximity using 
stacked autoencoders and the first order proximities using 
Laplacian Eigenmaps.

Here X and Y are the input and reconstructed data. The 
model minimizes the reconstruction error to capture the 
global information. B has been used to handle the sparsity 
of the adjacency matrix aij . �i and �j represent the feature 
representation of node i and j and W (k) is the hidden layer 
weight matrix for the autoencoder. The time complexity 
of SDNE is O(ncdi), where n is the number of vertices, d is 
the embedding dimension, c is the average degree of the 
network and i is the number of iterations.

In language modeling, alternate method to generate 
word vectors is to find the low dimensional linear projections 
from positive point-wise mutual information matrix (PPMI) 
[12, 68] of words and their contexts. DNGR [15] is inspired 
from [68], which first uses a random surfing model to gen-
erate a probabilistic co-occurrence matrix that captures 
the graph structure information. The PMMI matrix is then 

(3)

L =𝛾 �||(Y − X )⊙ B||2 + 𝛼�

n∑

i=1,j=1

aij||𝜙i − 𝜙j||22

+
𝜆

2

K∑

k=1

(
||W (k)||2

F
+ ||Ŵ (k)||2

F

)
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calculated from the co-occurrence matrix. Instead of apply-
ing singular value decomposition (SVD) as in [14], DNGR 
applies a stacked denoising autoencoder on PMMI matrix 
which learns a non-linear function to map high dimensional 
vertex vectors into low dimensional node embeddings. The 
authors of DNGR claim that, using the probabilistic co-occur-
rence matrix is well suited for weighted networks and is less 
computationally expensive compared to sampling-based 
methods [42, 96]. The time complexity of DNGR is defined 
to be linear w.r.t. the number of vertices in the graph. The 
objective function of DNGR is defined as

where xi is the ith instance, yi is the corrupted input data of 
xi , and f�1 and g�2 are the encoding and decoding functions 
of the autoencoder respectively.

A few efforts are made to apply some variants of CNN 
[27, 47], to perform representation learning on networks. 
GCN [56] is one such approach whose goal is to learn a 
function from the network which takes as input (1) N × K  
feature matrix, where N is the number of nodes and K is 
the number of input features. (2) An adjacency matrix A. 
The GCN produces an output Z which is an N × D matrix, 
where D is the number of dimensions per node. GCN uses 
the layer-wise propagation rule

where Wl denote the weight matrix of lth network, 
Â = A + I , D is the diagonal node degree matrix and 
H(0) = X  , the matrix of node attributes. The authors inter-
preted GCN as a generalized version of the weisfeiler-
Lehman algorithm on graphs.The complexity of the convo-
lution operation is O(efc) where e is the number of edges, f 
is the number of filters and g is the node dimension. Fast-
GCN [18] is an enhancement over GCN where the authors 
interpret graph convolutions as integral transforms of 
embedding functions under probability measures, and 
uses Monte Carlo approaches to consistently estimate the 
integrals. Parametric graph convolution [119] is another 
enhancement over GCN which generalizes a convolutional 
filter by adding a hyper-parameter that influences the fil-
ter size, and thereby improves the performance of GCN. 
Variational graph autoencoder(VGAE) [57] is another work 
which uses variational autoencoder to learn latent repre-
sentations from undirected graphs.The authors demon-
strated this model using a graph convolutional network 
(GCN) encoder and a simple inner product decoder.

GraphGAN [130] directly follows the GAN architecture 
which tries to learn two models: (1) a generator which 
approximates the underlying connectivity distribution 

(4)argmin
�1,�2

n∑

i=1

||xi − g�2(f�1(yi))||
2

(5)H(l+1) = 𝜎

(
D̂−

1

2 ÂD̂−
1

2H(l)W(l)

)

and generates fake vertex pairs to fool the discriminator. 
(2) a discriminator that tries to distinguish the vertex pairs 
that is generated by the generator from the real ones. The 
objective of the discriminator is to maximize the logarithmic 
probability of assigning correct labels to real and generated 
samples. The generator objective is to minimize the loga-
rithmic probability that the discriminator correctly identifies 
the samples generated by the generator.A sigmoid and soft-
max function are used as the discriminator and generator 
function respectively.The work also proposes an alternate 
method called graphsoftmax, which can improve the per-
formance of softmax. The objective function of GraphGAN 
is modeled as a two-player minmax game with cost function

Here the generator G tries to generate vertices which 
resembles vertex vc ’s neighbors by approximate the under-
lying true connectivity distribution ptrue(v|vc) , and the dis-
criminator D tries to discriminate the true neighbor of vc 
from those generated by G by finding the probability of 
an edge to exist between v and vc which is represented as 
D(v, vc ;�D) . By minimizng and maximizing the cost func-
tion, the optimal parameters for D and G can be learned, 
and GraphGAN uses policy gradient ascent procedure to 
learn the parameters. The time complexity of each itera-
tion of GraphGAN is O(VlogV), where V is the number of 
vertices.

ANE [24] proposes a different approach which uses 
adversarial learning as a regularizer to learn more robust 
network representations. ANE employs a structure-pre-
serving component and an adversarial learning com-
ponent. For structure preservation, ANE uses a method 
called inductive DeepWalk (IDW). IDW perform random 
walk using PMMI matrix to explore the neighborhood, and 
optimizes a parameterized generator function to generate 
embeddings. The adversarial learning component consists 
of a generator and a discriminator. It shares the generator 
function with the structure-preserving component. Ini-
tially, the discriminator is trained to separate the prior sam-
ples from the embedding vectors. The parameters of the 
generator are then updated so as to fool the discriminator 
and thereby performing regularization on the embedding 
generated by the structure-preserving component.

