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Abstract
Since nanotechnology entered the field of agriculture, its safety impact on crops has been a high priority interest. Here, 
we aimed to evaluate the effect of two different types of nanoparticles (n-), n-SiO2 and n-TiO2, on the above- and below-
ground growth and the root-tip cell mitosis of broad beans (Vicia faba L.), one of the major carbohydrate food sources as 
well as an ecotoxicological model plant. Seeds were soaked in n-SiO2 and n-TiO2 each at different concentrations (25, 50 
and 75 mg/L) for 24 h. Nano-TiO2 decreased vigor index, reflecting shorter shoots at all concentrations studied. By contrast, 
germination percentage and root length were not affected by any treatments. Cytological analysis suggested no signifi-
cant difference in mitotic index (index for cell division activity) from the control. However, total chromosomal aberrations 
(%) were increased dose-dependently by n-SiO2 and dose-independently by n-TiO2. Also, different types of chromosomal 
abnormalities were induced by the nanomaterials; n-SiO2 induced bridges at 50 and 75 mg/L, whereas n-TiO2 induced 
breaks at 50 mg/L. In addition, cells in prophase were more frequently observed and those in anaphase less frequently 
seen with decreasing n-SiO2 concentrations. We concluded that n-TiO2 was more toxic than n-SiO2 for broad bean chro-
mosomes and early plant development at the concentrations studied. Finally, our review indicates the lack of evidence 
of germination enhancement by n-TiO2 in Poaceae, a large monocotyledon family, which may require further attention.
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1 Introduction

Use of nano-scale materials (1–100 nm) has been wide-
spread especially in the last half-century and grew rapidly 
through all fields involving food as well as various indus-
trial products (e.g., cosmetics, toothpaste, paints, electron-
ics, and pharmaceuticals) [34] which lead to daily human 
exposure. Since they have unknown characteristics and 
the data on their potential toxicity is still limited [57], their 

toxic effect including genotoxicity must be studied. Since 
these materials entered the field of agriculture as nanofer-
tilizers and nanopesticides, the need to study their effect 
on plants which are the easiest models to study nano-scale 
material toxicity (where the interaction between both of 
them is an effective aspect to assess their predictable dan-
gerous side effects) has been paramount.

Nano-scale materials such as nano-SiO2 (n-SiO2) and 
nano-TiO2 (n-TiO2) can affect early plant development 
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(Tables S1 and S3). Concentration, particle size and struc-
ture of nanomaterials are known to affect plant growth 
differently. Also, these materials can exert genotoxicity by 
direct and indirect mechanisms [33]. They can penetrate 
plant cells [26] to interrupt cell division causing chromo-
somal abnormalities and cell degeneracy, for example in 
Lens culinaris (lentil) and Allium cepa (onion) [24, 36, 38, 
51], and can generate reactive oxygen species (ROS) which 
cause DNA damage and cell death [37]. Nano-scale materi-
als show high toxicity and are believed to be more toxic 
than their bulk material [16]. Plant root-tip cells treated 
by such materials exhibited many types of chromosomal 
abnormalities, such as breaks, lagging, disturbance, spin-
dle dysfunction, stickiness, fragments, gaps and multipo-
larity in mitotic and meiotic cells [1, 9, 40].

Nano-SiO2 which is promising for biological applica-
tions due to its excellent biocompatibility and large-
scale synthetic availability could stimulate plant growth 
(Table S1) and is believed to enhance it at low to medium 
(50–800 mg/L, [3] or high (2000–14,000 mg/L, [48] con-
centrations. However, this may involve a genotoxic effect 
on the plant cell mitosis and chromosomal abnormalities 
[50] (Table S2).

Nano-TiO2 has both positive and negative effects on 
plant growth [8, 22, 62] (Table S3). Therefore, it must be 
used gingerly until relevant data enable its safe utilization 
[52]. Its genotoxicity depends on its particle size and crys-
talline structure [8, 29] (Table S4); Exposure to the n-TiO2 is 
capable of inducing genotoxicity in the plant systems even 
at a low concentration (12.5 mg/L) due to the internali-
zation of the particles and the oxidative stress [36]. Bulk 
materials of  TiO2, however, showed higher toxicity on V. 
faba than its nano-forms [7], which may need further tests.

Broad bean (Vicia faba L.) (Fabaceae) is one of the most 
important model plants for ecotoxicology studies [39] and 
also an important crop as a carbohydrate food source. This 
work was established to test.

• n-SiO2 and n-TiO2 effects on V. faba growth through 
seed germination, root and shoot lengths as well as 
vigor index.