4.1.1  Other works

LINE—The objective of LINE [115] is to preserve first order 
and second order proximity during embedding. LINE first 
calculates the joint probability between two vertices in two 
ways, one using edge weights and other using node vectors. 

(6)

min�Gmax�DV (G,D) =
∑V

c=1
(Ev∼ptrue(.|vc )[logD(v, vc ;�D)]

+ Ev∼G(.|vc ;�G)[log(1 − D(v, vc ;�D))])
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To preserve first order proximity, LINE defines an objective 
function to minimize the distance between two probability 
distributions. Objective function to preserve second order 
proximity is also defined in a similar way. LINE uses edge 
sampling strategy to speed up the computations.

NETMF—The works [42, 96, 115] lacked through theo-
retical analysis and the same is provided by [100]. The work 
reveals that, all these methods are essentially perform-
ing implicit matrix factorization. Analysing closed form 
matrices of all the methods, [100] eventually discusses the 
relationship between these methods and their connec-
tion with the Graph Laplacian. The authors also propose a 
method called NETMF which explicitly factorize the closed 
form implicit matrix of DeepWalk using singular value 
decomposition (SVD) and generates the node embeddings.

GraphSAGE—It [45] is an inductive representation learn-
ing method which is suitable for large graphs. Instead of 
training individual embeddings for each node, GraphSAGE 
learns a function that generates node embeddings by 
sampling and aggregating features from the nodes local 
neighborhood.

Ep—Embedding propagation(Ep) [35] is network rep-
resentation method inspired from label propagation. EP 
sends forward and backward messages between neigh-
boring nodes. Forward messages contain label representa-
tions and backward messages contain gradients that result 
from aggregating the label representations and applying 
a reconstruction loss. Node representations are computed 
from label representations.

4.2  Attributed network embedding

In most of the real-world networks, nodes or edges are 
associated with single or multiple attributes which pro-
vide some semantic information. In this section, we will 
cover some methods which perform network embedding 
on such attributed networks [98, 99]. Figure 6 shows the 
major works under attributed network embedding. Table 2 
shows a summary of the input, objective function, model 
used, and properties preserved by some of these methods.

Nodes of the network may have text associated with it. 
TADW [139] aims to embed networks by using the struc-
tural information and the text information associated with 
the nodes. The work proves the equivalence of DeepWalk 
and closed form matrix factorization, and creates a PMMI 
matrix using vertex–context pairs for further processing.
TADW performs inductive matrix completion [90] to associ-
ate text features into PMMI matrix, and low-rank matrix fac-
torization on the resultant matrix to generate the network 
embedding. The objective function of TADW is stated as

(7)minW ,H||M −WTHT ||2
F
+

�

2

(
||W||2

F
+ ||H||2

F

)

where M and T are the word-context matrix and text fea-
ture matrix respectively,and minW ,H ||M −WTHT ||2

F
 rep-

resents the low rank matrix decomposition of matrix M 
The complexity of each iteration of minimizing W and H 
is O(n0(M)k + |V |ftk + |V |k2) where n0(M) indicates the 
number of non-zero entries of M, and k denotes the low 
rank of M.

Accelerated attributed network embedding(AANE) [51] 
is another approach which uses connectivity information 
and attribute information to perform network embedding. 
ANNE modes a joint optimization function with two com-
ponents, a strategy based on spectral clustering to pre-
serve node proximities and a matrix factorization frame-
work to approximate the attribute affinity matrix. Further, 
the authors have provided a distributed algorithm to solve 
the optimization objective in an efficient manner.The loss 
function of AANE is modeled as

Here S represent the attribute affinity matrix, H the embed-
ding matrix and hi and hj are the vector representations of 
node i and node j. minH ||S − HHT ||2

F
 component preserve 

the node attribute proximity and �
∑

(i,j)∈� wij(��hi − hj��
2

F
) 

component preserve the network stucture proximity. The 
time complexity of AANE is O(nNA + n2) , where NA is the 
number of nonzero in attribute affinity matrix A and n is 
the number of nodes in the network.

In real-world networks like citation networks, papers 
may have text associated with it, the category information 
that the paper belongs to, and a reference link to other 
papers. Such networks can be modeled as graphs with 
node structure, content, and labels. TriDNR [95] aims at 
generating embedding by exploiting all these three lev-
els. It uses the idea from DeepWalk and paragraph vector 
algorithm [62] to embed node, text and label information. 

(8)minH
‖‖S − HHT‖‖

2

F
+ �

∑
(i,j)∈�

wij(
‖‖hi − hj

‖‖
2

F
)

Fig. 6  Attributed network embedding methods
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TriDNR models a joint optimization function which learns 
inter-node, node-content and label-content correlations, 
and the training is done using SGD. It also uses hierarchi-
cal softmax to speed up the computations. The objective 
function of TriDNR is to maximize the log-likelihood

The first component of the equation to is maximize the 
likelihood of the neighboring nodes given current node vi , 
the second component maximizes probability of observ-
ing contextual words given the current node vi , and the 
third component maximizes the likelihood of observing 
the words given a class label ci . � is balance parameter to 
control the proportion of network structure, text, and label 
information.