• the genotoxic effects of n-SiO2 and n-TiO2 on different 
types of chromosomal aberrations for six homogene-
ous chromosomes of V. faba root-tip cells as well as 
mitotic cell division phases.

2  Materials and methods

2.1  Nano‑scale materials

Nano-scale silicon dioxide (n-SiO2) and titanium dioxide 
(n-TiO2) (anatase) were purchased from Nanotech Egypt 

Co., Egypt. For visualization purpose only, osmium coat-
ing was applied to these nano-scale materials and obser-
vation was made under a scanning electron microscope 
(SEM) (SU8000, Hitachi Hitechnologies) at the Center of 
Advanced Instrumental Analysis, Kyushu University. Both 
n-SiO2 and n-TiO2 were suspended in double distilled 
water by sonication for 30 min before use to make con-
centrations of 25, 50 and 75 mg/L.

2.2  Seed material

Seeds of commercial broad bean (V. faba) variety Sakha 
1 were obtained from Food Legumes Research Section, 
Sakha Agricultural Research Station, Egypt.

2.3  Experimental procedure

Seeds were surface sterilized with 2.5% sodium hypochlo-
rite (NaOCl) for 3 min, and then were rinsed 3–4 times with 
distilled water followed by immersing in distilled water for 
3 h. The seeds were then soaked for 24 h in three different 
concentrations 25, 50 and 75 mg/L each of n-SiO2 or n-TiO2 
solution, or in distilled water as the control (0 mg/L). After 
treatment, the seeds were thoroughly washed at least 
three times with distilled water. The randomized complete 
block design was used in three replications for both mate-
rials. Experiments were carried out at the Laboratory of 
Genetics Department, Faculty of Agriculture, Kafrelsheikh 
University, Egypt.

2.3.1  Germination, seedling lengths and vigor index

To study the effects of n-SiO2 and n-TiO2 on seed germi-
nation, 15 seeds per replicate were allowed to germinate 
and grow in a 15 cm diameter Petri dish (four dishes/treat-
ment) lined with filter paper (Whatman No. 1) moistened 
with distilled water. The Petri dishes were placed in a 
growth room controlled at 25 ± 1 °C and 12:12 h light:dark 
photocycle. The seeds were considered germinated when 
the radicle length reached 3 mm. Germination percent-
age was inspected at the seventh day for the treated and 
control seeds as described by Al-Mudaris [2] as follows:

Ten seeds per replication were allowed to grow in pots 
supplied with peat moss after treatments. Three replica-
tions per treatment were prepared. Then, root and shoot 
lengths were measured in centimeters after 14 days as the 
mean of succeeded germinated seedlings.

(1)

Germination percentage

= (number of germinated seeds/total number of seeds)

× 100
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The values of germination percentages in addition to root 
and shoot lengths were used to calculate the vigor index 
according to the equation of Dahindwal et al. [10] as follows:

2.3.2  Cytological analysis

Root tips (1.5–2 cm in length) of germinated seeds were 
cut and fixed in a fresh solution of glacial acetic acid and 
absolute ethanol at the ratio of 1:3 for 24 h and then stored 
in 70% ethanol at 4 °C until use. For cytological analysis, 
roots were boiled in 45% glacial acetic acid to break con-
nections among cells and facilitate mashing of root tips. 
Then, about 1 mm from excised root tips were stained 
with 2% aceto-carmine [11] and squashed on a slide to 
be examined (about 1000 cells per replicate) under a light 
microscope at × 1000 magnification. Mitotic index was cal-
culated for each replicate as follows:

The number of abnormal cells (showing chromosomal 
aberration) relative to dividing cells was calculated for 
each treatment:

2.4  Statistical analysis

Data from each treatment with three replicates were ana-
lyzed by nonparametric Wilcoxon/Kruskal–Wallis tests 

(2)
Vigor index = (shoot length + root length)

× germination percentage/100

(3)Mitotic index = (number of dividing cells/number of dividing and nondividing cells) × 100

(4)

Percentage of abnormal cells

= (number of abnormal cells/number of dividing cells)

× 100

and then by posthoc Tukey tests for multiple comparisons 
using JMP13.2.1. The results were presented as mean ± SD.

3  Results and discussion

The particle sizes of n-SiO2 and n-TiO2 were 119.1 ± 2.8 and 
283.6 ± 15.9 nm, respectively (mean ± SD, n = 10 for each) 
(Fig. 1).