DeepGL [102] is a deep architecture which performs 
hierarchical representation learning on attributed net-
works. DeepGL first generates a set of base features by 
performing graphlet decomposition on higher order net-
work motifs(graphlets). DeepGL learns a set of relational 
feature operations, which when applied on the base 
features generates a set of higher level features. At each 
layer of the deep architecture of DeepGL, features from 
lower order subgraphs are combined using composition 
of relational feature operations to generate higher order 
subgraph patterns. DeepGL is designed to be effective for 
network-based transfer learning tasks. The optimization 
function of DeepGL is stated as

which aims to find a set of features xi that maximizes it 
similarity to to the label y and minimizes the similarity 
between the features xi and xj in the collection. The com-
plexity of generating node embeddings with the DeepGL 
is O(F(M + NF)) , where N, M, and F are the number of 
nodes, edges, and node features respectively.

The GCN methods presented in the previous section 
can also deal with attributed networks.

4.2.1  Other works

DANE—It [70] aims at generating representations from a 
network with structure and attribute information. DANE 
provides an online learning model, which extends the 
basic design to a distributed environment. DANE takes as 
input an adjacency matrix and a user feature matrix, and 

(9)

max(1 − �)
∑N

i=1

∑
s∈S

∑
−b≤j≤b,j≠0

log P(vi+j|vi)

+ �
∑N

i=1

∑
−b≤j≤b

log P(wj|vi)

+ �
∑|L|

i=1

∑
−b≤j≤b

log P(wj|ci)

(10)argmaxxi∉X

{
K (y, xi) − �

∑
xj∈X

K (xi , xj)

}
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generates two embedding Ea and Ex, using spectral clus-
tering based methods. Further, DANE generates a single 
embedding representation by maximizing the correlation 
between Ea and Ex. DANE uses matrix perturbation theory 
to update Ea and Ex, and to generate the updated embed-
ding E.

L ANE—Label  informed attr ibuted net work 
embedding(LANE) [52] affiliates labels with the attributed 
network and maps the network into a low-dimensional 
representation by modeling their structural proximities 
and correlations.

CANE—Context-aware network embedding (CANE) 
[122] is another attributed network embedding which 
learns various context-aware embeddings for a vertex 
according to the neighbors it interacts with.

NEEC—NEEC [53] aims at improving the attributed net-
work embedding by learning and incorporating the expert 
cognition into the embedding objective.

IIRL—IIRL [138] uses two terminologies, structure close 
links and content close links to define the topological and 
attribute similarity between nodes. A joint optimization 
function is defined to preserve the proximity of structure-
close and content-close links in the embedding space, and 
the training is done using a gradient based algorithm.

4.3  Heterogeneous network embedding

Typically, some network mining tasks demand the data to 
be modeled as heterogeneous networks [111] that involve 
nodes and edges of different types. For example, a cita-
tion network can be modeled as a heterogeneous network 
with authors, papers, and venue as nodes and relationship 
between these types as edges. In this section, we will cover 
some methods which perform network embedding on 
heterogeneous networks. Figure 7 shows the major works 
on heterogeneous network embedding and Table 3 shows 
a summary of these methods.

Fig. 7  Heterogeneous network embedding methods
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Metapath2vec [29] is an extension of random walk and 
skip-gram based methods which can be applied to heteroge-
neous networks. A meta path [112] is a path that can be rep-

resented in the form V1
R1
���������→ V2

R2
���������→ ⋯ Vt

Rt
��������→ Vt+1 ⋯

Rk−1
���������������→ Vk 

where R = R1◦R2◦R3◦⋯◦Rk−1 defines the composition rela-
tions between node types V1 and Vk . Metapath2vec performs 
a metapath based random walk through the heterogene-
ous network, and generate paths which can capture both 
the structural and semantic relationship between different 
types of nodes. The resulting paths are fed to a heteroge-
neous skip-gram model which can learn the representation 
of nodes by maximizing the probability of heterogeneous 
context nodes, given the input node. The objective function 
of heterogeneous skip-gram is stated as

where t denotes the node type, Nt(v) denotes neighbor-
hood of node v, and P(ct|v;�) is a softmax function which 
calculates the probability of co-occurrence of context-
input pairs. The time complexity of metapath2vec is same 
as that of deepwalk as both uses the skip-gram architec-
ture for learning node representations. The work also dis-
cusses an algorithm called metapath2vec++, which pro-
vides heterogeneity in negative sampling by maintaining 
separate multinomial distributions for each node type in 
the output layer of the skip-gram model, and thereby pro-
vides more efficiency and accuracy in representation.

The main aim of HNE [16] is to map the multimodal 
objects in the heterogeneous network to a common 
space such that the similarity between the objects can 
be computed. HNE considers a heterogeneous network 
with text–text, text–image, and image-i-mage interac-
tions as input. Text and image data are transformed into 
d-dimensional vectors and are mapped to a latent space 
using linear transformations. An objective function is mod-
eled to minimize the distance between the objects if they 

(11)argmax
�

∑

v∈V

∑

t∈TV

∑

ct∈Nt(v)

log P(ct|v; �)

Fig. 8  Signed network embedding methods
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are topologically connected. The loss function of HNE is 
stated as

where the first component represents the loss w.r.t. text 
to text similarity, second component represents the loss 
w.r.t. image to image similarity and the third component 
represents the loss w.r.t. text to image similarity. NII , NTT 
and NIT  are the numbers of the three types of links, and 
�1 , �2 and �3 are the three balancing parameters. HNE 
further proposes a deep architecture which can map dif-
ferent modalities into a common subspace, and can con-
struct the feature representation. A CNN is used to learn 
the image features and a fully connected layer is used to 
learn the text features. A linear embedding layer is used to 
map the input to a common subspace. A prediction layer 
is used to calculate the loss function and the training is 
done using SGD.

The authors of LINE [115] extended their network 
embedding approach on the homogeneous network to a 
heterogeneous network using PTE [114]. PTE constructs a 
heterogeneous text network by combining a word-word 
network, a word-document network, and a word-label net-
work. PTE then apply LINE to embed the three bipartite 
networks. PTE further models a joint optimization function 
which can collectively embed the three bipartite networks 
to generate a single heterogeneous text network embed-
ding. The loss function of PTE is stated as

(12)

minU,V
1

NII

∑
vi ,vj∈VI

L(xi , xj) + �3
(
||U||2

F
+ ||V ||2

F

)

+
�1

NTT

∑
vi ,vj∈VT

L(zi , zj)

+
�2

NIT

∑
vi∈VI ,vj∈VT

L(xi , zj)

The first, second and third term of the equation is to 
minimize the negative log-likelihood of co-occurrence of 
word-word pair,word-document pair and word-label pair 
respectively. The authors provided two approaches (1) a 
joint training and (2) a pre-training and fine tuning to per-
form the learning process.

HIN2Vec [32] is another work which uses meta path 
based approach for representation learning in heteroge-
neous information networks. Initially, hin2vec proposes a 
conceptual neural network architecture which is trained 
to learn the relationship between the nodes, by placing 
the possible meta paths at the output layer. The objective 
function of HIN2Vec is

The function takes as input, a pair of nodes x and y, and 
a relationship r, and tries to maximize the prediction prob-
ability whether the relationship exists between x and y. 
Further, the authors provide an enhanced neural network 
architecture which can learn the node embedding and 
meta path embedding during the training process.

4.4  Signed networks

Signed networks [67, 116] are part of real social systems 
where the relationship between entities can be either 
positive or negative. In this section, we will cover some 
methods which perform network embedding on signed 

(13)

minimize −
∑

(i,j)∈Eww
wij log p(vi|vj) −

∑
(i,j)∈Ewd

wij log p(vi|dj)

−
∑

(i,j)∈Ewl
wij log p(vi|lj)

(14)maxO

∑
x,y,r∈D

logOx,y,r(x, y, r)

Fig. 9  Dynamic network embedding methods
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networks. Various works on signed network embedding 
are listed in Fig. 8 and a summary of these methods is 
shown in Table 4.

SIDE [55] is a network embedding method for signed 
directed networks. SIDE follows the random sampling 
strategy and hierarchical optimization, which is well 
exploited by language models. SIDE performs a truncated 
random walk on a signed directed network, and generates 
positive and negative node pairs based on structural bal-
ance theory. Then, SIDE models an optimization function 
which can be stated as

The function tries to find the parameters that maximize 
the likelihood p(u, v) between two nodes u and v such that 
the likelihood value is high for positively connected nodes 
and low for negatively connected nodes. The latter part 
of the objective function regularizes the bias terms in the 
function. The time complexity SIDE is linear w.r.t. the num-
ber of nodes in the network.

SiNE [133] is a deep learning architecture for signed 
network embedding. It uses the structural balance theory 
which assumes that, a node is more similar to a node with 
a positive link than to a node with a negative link. SINE first 
defines a similarity function between the d-dimensional 
representations of nodes, and models an optimization 
function to learn the parameters of the similarity function 
which is stated as

where P defines the set of triplets (vi , vj , vk) where vi and 
vj have a positive link while vi and vk have a negative link, 
and P0 defines set of triplets (vi , vj , v0) where vi and vj have 
a positive link while vi and v0 have a negative link. C is the 
size of the training data and � is the set of parameters to 
learn. SIDE uses a deep neural architecture with two hid-
den layers to optimize the objective function.

SNE [140] is a log-bilinear model [88] for generating 
embedding from the signed network. Given a path, SNE 
tries to predict the embedding of node v by linearly com-
bining the feature vectors nodes in the path with corre-
sponding signed weight vectors. A scoring function is used 

(15)

maximize
∑

(u,v)∈D
[− log(P(u, v)) +

∑n

j=1
− log P(u, vj)]

+
�

2
(||bin,+||2 + ||bin,−||2 + ||bout,+||2 + ||bout,−||2)

(16)

minX ,x0,�
1

C

[∑
(xi ,xj ,xk )∈P

max(0, f (xi , xk) + � − f (xi , xj))

+
∑

(xi ,xj ,x0)∈P0
max(0, f (xi , x0) + �0 − f (xi , xj))

]

+ �(R(�) + ||X ||2
F
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to measure the similarity between actual and predicted 
representation. The optimization objective is

The objective function is to maximize the logarithmic 
likelihood of a target node v, generated by a path of nodes 
h and their edge types, using a softmax function. Attribute 
signed network embedding [132] is another work which 
addresses network embedding on the signed network 
with an attribute associated with nodes. Initially, SNEA 
defines two optimization functions to generate embed-
ding, one for modeling user attributes and other for mod-
eling signed networks using structural balance theory. 
Then it models a joint optimization function by combining 
these components, and the training is done using gradi-
ent descent.