3.1  Effects of n‑SiO2 and n‑TiO2 on germination 
and plant growth

All three tested concentrations of both materials, n-SiO2 
and n-TiO2, did not affect germination percentage 
(χ2 = 12.13, df = 6, P = 0.0590, Fig. 2). For n-SiO2, similar 
results were obtained at the concentrations of 90 and 
180 mg/L on V. faba [42] and at even higher concentra-
tions (400–4000 mg/L) on Arabidopsis thaliana [31]. On the 

Fig. 1  Scanning electron microscope (SEM) images of nano-SiO2 (left) and nano-TiO2 (right)

other hand, n-SiO2 decreased the germination percentage 
of A. cepa at 540, 810 and 1820 mg/L [51] and L. culinaris by 
increasing the concentration up to 300 mg/L [24].

Similar to our result, n-TiO2 treatments did not influ-
ence the seed germination of Triticum aestivum (wheat) 
[18], Hordeum vulgare (barley) [32] and various plant spe-
cies even at high concentrations (Table S3). By contrast, 
n-TiO2 decreased germination percentage of Z. mays (at 
50 and 100 mg/L, 5 d exposure, [61], Oryza sativa (rice) 
(at 2000  mg/L, 10 d exposure, [21], Spinacia oleracea 
(spinach) (at 6000 and 8000 mg/L, 2d exposure, [62] and 
various other plants when typically exposed to high con-
centrations or for a long time (Table S3). On the contrary, 
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n-TiO2 at its lower concentration range can enhance 
germination of various plants except those belong to 
Poaceae (Table S3). The lack of evidence of germination 
enhancement by n-TiO2 in the large monocotyledon fam-
ily, Poaceae, may need further attention and investigation.

As shown in Fig. 3, both nanomaterials did not show any 
effect on root length (χ2 = 7.49, df = 6, P = 0.28, Fig. 3). By 
contrast, n-SiO2 moderated impact of salinity on the root 
length of L. culinaris [44] and Cucurbita pepo [49]. Signifi-
cant difference was found among different treatments on 
shoot length (χ2 = 17.08, df = 6, P = 0.009, Fig. 3); Nano-TiO2 
shortened shoots at all concentrations studied, whereas 
n-SiO2 did not affect their length. The latter result with 
n-SiO2 is in agreement with the results on Oryza sativa 
(rice) and Zea mays (maize) despite higher concentration 
(2000 mg/L) [60]. The former (shortened shoot by n-TiO2) 
is similar to that observed in Mentha piperita [46]. On the 
contrary, n-TiO2 had no effect at lower concentrations of 
5–20 mg/L on T. aestivum [14] or even at higher concentra-
tions of 200–4000 mg/L on Z. mays [6].

All n-TiO2 concentrations significantly reduced the vigor 
index compared to the control, unlike n-SiO2 treatment 
which had no significant effect at any applied concentra-
tions (χ2 = 17.61, df = 6, P = 0.0073, Fig. 2), reflecting the 
shoot length decrease by n-TiO2 (Fig. 3). This is in parallel 
with the negative effect on the vigor index of V. faba using 
bulk (non-nano)  TiO2 [7] but in contrast to the positive 

effect on that of V. faba using < 10 nm particles [7] and 
on the vigor index of four out of five plant species stud-
ied at 10-20 mg/L or 10–80 mg/L (Nigella sativa, Alyssum 
homolocarpum, Carum copticum and Salvia mirzayanii, [22], 
Table S3. Since larger particles have larger surface area or 
surface energy, they tend to be more unstable and thus 
to form aggregates of the scale of micron rapidly [17, 19]. 
In the case of S. oleracea, n-TiO2 shows a positive effect on 
vigor index but at higher concentrations (250–4000 mg/L) 
and with less toxic crystal structure, rutile (i.e., oxidative 
stress is mitigated by antioxidant; [4, 62].

3.2  Effects of nano‑SiO2 and nano‑TiO2 on mitotic 
division in root meristem cells

3.2.1  Mitotic index and mitotic phase

Vicia faba root-tip cells showed different mitotic phases. 
Both materials at any tested concentrations did not affect 
the mitotic index, compared to the control (χ2 = 9.56, 
df = 6, P = 0.14). However, the mitotic index at the high-
est n-TiO2 concentration (75 mg/L) was significantly lower 
than that at the lowest n-SiO2 concentration (25 mg/L) 
(Table 1). The positive effect of n-SiO2 at the low concen-
tration is in contrast to the previous results on L. culinaris 
at the same concentrations [24] and A. cepa at concen-
trations of 540–1820  mg/L [51]. Although n-TiO2 may 