4.5  Dynamic network embedding

Many real-world networks are dynamic and will evolve 
over time [66, 109]. Between adjacent snapshots, new 
nodes and edges may be added and existing ones may 
be lost. In this section, we will cover some methods which 
perform network embedding on dynamic networks. Fig-
ure 9 shows the major works on dynamic network embed-
ding and Table 5 describes a summary of these methods.

The research done by [147] aims at developing a tem-
poral latent space model that can predict links over time 
based on a sequence of previous graph snapshots. The 
authors first model a quadratic loss function to learn the 
temporal latent space from a dynamic social network 
which is stated as

where the first term denotes the matrix factorization of 
adjacency matrix representations of the network snap-
shots G�  and the second term 1 − Z� (u)Z�−1(u)

T  penal-
izes node u for a sudden change in its latent position. The 
objective of the loss function is to maintain the temporal 
smoothness while generating embedding of consecu-
tive snapshots by incorporating a temporal regularizer 
into a matrix factorization framework. A standard block-
coordinate gradient descent (BCGD) algorithm is pro-
vided as a solution to the optimization problem. They 
also present two lemmas which prove the correctness of 
the method, followed by a thorough theoretical analysis 
of the solution. The time complexity of BCGD algorithm 

(17)max
�

v∈V
log

exp(s(v, h))
∑

vi∈Vexp(s(v
i , h))

(18)

argminz1,z2,…zt

∑t

�=1
||G� − Z�Z

T
�
||2
F

+ �
∑t

�=1

∑
u
(1 − Z� (u)Z�−1(u)

T )

subject to ∶ ∀ u,� , Z� ≥ 0, Z� (u)Z� (u)
T = 1

is O(rk
∑

T (n +mT )) , where n is the number of nodes, mT 
is the number of edges in the graph GT  , k is the number 
of dimensions, and T is the number of timestamps. In the 
later section, the authors describe two variants of the 
proposed algorithm, namely local BCGD algorithm and 
incremental BCGD algorithm, with local and incremental 
updates respectively. Then they compare the proposed 
methods with other latent space inferring approaches in 
terms of inference time and memory consumption, and 
prove the quality of learned latent spaces in terms of their 
link predictive power.

Another perspective of a dynamic network is a tempo-
ral network [50, 93], whose edges are active only when 
an interaction happens between the nodes. These inter-
actions may lead to a flow of information between the 
nodes. Continuous-time dynamic network embedding 
(CTDNE) [92] aims at developing embedding for temporal 
networks by incorporating temporal dependencies into 
the state-of-the-art methods. In a temporal network, each 
edge is labeled with a timestamp which denotes the time 
of activation of an edge. CTDNE first perform a temporal 
random walk where an edge is traversed in the increas-
ing order of timestamps and generates time-aware node 
sequences. Further, CTDNE uses the skip-gram architec-
ture to learn time preserving node embeddings from the 
node sequences. The optimization objective of CTDNE is 
defined as

where vi−w ,… , vi+w is the neighboring vertices of vertex 
vi and w is the context window size. The objective is to 
learn a function f which generates the node embeddings 
by maximizing the probability that the vertices co-occur 
in the temporal random walk occupy closer in the latent 
space. The time complexity of CTDNE is same as that of 
deepwalk as both uses the skip-gram architecture for 
learning node embeddings.

DynGEM [39] is a deep autoencoder based architec-
ture to embed a dynamic network, which is inspired from 
SDNE. Given n snapshots of a dynamic network, DynGEM 
incrementally builds the embedding of the snapshot at 
time tn from the embedding of the snapshot at time tn−1 . 
At each time step, DynGEM initializes the embedding 
from the previous time step, performs incremental learn-
ing, and thereby reduces the time for convergence from 
the second iteration. Incremental learning can be viewed 
as a transfer learning task where the model only needs 
to learn the changes between two graph snapshots. The 
dynamic network may grow in size. DynGEM uses a heu-
ristic, prop size, to dynamically determine the number 
of hidden units required for each snapshot. The authors 
also provide various stability metrics for generating stable 
dynamic network embeddings. Unlike SDNE which uses 

(19)maxf log Pr(WT = {vi−w ,… , vi+w} ⧵ vi|f (vi))
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a sigmoid function for activations and SGD for training, 
DynGEM uses ReLU in all autoencoder layers to support 
weighted graphs, and Nesterov momentum with properly 
tuned hyperparameters for training. The loss function of 
DynGEM is stated as

where the first and second term represents the second 
order and first order proximities respectively. DynGEM 
uses similar optimization objective as that of SDNE [129], 
but unlike SDNE which operates on static network, Dyn-
GEM optimizes the parameters of the objective function 
at each time step, thereby by learn the parameters across 
a series of snapshots. The time complexity of DynGEM is 
O(ncdit), where n is the number of vertices, d is the embed-
ding dimension, c is the average degree of the network 
and i is the number of iterations, and t is the number of 
snapshots.