Fig. 2  Germination percentage 
and vigor index (mean ± SD) of 
Vicia faba treated with nano-
SiO2 and nano-TiO2. Bars with 
the same letters did not differ 
significantly for vigor index. No 
significant differences in ger-
mination percentage among 
different treatments
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have the potential to decrease cell dividing activity with 
increasing concentration, these results are, overall, in 
agreement with earlier studies reporting that even at the 
high concentrations (> 100 mg/L) mitotic activity was not 
affected by n-TiO2 [7, 20, 32]. In A. thaliana, expression of 
more genes were down-regulated than up-regulated by 
n-TiO2 (10–50 nm) at the studied concentration (500 mg/L) 
[56]. By contrast, slightly more genes were up-regulated 
than down-regulated by n-TiO2 (< 150 nm) at 100 mg/L 
[27]. Additionally, n-TiO2 activated antioxidant enzymes 
(catalase and peroxidase but not superoxide dismutase), 
amylase and protease at 10–30  mg/L in A. cepa [30], 

indicating generation of oxidative stress even at its low 
concentrations.

Proportions of cells in the mitotic phases, metaphase 
(χ2 = 6.96, df = 6, P = 0.325) and telophase (χ2 = 12.26, 
df = 6, P = 0.0564), were not different from the con-
trol and among different concentrations of n-SiO2 and 
n-TiO2. By contrast, those in the mitotic phases, prophase 
(χ2 = 14.23, df = 6, P = 0.027) and anaphase (χ2 = 12.64, 
df = 6, P = 0.0491), were different among treatments. For 
cells in prophase, there was a difference between differ-
ent concentrations of n-SiO2; a higher proportion was in 
this mitotic phase at a lower concentration (Fig. 4). This is 

Fig. 3  Effects of nano-SiO2 and 
nano-TiO2 on Vicia faba shoot 
and root lengths (mean ± SD). 
Bars with the same letters did 
not differ significantly for shoot 
length. Root length was not 
significantly different among 
treatments

Table 1  Composition of mitotic phases (%) and mitotic index of Vicia faba root-tip cells treated with three different concentrations of nano-
SiO2 and nano-TiO2

Mitotic index with the same letters did not differ significantly

Treatment Conc. (mg/L) Pooled no. of 
examined cells

Pooled no. of 
dividing cells

Mitotic phase Mitotic index 
(%) (mean ± SD)

Prophase Metaphase Anaphase Telophase

N % N % N % N %

Control 0 3276 2984 2620 87.80 93 3.12 119 3.99 152 5.09 91.38 ± 2.70ab

n-SiO2 25 3419 3317 3101 93.49 71 2.14 46 1.39 99 2.98 97.02 ± 2.05a

50 2965 2440 2137 87.58 92 3.77 60 2.46 151 6.19 82.80 ± 13.35ab

75 2983 2533 2191 86.50 91 3.59 99 3.91 152 6.00 83.95 ± 13.95ab

n-TiO2 25 2803 2493 2250 90.25 95 3.81 48 1.93 100 4.01 88.76 ± 5.44ab

50 3610 3152 2928 92.89 89 2.82 49 1.55 86 2.73 86.64 ± 14.06ab

75 3594 2693 2413 89.60 108 4.01 57 2.12 115 4.27 74.99 ± 2.25b
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associated with the high mitotic index of the cells of the 
root germinating from the seeds treated by n-SiO2 at this 
concentration (Table 1). Similar comparison was made in 
A. cepa treated with n-TiO2 but rather less share of cells 
was observed in prophase where mitotic index was high 
[25]. Prophase includes complex processes (chromosome 
condensation, centrosome movement, mitotic spindle 
formation, and nucleoli break down) to prepare for cell 
division. Nano-SiO2 inactivates proteins by binding and 
changing their 3D structure but causes no synergistic 
effect [59]. Various proteins that support these processes 
during prophase may have been arrested and deterred, 
or alternatively, promoted by nanomaterials, depending 
on species. For anaphase, after seeds were treated by low 
concentrations of n-SiO2, root-tip cells were less frequently 
observed in this mitotic phase than the control (Fig. 4).

3.2.2  Chromosomal abnormalities

Both n-SiO2 and n-TiO2 increased total chromosomal 
abnormalities through mitotic phases but in a different 
way (χ2 = 15.93, df = 6, P = 0.014). Nano-SiO2 escalated 
chromosomal aberration with increasing concentration 
(Fig. 5). By contrast, all n-TiO2 concentrations showed the 
same ability for inducing chromosomal aberration even at 
the lowest concentration (Fig. 5). This illustrates that n-SiO2 
had less toxic effect than n-TiO2 on V. faba root-tip cells 
particularly at 25 mg/L. The dose-dependent induction 
of total chromosomal aberrations by n-SiO2 in our study 