DynamicTriad [146] is another dynamic network 
embedding method which tries to preserve both struc-
tural and evolution pattern of the network. The aim of the 
work is to capture the network dynamics and to learn the 
low dimensional vectors for each node at different time 
steps. The work considers triadic closure as an important 
phenomenon which leads to network evolution, and is 
used to preserve the temporal dynamics while generating 
embedding. DynamicTriad models an optimization func-
tion with three components which is stated as

where Lt
sh,1

 is a loss function to preserve the structural con-
nectivity, Lt

tr,2
 is a loss function to preserve the triadic clo-

sure process and 
∑T−1

t=1

∑N

i=1
��ut+1

i
− ut

i
��2
2
 is a loss function 

to impose temporal smoothness by minimizing the euclid-
ean distance between embedding vectors in adjacent time 
steps. DyRep [120] is another work which considers both 
topological evolution and temporal interactions, and aims 
to develop embeddings which encode both structural and 
temporal information.

5  Datasets for network representation 
learning

In this section, we discuss the major network datasets used 
in network representation learning research.

(20)
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5.1  Social networks

BlogCatalog [117] This is a dataset used in most of the 
network representation learning research. BlogCatalog is 
a social network denoting the relationship between blog-
ger authors listed on BlogCatalog website. The topic cat-
egory of each author can act as the label of each node. To 
model BlogCatalog as an attributed network, we may use 
tags and short description of blogs as user attributes. Blog-
ger users and groups can be considered as heterogeneous 
node types, and can form a heterogeneous network with 
user-user and user-group edges.

Yelp2 This network represents the user friendship rela-
tionship in the Yelp social networking service. User reviews 
can be considered as the attribute information. A hetero-
geneous network can be modeled using users (U), busi-
nesses (B), cities(C) and categories (T) as nodes, and friend-
ships (U–U), user reviews (B–U), business cities (B–C), and 
business categories (B–T) as edges.

Flickr [117] The Flickr network denotes contacts 
between users of photo sharing website Flickr. The inter-
est group of each user can be used as the label of each 
node. To model Flickr as an attributed network, we may 
use aggregate tags on the user photos as user attributes.

Youtube [118] It is a social network where users are linked 
if they share a common video. The users can be grouped 
based on their tastes and can form the label of each user.

Facebook Twitter [65] Social networks showing friend 
and following relationships between users. They are usu-
ally used in works which use networks with the scale-free 
property.

5.2  Citation networks

DBLP [113] Three datasets using DBLP data (author citation 
network, paper citation network and co-authorship net-
work) are used in NRL research. Author citation network 
links authors when one author cites the other, paper cita-
tion network links papers when one paper cites the other 
and co-authorship network links authors if they co-author 
at least a single paper. Paper title or paper abstract can be 
used as the attribute associated with each node.

ArXiV [66] Two datasets using ArXiV, ArXiV-GR-QC and 
ArXiv Astro-PH are used in network representation learning 
research. Both are co-author collaboration networks where 
authors are linked if they co-author at least a single paper.

Citeseer3 and Cora [83] Data from both Citeseer and Cora 
is used as paper citation network with paper text denoting 
the attributes of nodes.

2 https ://www.yelp.com/datas et_chall enge.
3 http://konec t.uni-koble nz.de/netwo rks/cites eer.

https://www.yelp.com/dataset_challenge
http://konect.uni-koblenz.de/networks/citeseer
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Aminer computer science data [113] and database infor-
mation system data [112] These datasets are commonly 
used to model heterogeneous networks with the author, 
paper, and venue as node types and with author–author, 
author–paper, and paper–venue edges.

5.3  Other networks

Wikipedia [77] A language network using word co-occur-
rences can be constructed from Wikipedia data with POS 
tags as node labels. Wikieditor [140] is a signed network 
extracted from Wikipedia dataset [61]. Positive or negative 
edges are given based on the co-edit relationship between 
the users.

PPI [11] Protein–Protein Interaction Network(PPI) is a 
biological network showing the interaction between pro-
teins. Protein functions or post-translational modifications 
can be considered as node labels.

Epinions4 and Slashdot5 Epinions is a user-user signed 
network constructed from product review site Epinions. 
Positive and negative links between users indicate the 
trust and distrust between them. The product review 
written by the users can be considered as the attributes. 
Slashdot is a technology news site which allows users to 
annotate other users as friends.

Dynamic network datasets Collaboration network 
snapshots from HEP-TH dataset [36], autonomous system 
communication network snapshots [64] from BGP (Border 
Gateway Protocol) logs, email communication network 
snapshots from ENRON dataset [58], user collaboration 
network snapshots from Github data,6 timestamped com-
munication networks from Chinese Telecom and PPDai 
[146], academic network snapshots from Aminer dataset7 
etc. are some dynamic network snapshots that are used to 
conduct the experiments with representation learning on 
dynamic networks.

6  Applications of network representation 
learning

Researchers applied network representation learning on 
various network mining applications and demonstrated 
the performance improvement of such tasks over the 
state-of-the-art methods. A pipeline of network embed-
ding based network mining is shown in Fig. 10. In this 

section, we discuss the major applications of network 
representation learning.

6.1  Node classification

Node classification [8] is the process of assigning labels 
to the unlabeled nodes in a network by considering the 
labels assigned to the labeled nodes and the topological 
structure of the network. The task is classified into single-
label and multi-label node classification [59] depending 
upon the number of labels to be assigned to each node. A 
network embedding approach for node classification can 
be explained in three steps. (1) Embed the network to a 
low dimensional space. (2) Associate the known labels with 
the nodes, which form the training set (3) A lib-linear [30] 
classifier is trained to build the model, and can be used to 
predict the label of unlabeled nodes. The efficiency of the 
task can be measured using several evaluation measures 
like micro-F1, macro-F1 and accuracy. Node classification 
has been widely used as a benchmark for testing the effi-
ciency of network representation methods. The effect of 
network embedding on node classification was tested on 
different datasets by various methods discussed in sec-
tion 4.1 and the results presented by the authors are sum-
marized below.

DeepWalk used social networks(BlogCatalog, Flickr, 
Youtube), Node2vec used social, biological, and language 
networks(BlogCatalog, P2P, Wikipedia), LINE used social, 
citation, and language networks (Flickr, Youtube, DBLP, 
Wikipedia), SDNE used social networks(BlogCatalog, 
Flickr, Youtube), GCN used citation networks(Citeseer, 
Cora, PubMed), HARP used social and citation 
networks(BlogCatalog, DBLP, Citeseer), ANE used citation 
and language networks(Cora, Citeseer, Wikipedia), Graph-
GAN used social and language networks(BlogCatalog, 
Wikipedia), and NETMF used social, biological, and lan-
guage networks(BlogCatalog, Flickr, PPI, Wikipedia), for 
conducting the experiments with node classification 
problem on homogeneous networks. The effect of net-
work embedding on node classification has been tested 
on attributed networks by TADW using citation and lan-
guage networks(Cora, Citeseer, Wikipedia), AANE using 
social networks(BlogCatalog, Flickr, Youtube), DANE 
using social and citation networks (BlogCatalog, Flickr, 
DBLP, Epinions), IIRL using social and citation networks 
(BlogCatalog, Flickr, DBLP), and TriDNR using citation net-
works (Citeseer, DBLP). Experiment on node classification 
was tested on heterogeneous networks by Metapath2vec 
using citation networks (Aminer), and HIN2Vec using 
social and citation networks (BlogCatalog, Yelp, DBLP). The 
effect of network embedding on node classification has 
been tested on signed networks by SNE using language 
network(Wikieditor), SiNE using social networks( Epinions, 

4 http://www.epini ons.com/.
5 https ://slash dot.org/.
6 https ://www.gharc hive.org/.
7 http://www.amine r.org.

http://www.epinions.com/
https://slashdot.org/
https://www.gharchive.org/
http://www.aminer.org
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Slashdot), and SIDE using social and language networks 
(Epinions, Slashdot, Wikipedia) and on dynamic networks 
by DynamicTriad using communication and citation net-
works (Mobile, Loan, Aminer).

6.2  Link prediction

Link prediction [71, 73] is the one among the most well-
studied network mining tasks that has got greater atten-
tion in recent years due to its wide range of applications. 
The link prediction problem can be defined as, given a 
social network at time t1 , the model needs to predict the 
edges that will be added to the network during the inter-
val from current time t1 to a given future time t2 . In general, 
it can be related to the problem of inferring missing links 
from an observed network. Link prediction is useful in a 
variety of domains such as in social networks, where it 
recommends real-world friends, and in genomics, where 
it discovers the novel interaction between genes. The tra-
ditional method for link prediction is to define a similarity 
score between nodes based on similarity measures [71] 
like common neighbors, Adamic-Adar and preferential 
attachment. In a network embedding approach for link 
prediction, the nodes are first mapped into a low dimen-
sional space. Then the vector similarity measures like 
cosine similarity and nearest neighbor approximation can 
be used to score the predicted links. The efficiency of the 
link prediction task can be measured using several evalu-
ation measures such as precision and area under receiver 
operating curve (AOC) [73].

Node2vec used social, biological, and citation networks 
(Facebook, PPI, ArXiV), and SDNE and GraphGAN used 
citation networks (ArXiV) for conducting link prediction 

experiments on homogeneous networks. Link prediction 
experiments were conducted on attributed networks by 
DeepGL using various network datasets available at net-
work repository,8 and on heterogeneous networks by HIN-
2Vec using social and citation networks (BlogCatalog, Yelp, 
DBLP). The effect of network embedding on link prediction 
has been studied in signed networks by SNE using social 
and language networks (Slashdot, Wikieditor), SiNE using 
social networks (Epinions, Slashdot), SIDE using social and 
language networks (Epinions, Slashdot, Wiki), and SNEA 
using social networks (Epinions, Slashdot). Link prediction 
is an important challenge in dynamic networks and the 
significance of using node representations for link predic-
tion in dynamic networks was tested by TNE using various 
network datasets from Koblenz Large Network Collection,9 
DynamicTraid using communication and citation networks 
(Mobile, Loan, Academic), DynGem using communication 
and citation networks (HEP-TH, ENRON, AS), CTDNE using 
various temporal network datasets, and DyRep using 
Github social network snapshots.

6.3  Network visualization

A network can be meaningfully visualized by creating a 
layout in 2-D space. In a network embedding approach 
for visualization, the learned node embeddings generated 
by the embedding algorithm is passed to a visualization 
tool (t-SNE [75], tensor flow embedding projector [1], PCA 
plot), and is visualized in a two-dimensional vector space. 

Fig. 10  A pipeline of network embedding based network mining

8 http://netwo rkrep osito ry.com/.
9 http://konec t.uni-koble nz.de/.

http://networkrepository.com/
http://konect.uni-koblenz.de/
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The visualization of the same dataset may differ across dif-
ferent embedding algorithms due to the differences in the 
properties preserved by each method.