contrasts to the increased mitotic index on L. culinaris at 
200 and 300 mg/L [24] and on A. cepa at the concentration 
of 810 mg/L [51]. On the other hand, application of n-TiO2 
increased aberration frequency in V. faba root-tip cells. In 
this respect, the previous studies on Z. mays [7], A. cepa [20, 
36] and Vicia narbonensis [6] recorded a high frequency of 
chromosomal aberrations as a result of n-TiO2 treatments. 
Nano-SiO2 and n-TiO2 could disturb both chromosome 
structure and spindle fibers during mitosis. Different types 
of chromosomal aberrations were observed in the tested 
materials, such as stickiness (Fig. 6a, b, e), c-metaphase 
(Fig. 6d), disturbance (Fig. 6c, f ), lagging chromosomes 
(Fig. 6f, g), fragments (Fig. 6e), bridges (Fig. 6h, i) and 
breaks (Fig. 6b, f ). There were neither chromosomal gaps 
nor multipolarity observed during mitosis nor micronu-
cleus during interphase.

Chromosomal bridges and breaks occurred differently 
among treatments; n-TiO2 had an ability to break chro-
mosomes (χ2 = 14.41, df = 6, P = 0.025, Fig. 7), which may 
lead to losing genetic material [45]. Frequency of chro-
mosomal breaks were not different from the control at 
all n-SiO2 concentrations, whereas it was higher than the 
control at 50 mg/L n-TiO2 (Fig. 7). Nano-SiO2 promoted 
chromosome bridges particularly at 50 mg/L, whereas 
n-TiO2 did not affect their occurrence (χ2 = 12.69, df = 6, 
P = 0.048, Fig. 7). The higher occurrence of metaphase and 
anaphase chromosomal aberrations such as bridges and 
breaks may be due to physical interaction to interrupt 
chromatin structure or chemical interaction with nuclear 

Fig. 4  Composition (mean ± SD) among different mitotic phases of Vicia faba root-tip cells treated with nano-SiO2 and nano-TiO2. Bars with 
the same letters did not differ significantly
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Fig. 5  Frequency of abnormal 
mitotic cells (relative to total 
dividing cells) (mean ± SD) of 
Vicia faba root-tip cells treated 
with nano-SiO2 and nano-TiO2. 
Bars with the same letters did 
not differ significantly

Fig. 6  Types of chromosomal 
abnormalities observed in Vicia 
faba root-tip cells and induced 
by application of nano-SiO2 
and nano-TiO2: a sticky pro-
phase, b sticky metaphase with 
break, c disturbed metaphase, 
d c-metaphase, e fragment in 
sticky metaphase, f disturbed 
anaphase with breaks and 
laggards, g forwarded lag-
gard in anaphase, h bridge 
in anaphase and i bridge in 
telophase
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protein and mitotic spindle fibers [12, 33]. By contrast, fre-
quency of the following types of aberrations did not differ 
significantly from those in the control and among different 
treatments; disturbance (χ2 = 12.36, df = 6, P = 0.054), lag-
gard (χ2 = 6.68, df = 6, P = 0.35), stickiness (χ2 = 5.71, df = 6, 
P = 0.45), c-metaphase (χ2 = 9.42, df = 6, P = 0.15) and frag-
ment (χ2 = 9.84, df = 6, P = 0.13) (Fig. 7). 

To summarize, mitosis in root-tip cells and plant devel-
opment of broad beans incurred larger damage by n-TiO2 
than by n-SiO2 even at its low concentrations (i.e., higher 
chromosomal aberration frequency, higher chromosomal 
break frequency, and shorter shoots). Mitotic abnormality 
was induced dose-dependently by n-SiO2 but not reflected 
in plant development. Toxicity of nano-scale materials in 
the early stages of plant growth is likely to be due to the 
following factors: (1) chemical and physical properties that 
influence the release of ions or the aggregation of parti-
cles in more stable forms and (2) the size and shape of 
the particles, which determine the specific surface area of 
these materials [5, 35, 60]. The penetration of metal ions 
into the cell causes cross-link in the DNA, sister chromatid 

exchange, and mutations [43]. Nanomaterials also cause 
clogging of pores and barriers in the apoplastic stream 
and this reduces photosynthesis, generates ROS and dam-
ages DNA structures [13, 55, 58]. In our study, although 
both nanomaterials induced chromosomal aberrations in 
the root-tip cells, they did not affect mitotic index, seed 
germination and root elongation, whereas n-TiO2 inhib-
ited shoot elongation. This may be partly due to the large 
particle sizes (> 100 nm) which could prevent the nano-
materials’ penetration of the seed coat but might allow 
the nanomaterials to penetrate the radicle (root) cell wall 
to be transported to the shoot tissue [32].
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