Homogeneous networks are visualized by DNGR using 
t-SNE visualization of Wine Dataset10 and ANE using t-SNE 
visualization of paper citation network (DBLP). TriDNR 
gives t-SNE visualization of attributed citation network 
(Citeseer). Metapath2vec provides tensorflow embed-
ding projector visualization of a heterogeneous network 
(Aminer). SNE provides t-SNE visualization of a signed net-
work (Wikieditor). Dynamic network snapshots are visu-
alized by DynGem using a synthetic network (SYS), and 
DynRep using user collaboration network (Github).

6.4  Node clustering

Node clustering [105] is the process of grouping the 
nodes in a network into different clusters such that the 
sparsely connected dense subgraphs will be separated 
from each other. Functional module identification [28] in 
PPI networks is a typical application of node clustering. 
Traditional approaches for graph clustering [105] include 
methods based on k-spanning tree, betweenness central-
ity, shared nearest neighbor and clique enumeration. In a 
network embedding based approach for node clustering, 
the nodes are first mapped to a low dimensional space and 
vector space based clustering methods (eg. K-means clus-
tering) are applied to generate the node clusters. Accuracy 
(AC) and normalized mutual information (NMI) [110] are 
the commonly used measures for evaluating the perfor-
mance of node clustering task.

Some works used node clustering as the benchmark 
for evaluating the quality of node embeddings. DNGR 
performed node clustering on homogeneous language 
network (20-newsgroup network), DANE performed node 
clustering on attributed social and citation networks (Blog-
Catalog, Flickr, Epinions, DBLP), Methapath2vec and HNE 
performed node clustering on heterogeneous citation 
and social networks(Aminer, BlogCatalog), and SNEA per-
formed node clustering on signed social networks (Epin-
ions, Slashdot).

6.5  Other applications

Network representation learning is also applied in other 
areas of data mining and information retrieval. SDNE, 
HNE, and DynGem used network embedding for network 
reconstruction. GraphGAN used network embedding to 
build a recommender system using Movielens dataset. A 
user-movie bipartite graph is constructed and used the 

learned representations of users and movies to recom-
mend unwatched movies to the user. CUNE [143] aimed 
at enhancing the recommender system by incorporating 
the social information from the user-item bipartite net-
work with rating information. CUNE constructs a user-
interaction network from the user-item bipartite network, 
extracts implicit social information by embedding nodes 
of the user interaction network, and finally learns an objec-
tive function that incorporates top-k social links with the 
matrix factorization framework. Researchers [20] used net-
work embedding (DeepWalk) to analyze Wikipedia pages 
for identifying historical analogies. The work [54] aimed 
at predicting users multi-interests from user interactions 
on health-related datasets. Other applications of network 
embedding include anomaly detection [39], multimodal 
search [16], information diffusion [10, 145], community 
detection [145], anchor-link prediction [80], emerging 
relation detection [144], sentiment link prediction [131], 
author identification [19], social relation extraction [123], 
and name disambiguation [142].

7  Conclusion and future works

As revolutionary advances in representation learning 
have got tremendous success in several application 
domains, the area of network mining also got influenced 
by representation learning techniques, due to its high-
quality result and state-of-the-art performance. Vari-
ous approaches based on representation learning were 
developed to learn node representations from large and 
complex networks. In this paper, we build a taxonomy of 
network representation learning methods based on the 
type of networks and review the major research works that 
come under each category. We further discuss the various 
network datasets used in network representation learn-
ing research. Finally, we review the major applications of 
network embedding.

Network representation learning is a young and promis-
ing field with a lot of unsolved challenges which provides 
various directions for future works.

Preserving complex structure and properties of real-world 
networks: Most of the real-world networks are very com-
plex, and may contain higher order structures like network 
motifs [87]. They also exhibit complex properties, which 
include scale-free property, hyper edges, and nodes with 
high betweenness centrality . Even if some efforts have 
been made to work with scale-free property [31] and 
hyper networks [43, 124], a significant improvement has 
to be made in these directions.

Complex network types: The taxonomy of the types of 
networks that we provided in this review is not mutually 
exclusive. More complex network types can be modeled 10 https ://archi ve.ics.uci.edu/ml/datas ets/wine.
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by combining these basic types. For example, a citation 
network can be modeled as a dynamic heterogeneous 
attributed network which demands novel efforts in gen-
erating node embeddings.

Addressing the big graph challenge: Many real-world 
networks are very large with millions of nodes and verti-
ces. Even if most of the embedding methods are designed 
to be highly scalable, a significant amount of work is to 
be done to adapt them towards such huge networks. As 
network embedding is basically an optimization problem, 
large-scale optimization methods can be used to improve 
its scalability. Another interesting direction towards 
enhancing the scalability is to develop new embedding 
strategies which can make use of the large-scale graph 
processing platforms like Giraph and Graphx, or to paral-
lelize the existing methods so as to work with these dis-
tributed computing platforms.

More Applications: Most of the research on network 
embedding focused on node classification, node cluster-
ing, and link prediction. Network mining is a fast grow-
ing field with a lot of applications in various domains. So 
there exists an exciting direction of further work towards 
extending the existing methods or developing novel 
embedding methods towards solving more network min-
ing tasks such as network evolution detection [135, 136], 
influential node detection [79], and network summariza-
tion [72].

A few efforts are already made to learn hyperbolic 
embeddings [25] and to use deep reinforcement learn-
ing [100] for network embedding, and more work is to be 
done in these significant directions.
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